全等三角形的相关模型总结汇总
全等三角形的相关模型总结

全等的相关模型总结⼀一、⻆角平分线模型应⽤用1.⻆角平分性质模型:辅助线:过点G作GE射线AC(1).例例题应⽤用:①如图1,在,那么点D到直线AB的距离是cm.②如图2,已知,,..图1图2①2(提示:作DE AB交AB于点E)②,,,,.(2).模型巩固:练习⼀一:如图3,在四边形ABCD中,BC>AB,AD=CD,BD平分..求证:图3练习⼆二:已知如图4,四边形ABCD中,图4练习三:如图5,交CD于点E,交CB于点F.(1)求证:CE=CF.(2)将图5中的△ADE沿AB向右平移到的位置,使点落在BC边上,其他条件不不变,如图6所示,是猜想:于CF⼜又怎样的数量量关系?请证明你的结论.图5图6练习四:如图7,,P是AB的中点,PD平分∠ADC.求证:CP 平分∠DCB .AD ECBP 2143图7练习五:如图8,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,⾃自D 作DE ⊥AB ,DF ⊥AC ,垂⾜足分别为E ,F .求证:BE=CF .图8练习六:如图9所示,在△ABC 中,BC 边的垂直平分线DF 交△BAC 的外⻆角平分线AD 于点D ,F 为垂⾜足,DE ⊥AB 于E ,并且AB>AC 。
求证:BE -AC=AE 。
图9练习七:如图10,D 、E 、F 分别是△ABC 的三边上的点,CE=BF ,且△DCE 的⾯面积与△DBF 的⾯面积相等,求证:AD 平分∠BAC 。
2.⻆角平分线+垂线,等腰三⻆角形⽐比呈现辅助线:延⻓长ED交射线OB于F辅助线:过点E作EF∥射线OB (1).例例题应⽤用:①.如图1所示,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F。
求证:证明:延⻓长BE交AC于点F。
②.已知:如图2,在,分析:此题很多同学可能想到延⻓长线段CM,但很快发现与要证明的结论毫⽆无关系。
⽽而此题突破⼝口就在于AB=AD,由此我们可以猜想过C点作平⾏行行线来构造等腰三⻆角形.证明:过点C作CE∥AB交AM的延⻓长线于点E.例例题变形:如图,,,求证:①②(3).模型巩固:练习⼀一、如图3,ΔABC是等腰直⻆角三⻆角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延⻓长线于点E。
全等三角形的10个模型(一)2024

全等三角形的10个模型(一)引言概述:全等三角形是指两个或多个三角形的对应边和对应角完全相等的情况。
全等三角形在几何学中有广泛的应用,不仅在证明和推导定理时起到重要的作用,还在实际问题的解决中提供了有力的工具。
本文将介绍十个关于全等三角形的模型。
这些模型旨在帮助读者更好地理解和运用全等三角形的性质和应用。
正文:1. 模型一:完全相等的三边- 全等三角形的基本条件就是三边相等。
- 通过边的对应关系确定两个三角形是否全等。
- 证明时可利用边长相等的性质进行推导。
2. 模型二:完全相等的两边和夹角- 如果已知两个三角形的两边和夹角都相等,则这两个三角形全等。
- 通过边角边(SAS)或角边角(ASA)的条件可以判定两个三角形相等。
3. 模型三:完全相等的两角和夹边- 如果已知两个三角形的两角和夹边都相等,则这两个三角形全等。
- 边角边(SAS)或角边角(ASA)的条件可以判定两个三角形相等。
4. 模型四:等腰三角形和全等条件- 等腰三角形是指两边相等或两角相等的三角形。
- 如果两个三角形中有一个是等腰三角形,且两个等腰三角形的两边或两角都相等,则这两个三角形全等。
5. 模型五:直角三角形和全等条件- 直角三角形是指其中一个角为90度的三角形。
- 如果两个三角形中有一个是直角三角形,且两个直角三角形的两边或两个锐角均相等,则这两个三角形全等。
总结:通过十个模型的介绍,我们可以看到全等三角形是几何学中一个重要而广泛应用的概念。
理解全等三角形的性质和应用对于解决几何问题具有重要意义。
