2018中考数学专题5 统计与概率的实际应用

合集下载

中考数学易错题系列之统计与概率

中考数学易错题系列之统计与概率

中考数学易错题系列之统计与概率统计与概率是中考数学中一个重要的章节,也是容易出现错题的部分。

掌握好统计与概率的相关知识点,能够帮助我们正确解答题目,提高数学成绩。

下面我将为大家整理一些常见的中考数学易错题,并提供解析。

1. 随机事件的概率计算在统计与概率中,我们经常需要计算随机事件的概率。

有一类常见的问题是关于两个独立事件的概率计算。

例如,某学校有60%的学生喜欢音乐,30%的学生喜欢体育。

如果从该学校随机抽取一个学生,那么这个学生既喜欢音乐又喜欢体育的概率是多少?解析:设A为喜欢音乐的事件,B为喜欢体育的事件。

题目中给出了P(A) = 0.6,P(B) = 0.3。

我们知道,对于两个独立事件的交集,其概率可以通过两个事件的概率相乘得到。

所以,P(A∩B) = P(A) * P(B) = 0.6 * 0.3 = 0.18。

因此,答案是0.18。

2. 抽样与估计在统计与概率中,我们需要了解一些基本的抽样方法和估计方法。

例如,某班级有100个学生,我们想要对他们的身高进行估计。

如果我们采取随机抽样的方法,抽取了10个学生的身高数据,并计算出平均身高为160cm,那么这个平均身高能否代表班级的平均身高呢?解析:答案是否定的。

我们知道,抽样所得的样本平均值只能作为总体平均值的估计,具有一定的误差。

为了更准确地估计总体平均值,我们需要考虑到样本的大小和抽样方式。

当样本大小较小且抽样方式不够随机时,样本平均值与总体平均值之间的偏差可能较大。

因此,我们不能仅仅根据10个学生的平均身高来估计班级的平均身高,需要更大的样本量和更随机的抽样方式。

3. 条件概率的计算在统计与概率中,还有一类常见的问题是关于条件概率的计算。

例如,有一个两位数,十位数和个位数都是1,这个数能被7整除的概率是多少?解析:设随机事件A为该数能被7整除,事件B为该数为两位数(十位数和个位数都是1)。

题目中要求的是P(A|B),即在事件B发生的条件下,事件A发生的概率。

中考数学概率与统计问题的解题思路综述与应用

中考数学概率与统计问题的解题思路综述与应用

中考数学概率与统计问题的解题思路综述与应用概率与统计是中考数学中的重要内容,它们都与实际生活息息相关。

本文将为读者综述一些解题思路,并探讨它们在实际问题中的应用。

一、概率问题的解题思路概率问题主要是计算某一事件发生的可能性。

在解题过程中,我们可以采用以下几种常用的解题思路。

1. 列表法列表法是一种直观且有效的解题方法。

通过列出所有可能的情况,我们可以计算出每种情况发生的概率,从而求得所需概率。

例如,有一个装有6个红球和4个蓝球的盒子,从中随机抽取一个球,求抽到红球的概率。

我们可以列出所有可能的情况,即红球和蓝球的组合,然后计算出红球的数量与总球数的比值。

