第七章第三节室内声场和吸声PPT课件
第三讲 吸声材料和吸声结构.ppt

第三讲 吸声材料和吸声结构第一节 吸声材料和吸声结构概述一.定义:吸声材料和吸声结构,广泛地应用于音质设计和噪声控制中。
对建筑师来说,把材料和结构的声学特性和其他建筑特性如力学性能、耐火性、吸湿性、外观等结合起来综合考虑,是非常重要的。
通常把材料和结构分成吸声的、或隔声的、或反射的,一方面是按材料分别具有较大的吸声、或较小的透射、或较大的反射,另一方面是按照使用时主要考虑的功能是吸声、或隔声、或反射。
但三种材料和结构没有严格的界限和定义。
吸声材料:材料本身具有吸声特性。
如玻璃棉、岩棉等纤维或多孔材料。
吸声结构:材料本身可以不具有吸声特性,但材料经打孔、开缝等简单的机械加工和表面处理,制成某种结构而产生吸声。
如穿孔FC 板、穿孔铝板吊顶等。
在建筑声环境的设计中,需要综合考虑材料的使用,包括吸声性能以及装饰性、强度、防火、吸湿、加工等多方面,根据具体的使用条件和环境综合分析比较。
二.作用吸声材料最早应用于对听闻音乐和语言有较高要求的建筑物中,如音乐厅,剧院,播音室等,随着人们对居住建筑和工作的声环境质量的要求的提高,吸声材料在一般建筑中也得到了广泛的应用。
三.分类:吸声材料和吸声结构的的种类很多,根据材料的不同,可以分为以下几类吸声材料(结构)多孔吸声材料共振吸声结构特殊吸声结构纤维状吸声材料颗粒状吸声材料泡沫状吸声材料薄板共振结构亥姆霍兹共振吸声器穿孔吸声结构薄膜共振结构吸声尖劈空间吸声体第二节多孔吸声材料一.吸声原理多孔吸声材料中有许多连通的间隙或气泡,声波入射时,声波产生的振动引起小孔或间隙的空气运动,由于与孔壁或纤维表面摩擦和空气的粘滞阻力,一部分声能转变为热能,使声波衰减;其次,小孔中空气与孔壁之间还不断发生热交换,也使声能衰减。
二.吸声特性主要吸收中、高频声三.多孔性吸声材料必须具备以下几个条件:(1)材料内部应有大量的微孔或间隙,而且孔隙应尽量细小且分布均匀;(2)材料内部的微孔必须是向外敞开的,也就是说必须通过材料的表面,使得声波能够从材料表面容易地进入到材料的内部;(3)材料内部的微孔一般是相互连通的,而不是封闭的。
三室内声场

YOUR SITE HERE
室内声场的统计分析
LOGO
从以上分析可知,除声源发出的直达声外,还存在着大量反射 声。这些反射声在到达边界面并经过每次反射之前,均有一段自由传 播的路程,称为自由程。经过这一自由程后,声波就要反射一次,而 每次反射,因边界面的吸收就要损失一部分能量。在声源不断发声的 情况下,损失的这部分能量将不断获得补充,直至声场达到稳态。一 旦声源停止发声,虽然损失的能量得不到补充,但室内的声音并不会 马上消失。这是很显然的,因为这时直达声虽然没有了,但反射声继 续存在,这些反射声是由声源停止发声之前的直达声形成的,它不因 声源停止发声而立即消失,而是按照原有的规律——每反射一次损失 部分能量,持续进行下去,其声能不断减小,直至全部丧失殆尽。这 时由于不再有新的反射声产生,因而封闭空间中的总声级也就逐渐降 低,直至最后消失。这种在声源停止发声后仍然存在的声延续现象称 为混响。混响的概念在封闭空间声场的统计研究中具有特殊的意义, 它对室内的听闻条件有着重大的影响。
YOUR SITE HERE
声波在室内的传播
LOGO 直达声、近次反射声和混响声 直达声:声源直接到达接受点的声音。 近次反射声:相对直达声延时小雨50ms的反射声。 混响声:延时超过50ms以后到达接受点的多重反射声。
YOUR SITE HERE
声波在室内的传播
LOGO
室内声场的几何图解
几何声学是一门运用“声线”的概念研究声学问题的 学科,采用声线研究分析室内声场,主要了解声波在室内 经各反射面反射后的反射声分布情况。它的理论基础就是 惠更斯原理。
YOUR SITE HERE
室内声场的几何图解
LOGO 凸面的反射 条件:q<0 反射结果: 效果