在实际问题中,我们常常可以利用全等三角形的模型来推导和证明定理,从而得出更深入的结论。
全等三角形八大模型归纳

全等三角形八大模型归纳全等三角形是初中数学中重要的概念之一,它是指两个三角形的对应边相等且对应角相等。
全等三角形具有许多性质和特点,可以归纳为八大模型,分别是SSS、SAS、ASA、AAS、HL、LLL、LLA、LAL。
下面将分别介绍这八种模型的特点和应用。
第一种模型是SSS,即三边全等。
当两个三角形的三条边分别相等时,这两个三角形就是全等的。
这种模型在实际生活中的应用非常广泛,比如在建筑、工程设计中,需要测量房屋的各个边长是否相等,以确保建筑物的稳定性和均衡性。
第二种模型是SAS,即两边夹角边全等。
当两个三角形的两边和夹角分别相等时,这两个三角形就是全等的。
这种模型常常用于证明两个三角形全等的情况,可以通过辅助线的引入来简化证明过程。
第三种模型是ASA,即两角边角全等。
当两个三角形的两个角和夹边分别相等时,这两个三角形就是全等的。
这种模型在解题过程中也经常用到,特别是在证明题中,可以根据已知条件找到相等的角和边,从而得出结论。
第四种模型是AAS,即两角边角全等。
当两个三角形的两个角和一边分别相等时,这两个三角形也是全等的。
这种情况在证明过程中比较常见,可以通过找到两个角和一边相等来得出结论。
第五种模型是HL,即斜边和直角边全等。
当两个直角三角形的斜边和一个直角边分别相等时,这两个三角形就是全等的。
这种情况在解决直角三角形的问题时经常用到,可以利用勾股定理和全等三角形的性质来求解。
第六种模型是LLL,即三边全等。
这种模型和SSS模型类似,只不过LLL模型更加具体,强调了三个边全部相等的情况。
在实际问题中,可以通过测量三角形的三边长度来判断两个三角形是否全等。
第七种模型是LLA,即两边和一个角全等。
当两个三角形的两个边和一个非夹角的角相等时,这两个三角形是全等的。
这种情况在解题过程中也会经常遇到,可以通过找到两个边和一个非夹角的角相等来证明两个三角形全等。
第八种模型是LAL,即一边和两个角全等。
当两个三角形的一条边和两个角分别相等时,这两个三角形也是全等的。
数学复习:全等三角形相关模型

数学复习:全等三角形相关模型一、角平分线模型(1)角平分线+两边垂线→全等三角形:角平分线的性质定理:角平分线上的点到角的两边距离相等;已知:AD平分∠BAC,CD⊥AC,垂足为C,过点D作DB⊥AB,垂足为B;辅助线:过点D作DB⊥AB,垂足为B;结论:①△ACD≌△ABD;②CD=DB(角分线垂两边,对称全等必呈现)(2)角平分线+垂线模型等腰三角形必呈现:遇到垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形;已知:OP平分∠AOB,MP⊥OP,垂足为P,延长MP交OB于点N;结论:①△OPM≌△OPN;②△OMN为等腰三角形;③P是MN的中点(三线合一);(3)在角的两边上截取相等的线段,构造全等三角形:已知:OC是∠AOB的角平分线,D为OC上一点;辅助线:在OA上取一点E,在OB取一点F,使得OE=OF,并连接DE,结论:△OED≌△OFD;(4)作平行线①以角分线上一点作角的另一边的平行线,则△OAB 等腰三角形;②过一边上的点作角平分线的平行线与另一边的反向延长线相交,则△ODH 等腰三角形;已知:OP 平分∠MON ,AB ∥ON ,已知:OC 平分∠AOD ,DH ∥OC ,结论:△OAB 等腰三角形结论:△ODH 等腰三角形角平分线+两边垂线→全等三角形辅助线:过点G 作GE ⊥射线AC已知:AD 是∠BAC 的角平分线,CD ⊥AC ,DB ⊥AB ,求证:CD=DB证明:∵AD 是∠BAC 的角平分线,∴∠1=∠2,∵CD ⊥AC ,DB ⊥AB ,∴∠ACD=∠ABD=90°,在△ACD 和△ABD 中,∴△ACD ≌△ABD (AAS )∴CD=BD⎪⎩⎪⎨⎧AD =AD 90=ABD ∠=ACD ∠2∠=1∠例1:已知:∠1=∠2,∠3=∠4,求证:AP平分∠BAC.