2. 分析法分析法是一种通过分析问题特点进行概率计算的方法。

当问题中出现"至少"、"或"、"且"等关键词时,我们可以通过分析不同情况的概率计算出所需结果。

例如,有一箱子中装有红球、蓝球、绿球三种颜色的球,抽取两个球,求至少一种颜色相同的概率。

我们可以通过分析四种可能的情况:两个红球、两个蓝球、两个绿球以及红球和蓝球混合,然后计算每种情况发生的概率并求和。

3. 条件概率条件概率是指在已知某个条件下,其他事件发生的概率。

解决条件概率问题时,我们需要根据已知条件进行计算。

例如,一批产品由两个工厂生产,其中A工厂的产品有10%的次品率,B工厂的产品有15%的次品率,现从中随机取出一个产品,发现它是次品,求它来自A工厂的概率。

我们可以利用条件概率的公式,计算出所需概率。

二、统计问题的解题思路统计问题主要是通过已知的数据信息,推断出总体特征或进行预测。

在解决统计问题时,我们可以采用以下几种常用的解题思路。

1. 抽样调查抽样调查是统计问题中常用的方法之一。

通过从总体中随机选择一部分样本,并对样本数据进行统计分析,我们可以推断出总体的一些特征。

例如,我们想要知道某一地区的居民平均年龄,我们可以进行抽样调查,然后计算出样本的平均年龄,再根据统计原理进行估计。

中考数学中的概率与统计实际问题解决思路实例总结

中考数学中的概率与统计实际问题解决思路实例总结

中考数学中的概率与统计实际问题解决思路实例总结概率与统计是中学数学中的一个重要内容,它不仅是数学的一部分,也是日常生活中经常遇到的实际问题的解决思路。

在中考中,概率与统计常常会出现在选择题、应用题等题型中,考察学生解决实际问题的能力。

本文将通过几个实例来总结中考数学中概率与统计问题的解决思路。

实例一:掷骰子游戏小明和小李玩一个掷骰子的游戏,规则是谁先掷出6点谁就赢。

他们轮流掷骰子,小明先掷。

如果小明掷到6点,则小明胜利;如果小明掷到1~5点,则轮到小李掷骰子。

假设掷到6点和1~5点的概率相等,求小明获胜的概率。

解决思路:首先分析每一次掷骰子的可能结果:小明掷到6点的概率为1/6,小李掷到6点和小明掷到1~5点的概率均为1/6。

则小明胜利的概率等于小明掷到6点的概率加上小明掷到1~5点后小李再掷到6点的概率。

由于小明与小李轮流掷骰子,所以两者的胜率相等。

则小明获胜的概率为1/6 + 1/6 * 1/6 = 7/36。

实例二:统计调查某中学为了解学生对校园环境的评价情况,进行了一次校园调查,调查对象为全校学生。

调查结果如下:学生总数2000人,其中喜欢校园环境的有1500人,不喜欢的有300人,其他无意见的有200人。

现在需要根据调查结果回答以下问题:学生喜欢校园环境的概率是多少?学生不喜欢校园环境的概率是多少?解决思路:根据调查结果,我们可以得到喜欢校园环境的学生有1500人,不喜欢校园环境的学生有300人。