第七章第三节 室内声场和吸声

1)声波的一维空间简振(声波沿轴相方向传播)
入射简谐振动声波:
pi Pi cost k
反射简谐振动声波:
pr Pr cost k
两列声波进行合成(叠加),其合成声波:
p pi pr P cos kx cost
其中:合成波振幅为 Pcoskx,P=2Pi
3)总声场
把直达声场和混响声场叠加形成总声场。 又由于直达声声能平均密度为:
QW Dd 2 4r c
当室内存在混响时,室内某点的平均声能密 度应等于直达声和混响声能密度之和,即:
WQ 4W W Q 4 D Dd Dr 2 2 c 4r R 4r c cR
4V
当单位时间内声源贡献的混响声能与被吸 收的混响声能相等时,体系达到稳定状态, 即: cS W (1 ) DrV 4V 所以,室内混响声场平均声能密度为:
4W 1 Dr cS
设:
S R 1
R:房间常数,m2
4W 则混响声场平均声能密度为: D r cR
2
从混响声压级公式可看出:公式中第一项Lw为直 达声,第二项为混响声。
Q 4 时,即 r 很小,声场以直达声为主; 当 2 R 4r Q 4 时 ,即 r 很大,声场以混响声为主; 2 R 4r
Q 4 2 R 时,直达声声能密度与混响声声能密 4r
当
当 度相等,这时r称为临界半径,即:
又因为声能密度与有效声压是平方正比关系,即:
Pe D 2 c
则:
W Pe c
2
2
4 4 Q Q 2 c Wc 2 2 R R 4r 4r
所以混响声压级为:
噪声第七章-吸声降噪技术 1

31.72 0.2 83.62 0.45 31.72 0.6 0.43 31.72 83.62 31.72
噪声污染控制工程
南
通
大
學
55.3V s cS
1 1 4V ( m m ) 2 1 T T S 1 2
3、吸声性能的单值评价量
平均吸声系数
工程中通常采用 125 、 250 、 500 、 1000 、 2000 、 4000Hz 六个倍频程中心频率处的吸声系数,来 衡量某一材料或结构的吸声频率特性。
1 Si
平均吸声系数
i
Si
例.在一个5.2×6.1×3.7m3的房间内,地板、墙壁和 天花板的吸声系数分别是0.2,0.45,0.6,试求该 房间的平均吸声系数?
例.在一个5.2×6.1×3.7m3的房间内,地板、墙壁和 天花板的吸声系数分别是0.2,0.45,0.6,试求该 房间的平均吸声系数? 解:各表面的面积是: 2 地板: S1 5.2 6.1 31.72m ,1 0.2 墙: S 2 5.2 2 6.1 2 3.7 83.62m 2 , 2 0.45 2 天花板: S3 S1 31.72m , 3 0.6 平均吸声系数:
一、吸声材料的分类
吸声
• 声波在介质中传播的过程中,声能量产生的衰减
• 空气吸声
• 材料吸声
吸声材料、吸声结构
在噪声控制工程设计中,常用吸声材料和吸 声结构来降低室内噪声,尤其在体积较大, 混响时间较长的室内空间,应用相当普遍。 吸声材料按其吸声机理来分类,可以分成多 孔性吸声材料及共振吸声结构两大类。
α0
s
4s
《吸声结构》课件

结构设计要点
确定吸声性能目标
根据应用场景和要求,确定吸声性能的目标值,如吸声系数、吸 声频带等。
考虑声学原理
了解声波传播和吸声原理,合理利用共振、干涉、衍射等声学现 象,提高吸声性能。
优化结构形式
根据声源特性和空间条件,选择合适的吸声结构形式,如多孔材 料、亥姆霍兹共鸣器等。
材料选择与搭配
选择高内阻材料
内阻是影响吸声性能的关键因素,选择高内阻材料可以提高吸声性 能。
材料搭配与组合
根据不同频段和性能要求,合理搭配使用不同材料,实现宽频带或 特定频段的优异吸声效果。
材料加工与处理
对材料进行适当的加工和处理,如打孔、涂覆等,以改善其吸声性能 。
结构设计实例
体育馆吸声设计
针对体育馆内的高频噪声,采用 穿孔板、空腔和多孔材料等结构
《吸声结构》PPT课件
目录 CONTENTS