例2:如图,AB>AC,∠A的平分线与BC的垂直平分线相交于D,过D作DE⊥AB、DF⊥AC,垂足分别为E、F.求证:BE=CF.例4:如图,在△ABC中,M为BC的中点,DM⊥BC,DM与∠BAC的角平分线交于点D,DE⊥AB,DF⊥AC,E、F为垂足,求证:BE=CF.角平分线+垂线模型等腰三角形必呈现例1:如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BE交BA的延长于F.求证:BD=2CE例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD 交AD的延长线于M.求证:2AM=(AB+AC)例3:如图,已知△ABC中,CF平分∠ACB,且AF⊥CF,∠AFE+∠CAF=180°,求证:EF∥BC.截取构造全等:例1:如图,AB>AC ,∠1=∠2,求证:AB -AC>BD -CD 。
专题02 全等三角形中的六种模型梳理

专题02 全等三角形中的六种模型梳理一、概述全等三角形是初中数学中一个重要且常见的概念,对于几何学的学习具有重要的意义。
在全等三角形的学习中,有六种基本模型,它们是解决全等三角形问题的重要工具。
本文将对全等三角形中的六种模型进行深入探讨和梳理,帮助读者更加全面地理解和掌握这一知识点。
二、模型一:SSS全等模型在全等三角形中,如果两个三角形的三条边分别相等,则可以确定它们是全等三角形,这就是SSS全等模型。
如果已知两个三角形的三边分别相等,那么这两个三角形一定是全等的。
模型二:SAS全等模型SAS全等模型是指如果两个三角形的一条边和夹角以及另一边的长度分别相等,则可以确定它们是全等三角形。
如果已知两个三角形的一个角和两边分别相等,那么可以确定这两个三角形是全等的。
模型三:ASA全等模型在全等三角形中,如果两个三角形的一个角和两个角边相等,则可以确定它们是全等三角形,这就是ASA全等模型。
如果已知两个三角形的一个角和两个角边分别相等,那么可以确认这两个三角形是全等的。
模型四:HL全等模型HL全等模型是指如果两个直角三角形的斜边和一个直角边的长度分别相等,则可以确定它们是全等三角形。
如果已知两个直角三角形的斜边和一个直角边的长度分别相等,那么可以确定这两个三角形是全等的。
模型五:LL全等模型LL全等模型是指如果两个三角形的两个角和一个边分别相等,则可以确定它们是全等三角形。
如果已知两个三角形的两个角和一个边分别相等,那么可以确定这两个三角形是全等的。
模型六:对顶全等模型对顶全等模型是指如果两个三角形的两个对顶角和一个边分别相等,则可以确定它们是全等三角形。
如果已知两个三角形的两个对顶角和一个边分别相等,那么可以确定这两个三角形是全等的。
三、总结与回顾通过上述对全等三角形中六种模型的梳理,我们可以发现几何学中的相似和全等的概念是非常重要的。
在实际问题中,我们可以通过判断形状的相似或全等,推断出一些未知的信息,帮助我们解决问题。
三角形全等11大解题模型汇总

三角形全等11大解题模型汇总类别 1:角平分线模型应用模型 1:角平分性质模型:辅助线:过点 G 作 GE ⊥射线 AC【例题详解】①如图1,在中ABC ∆,,cm 4,6,900==∠=∠BD cm BC CAB AD C 平分,那么点D 到直线AB 的距离是cm.②如图2,已知,21∠=∠,43∠=∠.BAC AP ∠平分求证:.图1图2①2 (提示:作 DE ⊥AB 交 AB 于点 E)②21∠=∠ ,PN PM =∴,43∠=∠ ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,.模型2:角平分线+垂线,等腰三角形比呈现辅助线:延长ED 交射线OB 于F 辅助线:过点E 作EF∥射线OB【例题详解】已知:如图2,在中ABC ∆,,,AD AB D BC AD BAC =∠且于交的角平分线)(21.AC AB AM M AD AD CM +=⊥求证:的延长线于交作分析:此题很多同学可能想到延长线段CM,但很快发现与要证明的结论毫无关系。