而总学生数为2000人。

学生喜欢校园环境的概率等于喜欢校园环境的学生数除以总学生数,即1500/2000 = 0.75。

同理,学生不喜欢校园环境的概率等于不喜欢校园环境的学生数除以总学生数,即300/2000 = 0.15。

通过以上两个实例,我们可以看出解决概率与统计问题的思路是分析情况并计算概率。

概率的计算可以通过确定样本空间、事件和事件发生的可能性来进行。

在解决问题时,需要注意概率的公式和概率的加法、乘法原理的应用。

中考数学概率与统计问题的解题思路总结与应用

中考数学概率与统计问题的解题思路总结与应用

中考数学概率与统计问题的解题思路总结与应用概率与统计是数学中的重要分支,也是中考数学题中常见的考点之一。

对于解题的思路和方法,下面将进行总结与应用。

一、概率问题的解题思路概率问题主要是考察事件发生的可能性大小。

解决概率问题的思路主要包括以下几个步骤:1.明确问题:首先,要仔细阅读题目,理解问题的背景和要求。

明确题目中给出的条件和所求的结果。

2.确定事件:根据题目中的信息,确定相关的事件,例如抛硬币正面朝上、抽到红色扑克牌等。

3.计算可能性:根据所求事件的可能性和总事件的可能性,计算概率。

可能性可以通过等可能原理、频率和样本空间等概念进行计算。

4.化简计算:如果题目复杂,可以通过化简计算简化问题。

例如,可以利用互斥事件、相对补事件等化简问题。

二、统计问题的解题思路统计问题主要是考察一组数据的分布情况和统计性质。

解决统计问题的思路主要包括以下几个步骤:1.整理数据:首先,要对题目中给出的数据进行整理和归类。

可以使用表格、直方图等方式对数据进行展示。

2.提取关键信息:根据题目中的要求,提取所需的关键信息。

例如,计算平均值、中位数、众数等。

3.计算统计性质:根据提取的关键信息,进行计算。

例如,可以计算某个区间的频数、频率、方差等。

4.数据分析:对统计结果进行分析和解释。

可以给出结论,分析数据的特点和规律。

三、概率与统计问题的应用概率与统计的思路和方法不仅可以用于解题,还可以应用到生活实际中。

例如:1.调查问卷:在进行调查问卷时,可以使用统计方法对数据进行整理和分析,得出相关结论。

2.赌博和投资:在赌博和投资中,可以利用概率进行决策,评估风险和可能性。

3.产品质量管理:企业可以利用统计方法对产品质量进行抽样检验,评估产品合格率和不合格率。

4.医学研究:在医学研究中,可以利用统计方法对患者的生存率、治疗效果等进行分析和比较。

综上所述,概率与统计问题的解题思路可以通过明确问题、确定事件、计算可能性、化简计算等步骤进行,而在实际生活中也能够应用到各个领域中。

中考数学概率与统计的重要公式及应用

中考数学概率与统计的重要公式及应用

中考数学概率与统计的重要公式及应用概率与统计是数学的一个重要分支,广泛应用于各个领域。

在中考数学中,概率与统计也是一个重点考察的内容。

本文将介绍一些中考概率与统计中的重要公式及其应用。

一、概率公式1. 事件的概率公式概率是一个事件发生的可能性,通常用P(A)表示。

对于一个随机试验,若事件A有m种情况中的一种,总的可能情况有n种,那么事件A的概率可以用以下公式表示:P(A) = m / n2. 互斥事件的概率公式互斥事件指的是两个事件不能同时发生的情况。

若事件A和事件B 是互斥事件,那么事件A或事件B发生的概率可以用以下公式表示:P(A或B) = P(A) + P(B)3. 独立事件的概率公式独立事件指的是两个事件的发生不会相互影响的情况。

若事件A和事件B是独立事件,那么事件A和事件B同时发生的概率可以用以下公式表示:P(A且B) = P(A) × P(B)二、统计公式1. 众数众数指的是一组数据中出现次数最多的数值。

对于一组数据集合,若某个数值出现的次数最多,那么这个数值就是众数。

2. 中位数中位数指的是一组数据中处于中间位置的数值。

对于一组有序的数据集合,若数据个数为奇数,则中位数为排序后处于中间位置的数值;若数据个数为偶数,则中位数为排序后位于中间的两个数值的平均值。

3. 平均数平均数指的是一组数据的总和除以数据的个数所得到的值。

对于一组数据集合,设数据的个数为n,数据之和为sum,则平均数可以用以下公式表示:平均数 = sum / n三、应用1. 概率应用概率在现实生活中有广泛应用。

例如,在购买彩票时,我们可以利用概率计算中奖的可能性;在赌场游戏中,可以通过概率来决策;在投资时,可以利用概率评估风险和回报等。

2. 统计应用统计在现实生活中也有广泛应用。

例如,在调查民意时,可以利用统计方法对样本数据进行分析,从而推断出整个人群的情况;在质量控制中,可以利用统计方法对生产过程中的数据进行分析,从而进行质量改进;在市场调研中,可以利用统计方法对市场需求进行预测。