• 吸声结构概述 • 吸声结构的原理 • 吸声结构设计 • 吸声结构的性能评价 • 吸声结构的发展趋势与展望
01
吸声结构概述
吸声结构的定义
吸声结构是一种能够吸收、减弱声音 传播的结构,通过材料或结构的特定 设计,将声能转化为其他形式的能量 ,从而达到降低或消除声音的目的。
吸声结构通常由吸声材料或吸声结构 体组成,这些材料或结构体具有多孔 、纤维、薄膜或共振等特性,能够有 效地吸收和散射声波。
吸声结构的应用领域
建筑行业
声学实验室
在建筑物的墙面、天花板、地面等部 位使用吸声材料或吸声结构,可以有 效地吸收室内噪音,提高居住和工作 环境的质量。
在声学实验室中,吸声结构被广泛应 用于声音的吸收、隔离和测量,以确 保实验结果的准确性和可靠性。
吸声量
吸声和室内声场PPT课件

穿孔率的计算:
d
1)当圆孔为正方形排列时 B
P d 2
4B
d
2)当孔为等边三角形排列时
P
d 2
2 3B
B
穿孔率计算:
3)当孔为平行狭缝时
d
P d B
B
E:空间吸声体
即:将吸声体悬挂在室内对声音进行多 方位吸收;
吸声体投影面积与悬挂平面投影面积的 比值约等于40%时,对声音的吸声效率 最高;
L p
10 lg 2 1
Байду номын сангаас
由于平均吸声系数通常是按实测混响时间T60 得到,如果T1和T2分别为吸声前后的混响时间, 则:
L p
10 lg T1 T2
一般地面和壁面(墙面)平均吸声系数为0.03 左右,吸声处理后平均吸声系数约为0.3左右,则 声压级衰减10dB左右。一般吸声处理降噪1012dB,如果平均吸声系数要求0.5以上,则降噪处 理所需要的成本增加。
(扩散声场包含直达声场和混响声
二、扩散声场的声能密度和声压级
1、直达声场 QW
对于点声源,直达声的声强为:I d 4r 2
因为:
Id
Pd 2
c
所以:
pd 2
c I d
cQW 4r 2
所以直达声声能密度:
又由于: W1 QW
所以直达声声压级为:
Dd
Pd 2
c 2
QW
4r 2c
Q
Lp Lw1 10lg S Lw 10lgQ 10lg S Lw 10lg 4r 2
第四节 室内简正方式
➢ 理想声场是完全扩散声场;
➢ 实际声场是不完全扩散声场,而是由室内各壁面 反射声形成的驻波声场;
《室内声学》课件

07
室内声学的未来发展
室内声学在智能家居领域的应用前景
语音识别技术:提高智能家居设备的语 音识别准确率
声学传感器技术:提高智能家居设备 的声学传感器性能
声场优化技术:改善智能家居设备的 声场效果
声学材料技术:开发适用于智能家居 设备的新型声学材料
噪声控制技术:降低智能家居设备产生 的噪声
声学设计技术:优化智能家居设备的 声学设计,提高用户体验
音乐厅、剧院等演出场所室内声学设计
06
室内声学效果评估与测量
室内声学效果的评估方法
主观评价法:通过人的听觉感受来评估室内声学效果 客观评价法:通过仪器测量来评估室内声学效果 混响时间测量:通过测量室内混响时间来评估室内声学效果 声压级测量:通过测量室内声压级来评估室内声学效果 噪声级测量:通过测量室内噪声级来评估室内声学效果 声场分布测量:通过测量室内声场分布来评估室内声学效果
频谱分析: 使用频谱分 析仪分析室 内声频谱, 了解声源特 性和室内声
场特性
混响时间测 量:使用混 响时间测量 仪测量室内 混响时间, 了解室内声
学特性
噪声源识别: 使用噪声源 识别技术识 别室内噪声 源,了解噪 声源特性和
影响范围
声场模拟: 使用声场模 拟软件模拟 室内声场, 了解室内声 场分布和影
商业场所室内声学设计
商业场所类型:商场、超市、餐厅、电影院等 声学设计目标:提高音质,降低噪音,创造舒适的购物、用餐、观影环境 声学设计方法:吸声、隔声、扩散、反射等 声学设计案例:某商场、某餐厅、某电影院等
公共设施室内声学设计