而此题突破口就在于 AB=AD,由此我们可以猜想过 C 点作平行线来构造等腰三角形.证明:过点 C 作 CE∥AB 交 AM 的延长线于点 E.例题变形:如图,21∠=∠,的中点为AC B ,.,N FB AN M FB CM 于于⊥⊥模型3:角分线,分两边,对称全等要记全两个图形的辅助线都是在射线OA 上取点B ,使OB=OA ,从而使OAC ∆≌△OBC.【例题详解】①、在△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P,BQ 平分∠ABC 交AC 于Q,求证:AB+BP=BQ+AQ。
思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。
2)解题思路:本题要证明的是AB+BP=BQ+AQ。
形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。
可过O 作BC 的平行线。
全等三角形的相关模型总结

全等的相关模型总结一、角平分线模型应用1.角平分性质模型: 辅助线:过点G 作GE ⊥射线AC(1).例题应用:①如图1,在中ABC ∆,,cm 4,6,900==∠=∠BD cm BC CAB AD C 平分,那么点D 到直线AB 的距离是 cm.②如图2,已知,21∠=∠,43∠=∠.BAC AP ∠平分求证:.图1 图2①2 (提示:作DE ⊥AB 交AB 于点E )②21∠=∠ ,PN PM =∴,43∠=∠ ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,.(2).模型巩固:练习一:如图3,在四边形ABCD 中,BC>AB ,AD=CD ,BD 平分BAC ∠..求证:︒=∠+∠180C A图3练习二:已知如图4,四边形ABCD 中,..,1800BAD AC CD BC D B ∠==∠+∠平分求证:图4练习三:如图5,,,900CAB AF D AB CD ACB ABC Rt ∠⊥=∠∆平分,垂足为,中,交CD 于点E ,交CB 于点F.(1)求证:CE=CF.(2)将图5中的△ADE 沿AB 向右平移到'''E D A ∆的位置,使点'E 落在BC 边上,其他条件不变,如图6所示,是猜想:'BE 于CF 又怎样的数量关系?请证明你的结论.图5 图6练习四:如图7,90A AD BC =︒,∠∥,P 是AB 的中点,PD 平分∠ADC.求证:CP 平分∠DCB.图7练习五:如图8,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,自D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .求证:BE=CF .图8练习六:如图9所示,在△ABC 中,BC 边的垂直平分线DF 交△BAC 的外角平分线AD 于点D ,F 为垂足,DE ⊥AB 于E ,并且AB>AC 。
求证:BE -AC=AE 。
练习七: 如图10,D 、E 、F 分别是△ABC 的三边上的点,CE=BF ,且△DCE 的面积与△DBF 的面积相等,求证:AD 平分∠BAC 。
全等三角形经典模型总结

全等三角形经典模型总结1.S-A-S(边-角-边)全等法则:当一个三角形的两边和夹角分别等于另一个三角形的两边和夹角时,两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,∠ABC=∠DEF,并且BC=EF,那么三角形ABC全等于三角形DEF。
2.A-S-A(角-边-角)全等法则:当一个三角形的两角和夹边分别等于另一个三角形的两角和夹边时,两个三角形全等。
例如,在三角形ABC和DEF中,如果∠ABC=∠DEF,BC=EF,并且∠BCA=∠EFD,那么三角形ABC全等于三角形DEF。
3.S-S-S(边-边-边)全等法则:当两个三角形的三边分别对应相等时,两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,BC=EF,并且AC=DF,那么三角形ABC全等于三角形DEF。