中考数学统计与概率基础知识

中考数学统计与概率基础知识

中考数学统计与概率基础知识概率与统计是数学中的一个重要分支,也是中考数学中的一项重要内容。

通过学习概率与统计的基础知识,我们能够更好地理解和应用数学在实际生活中的意义。

本文将从概率与统计的概念、统计数据的描述与分析以及概率的计算等方面介绍中考数学中的基础知识。

一、概率与统计的概念1. 概率的定义概率是指某一事件发生的可能性大小。

概率的取值范围为0-1,其中0表示不可能发生,1表示必然发生。

一般情况下,概率用一个介于0和1之间的实数表示。

2. 统计的定义统计是指通过收集、整理和分析数据,以了解和描述一定现象或现象的规律性。

统计可以帮助我们从大量的数据中提取有用的信息,为决策提供依据。

二、统计数据的描述与分析1. 数据的收集在进行统计分析之前,首先需要进行数据的收集。

数据的收集可以通过实地调查、问卷调查、实验观测等方式进行。

收集到的数据应具有代表性,以确保统计结果准确可靠。

2. 数据的整理收集到的数据需要进行整理,包括数据的录入、分类、排序等。

通过数据的整理,可以更好地进行后续的统计分析。

3. 数据的分析数据的分析包括描述性统计和推论性统计两个方面。

描述性统计主要是对数据的基本特征进行描述,包括频数、众数、中位数、均值等。

推论性统计则是通过样本数据的分析来推断总体的特征。

三、概率的计算1. 随机事件随机事件是在一定的条件下可能发生也可能不发生的事件。

在计算概率时,首先要确定随机事件的样本空间和样本点,并根据事件发生的可能性来计算概率。

2. 概率的计算方法概率的计算主要通过以下两种方法进行:频率法和几何法。

频率法是指通过大量实验或观测数据来计算概率。

几何法是指通过对几何模型进行分析和推理来计算概率。

四、概率与统计的应用1. 随机抽样随机抽样是统计中常用的一种方法,通过从总体中随机选择一部分个体作为样本,来推断总体的特征。

使用随机抽样的方法可以减小误差,提高结果的可靠性。

2. 概率统计模型概率统计模型是利用统计学原理和概率理论来描述和分析一定现象的数学模型。

数学高二优质课概率与统计的实际应用

数学高二优质课概率与统计的实际应用

数学高二优质课概率与统计的实际应用高中数学中的概率与统计是一门重要的数学课程,它不仅帮助我们理解世界的不确定性,还能够应用于实际生活中。

本文将介绍数学高二优质课中概率与统计的实际应用,并探讨它们对我们日常生活的影响。

一、金融风险评估中的概率与统计金融领域是概率与统计应用的重要领域之一。

在金融市场交易中,风险是无法避免的。

人们通过概率与统计的方法,对各种金融风险进行评估,从而能够更好地管理风险。

例如,在证券交易中,投资者可以利用概率与统计的方法,通过对历史股票价格的分析,预测未来股票价格的波动情况,从而进行投资决策。

二、医学领域中的概率与统计概率与统计也被广泛应用于医学领域。

在临床诊断中,医生常常需要根据患者的症状和体征,判断患者是否患有某种疾病。

概率与统计的方法可以帮助医生将不确定性因素考虑进去,提高诊断的准确性。

此外,概率与统计还可以应用于药物研发的过程中,帮助科研人员评估药物的疗效,并预测药物的不良反应。

三、市场调查中的概率与统计在市场调查中,概率与统计是非常重要的工具。

市场调查可以帮助企业了解消费者的需求和偏好,从而制定更有效的营销策略。

概率与统计的方法可以用来分析市场调查数据,提取有效信息,并预测市场的发展趋势。

通过科学的概率与统计分析,企业可以更好地把握市场机遇,做出明智的决策。

四、交通运输中的概率与统计概率与统计还可以应用于交通运输领域。

交通运输的安全性和效率是社会关注的焦点之一。

通过概率与统计的方法,我们可以对交通事故的发生概率进行评估,从而制定相应的交通安全措施。

同时,概率与统计还可以用于评估交通网络的运行效率,并进行优化规划,提高交通系统的整体效能。

五、环境保护中的概率与统计在环境保护领域,概率与统计也发挥着重要的作用。

例如,通过概率与统计的方法,可以对环境污染物的排放情况进行监测和评估,并预测其对环境的影响。

概率与统计还可以帮助我们分析环境数据,发现环境问题的规律和趋势,为环境保护提供科学依据。

数学练习题概率和统计的实际应用

数学练习题概率和统计的实际应用

数学练习题概率和统计的实际应用概率和统计是数学领域的重要分支,它们在现实生活中的应用非常广泛。

本文将探讨一些实际问题,并展示概率和统计在解决这些问题中的作用。

一、宽带服务提供商的网络速度在现代社会中,宽带互联网已成为人们生活中不可或缺的一部分。

然而,很多人经常抱怨其网络速度不稳定。

为了解决这一问题,宽带服务提供商需要进行速度改进。

为了衡量网络速度的稳定性,可以进行一系列的实验。

首先,选择一定数量的不同时间段,在多个地点对网络进行测速。

记录下每次测速的结果,然后计算平均值和标准差。

通过这些数据,可以计算出网络速度的概率分布。

这对提供商来说非常重要,因为他们可以根据概率分布来优化网络,以提供更稳定的速度。

二、市场调研市场调研是企业制定战略和决策的重要工具。

例如,某公司准备推出一种新产品,并希望了解潜在消费者对该产品的兴趣程度。