公共设施类型:包括学校、医院、商场、办公楼等 声学设计原则:满足功能需求,提高舒适度,降低噪音 声学设计方法:采用吸声、隔声、扩散等措施 声学设计案例:如学校教室、医院病房、商场休息区等
第七章__噪声控制技术——吸声PPT课件

2 孔隙率与密度
孔隙率:材料内部的孔洞体积占材料总体积的百分
比。
ρc-多孔材料的密度 ρs-材料的密度
一般多孔吸声材料的孔隙率>70%; 孔隙率增大,密度减小,反之密度增大; 孔隙尺寸越大,孔隙越通畅,流阻越小。
过高 过低
空气穿透力降低
因摩擦力、粘滞力引 起的声能损耗降低
吸声性能下降
【讨论】密度太大或
吸声性能 影响因素
平均密度
4
5 6
护面层
空腔
1 空气流阻(Rf)对吸声性能的影响
定义:
在稳定气流状态下,吸声材料中的压力梯度与气流
线速度之比。
P Rf u
比流阻Rs:指单位厚度材料的流阻。
过高
空气穿透力降低
吸声性能下降
过低
因摩擦力、粘滞力引 起的声能损耗降低
材料的空气流阻(Rf)
1-材料流阻较低; 2-材料流阻较大; 3-材料流阻很大。
通风管道和消声器内 气流易吹散多孔材料, 吸声效果下降; 飞散的材料会堵塞管 道,损坏风机叶片; 应根据气流速度大小 选择一层或多层不同 的护面层。
温度、湿度的影响
保温吸声层
阻燃吸声板
羊毛阻燃吸声板
外墙保温吸声层
注意特殊的使用条件,如腐蚀、高温或火焰等情况对多孔材料的影响。
吸声体
7.3
共振吸声结构
多孔性吸声材料
吸
声
材
共振吸声结构
料
特殊吸声结构
纤维状 颗粒状 泡沫状 单个共振器 穿孔板共振吸声结构 薄膜共振吸声结构 薄板共振吸声结构 空间吸声体 吸声尖劈
常用吸声材料的使用情况
主要种类 常用材料实例
使用情况
有机 动物纤维:毛毡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、声场的分类
直达声场:从声源直接到达接受点的直达声形成 的声场。
混响声场:经过房间面壁一次和多次反射后到达 接受点的反射声形成的声场。
扩散声场:房间内声能密度处处相同,而且在任 一受声点上,声波在各个传播方向 作无规则分布的声场。
(扩散声场包含直达声场和混响声场,是由两声 场叠加形成)
又因为声能密度与有效声压是平方正比关系,即:
D
Pe 2 c 2
则: P e2 W c 4 Q r2 R 4 c2 W c 4 Q r2 R 4
所以混响声压级为:
Lp1l0g P P 0 e 2LW1l0g 4Q r2R 4
从混响声压级公式可看出:公式中第一项Lw为直达 声,第二项为混响声。
➢ 在连续介质中,简正振动实际是一种驻波,也称 简正波,其变化情况与边界条件有关。
设声源单位时间发出的声功率为W,则当声波 被房间壁面部分吸收后剩余的声能量为:
W(1)
亦即:声源提供的混响声能量。
设混响声平均声能密度为 D ,r 则单位时间被
吸收的声能量为:
Dr V cS
4V
当单位时间内声源贡献的混响声能与被吸
收的混响声能相等时,体系达到稳定状态,
即:
W(1)DrV4cVS
所以,室内混响声场平均声能密度为:
平均声能密度降低为:
2
D 2D1
当声音经过第n次反射后,
平均声能密度降低为:
n
D nD1
由于在t秒内总反射次数为: cS t 4V
则t秒后的平均声能密度为:
cSt
Dt D1 4V
又由于声能密度与有效声压是平方正比关系,所
以有:
cS
Pt2 P021
t 4V
当声能密度衰减到原来的百万分之一时所需要的 时间,即声压级衰减60dB所需要的时间,称为混 响时间所以有:
❖当接受点与声源距离小于临界半径时,即直 达声占主导地位,则吸声降噪处理效果不明 显。
三、室内声音的衰减和混响半径
混响声:由于室内存在混响,声音发出后,
不会立即消失,要持续一段时间,这
一段时间内持续的声音成为“混响
声”。
DD 1 当声音经过第1次反射后,
平均声能密度降低为:
1
当声音经过第2次反射后,
Lp
10lg 2 1