4.H-L(高-底)全等法则:如果两个三角形的高和底分别相等,那么这两个三角形全等。
例如,在三角形ABC和DEF中,如果h1是三角形ABC的高,b1是它的底,h2是三角形DEF的高,b2是它的底,如果h1=h2,b1=b2,则三角形ABC全等于三角形DEF。
5.A-A-S’(角-角-边)全等法则:若三角形的两个角和两个边分别与另一三角形的两个相对角和边对应,则两个三角形全等。
例如,在三角形ABC和DEF中,如果∠ABC=∠DEF,∠BCA=∠EFD,并且AC/DF=BC/EF,那么三角形ABC全等于三角形DEF。
6.1-1-1全等法则:如果两个三角形的边长度分别相等,那么这两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,AC=DF,并且BC=EF,那么三角形ABC全等于三角形DEF。
7.1-1-边(边-边)全等法则:如果两个三角形的两个边和一个夹角分别相等,那么这两个三角形全等。
例如,在三角形ABC和DEF中,如果AB=DE,BC=EF,并且∠ABC=∠DEF,那么三角形ABC全等于三角形DEF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等的相关模型总结一、角平分线模型应用1.角平分性质模型:辅助线:过点G 作GE ⊥射线AC(1).例题应用:①如图1,在中ABC ∆,,cm 4,6,900==∠=∠BD cm BC CAB AD C 平分,那么点D 到直线AB 的距离是 cm.②如图2,已知,21∠=∠,43∠=∠.BAC AP ∠平分求证:.图1 图2①2 (提示:作DE ⊥AB 交AB 于点E )②21∠=∠Θ,PN PM =∴,43∠=∠Θ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,. (2).模型巩固:练习一:如图3,在四边形ABCD 中,BC>AB ,AD=CD ,BD 平分BAC ∠..求证:︒=∠+∠180C A图3练习二:已知如图4,四边形ABCD 中,图4练习三:如图5,,,900CAB AF D AB CD ACB ABC Rt ∠⊥=∠∆平分,垂足为,中,交CD 于点E ,交CB 于点F.(1)求证:CE=CF.(2)将图5中的△ADE 沿AB 向右平移到'''E D A ∆的位置,使点'E 落在BC 边上,其他条件不变,如图6所示,是猜想:'BE 于CF 又怎样的数量关系?请证明你的结论.图5 图6练习四:如图7,90A AD BC =︒,∠∥,P 是AB 的中点,PD 平分∠ADC.求证:CP 平分∠DCB.图7 A DECB P2 1 4 3练习五:如图8,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,自D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .求证:BE=CF .图8练习六:如图9所示,在△ABC 中,BC 边的垂直平分线DF 交△BAC 的外角平分线AD 于点D ,F为垂足,DE ⊥AB 于E ,并且AB>AC 。
求证:BE -AC=AE 。
练习七: 如图10,D 、E 、F 分别是△ABC 的三边上的点,CE=BF ,且△DCE 的面积与△DBF 的面积相等,求证:AD 平分∠BAC 。
2.角平分线+垂线,等腰三角形比呈现辅助线:延长ED 交射线OB 于F 辅助线:过点E 作EF ∥射线OB(1).例题应用:①.如图1所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。
求证:1()2BE AC AB =- 证明:延长BE 交AC 于点F 。
②.已知:如图2,在中ABC ∆, ,,AD AB D BC AD BAC =∠且于交的角平分线 分析:此题很多同学可能想到延长线段CM ,但很快发现与要证明的结论毫无关系。
而此题突破口就在于AB=AD ,由此我们可以猜想过C 点作平行线来构造等腰三角形.证明:过点C 作CE ∥AB 交AM 的延长线于点E.例题变形:如图,21∠=∠,的中点为AC B ,.,N FB AN M FB CM 于于⊥⊥求证:①;2BM EF = ②).(21FN FM FB +=(3).模型巩固:练习一、 如图3,ΔABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC 交AC 于点D ,CE 垂直于BD ,交BD 的延长线于点E 。
求证:BD=2CE 。
图3F E DCBA图9练习一变形:如图4,在△ODC 中,,090=∠D CE OE DCO EC ⊥∠的角平分线,且是, 过点E 作..之间的关系,并证明与猜想:线段于点交OD EF F OC OC EF ⊥ 图4练习二、如图5,已知△ABC 中,CE 平分∠ACB ,且AE ⊥CE ,∠AED +∠CAE =180度,求证:DE ∥BC图5 练习三、如图6,AD ⊥DC ,BC ⊥DC ,E 是DC 上一点,AE 平分∠DAB ,BE 平分∠ABC ,求证:点E 是DC 中点。
图6 练习四、①、如图7(a ),A ABC CE BD 的外角平分线,过点分别是、∆、作BD AD ⊥ DE DE E D CE AE :.求证,连接、,垂足分别是⊥∥,BC )(21AC BC AB DE ++=.图7(a ) 图7(b ) 图7(c )②、如图7(b ),件不变;的内角平分线,其他条分别是、ABC CE BD ∆③、如图7(c ),的外角平分线,为的内角平分线,为ABC CE ABC BD ∆∆其他条件不变. 则在图7(b )、图6(c )两种情况下,DE 与BC 还平行吗?它与ABC ∆三边又有怎样的数量关系?请写出你的猜测,并证明你的结论.(提示:利用三角形中位线的知识证明线平行)练习五、如图8,在直角三角形ABC 中,90C ∠=︒,A ∠的平分线交BC 于D .自C 作CG AB ⊥交AD于E ,交AB 于G .自D 作DF AB ⊥于F ,求证:CF DE ⊥.图8练习六、如图9所示,在ABC ∆中,AC AB >,M 为BC 的中点,AD 是BAC ∠的平分线,若CF AD⊥且交AD 的延长线于F ,求证()12MF AC AB =-. 图9练习六变形一:如图10所示,AD 是ABC ∆中BAC ∠的外角平分线,CD AD ⊥于D ,E 是BC 的中点,求证DE AB ∥ 且1()2DE AB AC =+. 图10练习六变形二:如图11所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.图11练习七、如图12,在ABC ∆中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .则有AB BD AC +=.那么如图13,已知在ABC ∆中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.图12 图13练习八、在ABC △中,3AB AC =,BAC ∠的平分线交BC 于D ,过B 作BE AD ⊥,E 为垂足,求证:AD DE =.练习九、AD 是ABC ∆的角平分线,BE AD ⊥交AD 的延长线于E ,EF AC ∥交AB 于F .AC D E B A B C D E求证:AF FB=.3.角分线,分两边,对称全等要记全∆≌△OBC.两个图形的辅助线都是在射线OA上取点B,使OB=OA,从而使OAC(1).例题应用:①、在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC 于Q,求证:AB+BP=BQ+AQ。
思路分析:1)题意分析:本题考查全等三角形常见辅助线的知识:作平行线。
2)解题思路:本题要证明的是AB+BP=BQ+AQ。
形势较为复杂,我们可以通过转化的思想把左式和右式分别转化为几条相等线段的和即可得证。
可过O作BC的平行线。
得△ADO≌△AQO。