由于平均吸声系数通常是按实测混响时间T60 得到,如果T1和T2分别为吸声前后的混响时间, 则:
Lp
10lg T1 T2
一般地面和壁面(墙面)平均吸声系数为0.03 左右,吸声处理后平均吸声系数约为0.3左右,则 声压级衰减10dB左右。一般吸声处理降噪1012dB,如果平均吸声系数要求0.5以上,则降噪处 理所需要的成本增加。
第四节 室内简正方式
➢ 理想声场是完全扩散声场;
➢ 实际声场是不完全扩散声场,而是由室内各壁面 反射声形成的驻波声场;
➢ 只有当房间体积很大和声波频率很高时,才能达 到近似的扩散声场。
➢ 房间是一个复杂的多自由度振动系统,任一振动 状态都是由单个振动以一定的组合叠加而成,每 个独立的振动称简正振动,相应的振动频率叫简 正频率;
Dr
4W1 cS
设: R S 1
R:房间常数,m2
则混响声场平均声能密度为:
4W Dr
cR
3)总声场
把直达声场和混响声场叠加形成总声场。
又由于直达声声能平均密度为:
Dd
QW
4r2c
当室内存在混响时,室内某点的平均声能密
度应等于直达声和混响声能密度之和,即:
D D d D r4 W r2 c Q 4 c W R W c 4 Q r2R 4
吸声后的声压级为:
Lp2 LW10lg4Q r2 R42
则:
Lp
Lp1
Lp2
10lg
Q
4r2
Q
4r2
4 R1
4 R2
当某接受点远离声源时,即: 4 Q
R 4r 2
则:
Lp1l0g R R 1 21l0g 1 21 1 2 1
一般情况下,平均吸声系数都比1小得多,所以有:
2、混响声场
自由程:在室内声场中,声波每相邻两次反射 所经过的路程。
平均自由程:声波经过相邻两次反射距离的平Байду номын сангаас均值(d)。
由理论和实验均证实不论空间形状如何,均有:
d 4V S
其中:V为房间体积,S为房间总表面积。
设声音在1秒钟内传播的距离为c米,则1
秒钟内的平均反射次数为:
n
c
cS
d 4V
当
Q
4r
2
时 4,即
R
r
很小,声场以直达声为主;
当 Q 时 4,即 r 很大,声场以混响声为主; 4r 2 R
当
Q
4r 2
时R4,直达声声能密度与混响声声能密度相
等,这时r称为临界半径,即:
r 1 QR
4
当Q=1时的临界半径又称为混响半径。
❖当接受点与声源距离大于临界半径时,即混 响声占主导地位,则吸声降噪处理效果明显;
T60c5S l.2 n 5 1 V S 0.l1n 16 V 1
当声音为高频区声音,声音传播过程中空
气吸声不能不考虑,t秒内传播距离为ct,经
空气吸收后声能密度降为原来的e-mct,其中
m为声音衰减常数,单位为m-1(即书中第
140页,7-43公式),则t秒后平均声能密度
衰减为:
Dt D1
e cSt
4V
mct
则:
5.2 5 V
0 .1V 61
T 60 clSn 14m V S c ln 14mV
1)当声音频率低于2000Hz时,m可忽略,也即:
T60
0.16V1
Sln1
2)当声音频率低于2000Hz,且平均吸声系数小 于0.2时,有:
ln 1
此时混响时间为:
0.161V
二、扩散声场的声能密度和声压级
1、直达声场
对于点声源,直达声的声强为:I d
QW
4r 2
因为:
Id
Pd 2 c
所以:
pd2
cId
cQW 4r2
所以直达声声能密度:
Dd
Pd2
c2
QW
4r2c
又由于: W1 QW
所以直达声声压级为:
Q
L p L w 1 1 lS 0 g L w 1 lQ 0 g 1 lS 0 g L w 1 l4 0 g r 2
T60 S
混响室法测吸声系数
无吸声材料时: 0.161V
T60 S
有吸声材料时: '
0.161V T60'S
' 0.1S6V1T160' T160
由于: ' Smm(SSm)
S
所以: m0.1Sm 6V1T160' T160
四、吸声降噪量
设吸声前的声压级为:
Lp1LW10lg4Qr2 R 41