得到OD=OQ,AD=AQ,只要再证出BD=OD就可以了。
解答过程:证明:如图(1),过O作OD∥BC交AB于D,∴∠ADO=∠ABC=180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°,∴∠ADO=∠AQO,又∵∠DAO=∠QAO,OA=AO,∴△ADO≌△AQO,∴OD=OQ,AD=AQ,又∵OD∥BP,∴∠PBO=∠DOB,又∵∠PBO=∠DBO,∴∠DBO=∠DOB,∴BD=OD,又∵∠BPA=∠C+∠PAC=70°,∠BOP=∠OBA+∠BAO=70°,∴∠BOP=∠BPO,∴BP=OB,∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。
解题后的思考:(1)本题也可以在AB上截取AD=AQ,连OD,构造全等三角形,即“截长法”。
(2)本题利用“平行法”的解法也较多,举例如下:①如图(2),过O作OD∥BC交AC于D,则△ADO≌△ABO从而得以解决。
④如图(5),过P作PD∥BQ交AC于D,则△ABP≌△ADP从而得以解决。
小结:通过一题的多种辅助线添加方法,体会添加辅助线的目的在于构造全等三角形。
而不同的添加方法实际是从不同途径来实现线段的转移的,体会构造的全等三角形在转移线段中的作用。
从变换的观点可以看到,不论是作平行线还是倍长中线,实质都是对三角形作了一个以中点为旋转中心的旋转变换构造了全等三角形。
②、如图所示,在ABC∆中,AD是BAC∠的外角平分线,P是AD上异于点A的任意一点,试比较+的大小,并说明理由.PB PC+与AB AC【解析】 PB PC AB AC +>+,理由如下.如图所示,在AB 的延长线上截取AE AC =,连接PE .因为AD 是BAC ∠的外角平分线,故CAP EAP ∠=∠.在ACP ∆和AEP ∆中,AC AE =,CAP EAP ∠=∠,AP 公用,因此ACP AEP ∆∆≌,从而PC PE =.在BPE ∆中,PB PE BE +>,而BE BA AE AB AC =+=+,故PB PC AB AC +>+.变形:在ABC ∆中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-.【解析】 在AB 上截取AE AC =,连结EP ,根据SAS 证得AEP ∆≌ACP ∆,∴PE PC =,AE AC =又BEP ∆中,BE PB PE >-,BE AB AC =-,∴AB AC PB PC ->-(2)、模型巩固:练习一、.如图,在△ABC 中,AD ⊥BC 于D ,CD =AB +BD ,∠B 的平分线交AC 于点E ,求证:点E 恰好在BC 的垂直平分线上。
练习二、如图,已知△ABC 中,AB =AC ,∠A =100°,∠B 的平分线交AC 于D ,求证:AD +BD =BC 练习三、如图,已知△ABC 中,BC =AC ,∠C =90°,∠A 的平分线交BC 于D ,求证:AC +CD =AB 练习四、已知:在△ABC 中,B ∠的平分线和外角ACM ∠的平分线相交于,,D DF BC P 交AC 于,,E AB F 交于求证:EF BF CE -=练习五、在△ABC 中,,2AB AC AD =平分BAC ∠,E 是AD 中点,连结CE ,求证:2BD CE =变式:已知:在△ABC 中,,2B C BD ∠∠=平分ABC ∠,,AD BQ D ⊥于求证:12BD AC = 练习六、 已知:如图,在四边形ABCD 中,AD ∥BC,BC=DC,CF 平分∠BCD,DF ∥AB,BF 的延长线交DC 于点E.求证:(1) BF=DF ; (2) AD=DE.练习七、已知如图,在四边形ABCD 中,AB+BC=CD+DA ,∠ABC 的外角平分线与∠CDA 的外角平分线交于点P.求证:∠APB=∠CPD练习八、如图,在平行四边形ABCD (两组对边分别平行的四边形)中,E ,F 分别是AD ,AB 边上的点,且BE 、DF 交于G 点,BE=DF ,求证:GC 是∠BGD 的平分线。