为了收集数据,可以通过随机抽样的方式选择一定数量的潜在消费者进行调查。

调查问卷中包含一系列问题,用于衡量消费者对该产品的喜好、购买意愿等。

收集到的数据可以用来计算出某一特定结果的概率。

例如,计算出消费者购买该产品的概率,或计算出他们对该产品的满意度的概率。

这些概率结果可以帮助企业更好地了解市场需求,并做出相应的战略决策。

三、疾病诊断概率和统计在医学领域的应用也十分广泛。

例如,在疾病诊断方面,医生需要根据一系列症状和体征判断患者是否患有某种疾病。

为了更准确地进行诊断,可以利用概率和统计的方法。

首先,建立一个疾病模型,该模型包含相应症状和体征出现时,患病的概率。

然后,通过检查患者的症状和体征,可以根据模型计算出患病的概率。

这个概率可以帮助医生更好地判断患者是否需要进行进一步的检查或治疗。

四、金融风险评估概率和统计在金融领域有着广泛的应用。

金融机构需要评估和控制各种风险,以确保其正常运营和盈利。

例如,对于股票投资者来说,他们希望能够预测股票价格的波动,并评估投资的风险。

为了做到这一点,可以使用历史数据来计算出股票价格波动的概率分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题5 统计与概率的实际应用 类型① 统计的实际应用
1.平顶山市积极开展“节水”活动,小明利用课余时间对某小区300户居民的用水情况进行统计,发现12月份各户居民的用水量比11月份有所下降,小明将12月份各户居民的节水量统计整理成如下统计图表:
户数
50
80
100
(1)300户居民12月份节水量的众数、中位数分别是多少? (2)扇形面积统计图中2.5 t 对应扇形的圆心角为多少度? (3)该小区300户居民12月份平均每户节约用水多少吨?
解:(1)在被调查的300户居民中,用水量为2.5 t 的最多,达到100户,故众数为2.5,中位数是第150、151两户用水量的平均数,即中位数为2.5+2.5
2
=2.5 t ;
(2)扇形统计图中2.5 t 对应扇形的圆心角为360°×100
300=120°;
(3)1×50+1.5×80+2.5×100+3×70300
=2.1 t ,
答:该小区300户居民12月份平均每户节约用水2.1 t .
2.(2016曲靖中考)根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.
为了了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A ,B ,C ,D 四组,得到如下统计图:
(1)求A 组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;
(2)求这天5路公共汽车平均每班的载客量;
(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.
解:(1)A 组对应扇形圆心角度数为:360°×10
50=72°;
这天载客量的中位数在B 组;
(2)各组组中值为:A :0+202=10,B :20+40
2=30;
C :40+602=50;
D :60+80
2
=70;
x =10×10+16×30+18×50+6×7050
=38(人).
答:这天5路公共汽车平均每班的载客量是38人;
(3)可以估计,一个月的总载客量约为38×50×30=57 000=5.7×104(人).
答:5路公共汽车一个月的总载客量约为5.7×104人.
3.(2017岳阳中考)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:
请根据图表信息回答下列问题:
(1)频数分布表中的a =________,b =________;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在8 h 以上的学生评为“阅读之星”,请你估计该校2 000名学生中评为“阅读之星”的有多少人?
解:(1)25;0.10;
(2)补全条形统计图如图所示;
(3)根据题意得:2 000×0.10=200(人).
则该校2 000名学生中评为“阅读之星”的有200人.
类型② 概率的实际应用
1.(2017河南中考模拟)现有四张分别标有数字-3,-2,1,2的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片上所标的数字都是非负数的概率为__1
6
__.
2.(2015玉溪中考)将背面质地、图案完全相同,正面分别标有数字-2,-1,1,2的四张卡片洗匀后,背面朝上放置在桌面上.随机抽取一张卡片,将抽取的第一张卡片上的数字作为横坐标,第二次再从剩余的三张卡片中随机抽取一张卡片,将抽取的第二张卡片上的数字作为纵坐标.
(1)请用列表法或画树状图法求出所有可能的点的坐标; (2)求出点在x 轴上方的概率. 解:(1)列表得:
(2)由列表可知,所有可能出现的结果一共有12种,其中在x 轴上方的点有(-2,1),(-1,1),(2,1),(-2,2),(-1,2),(1,2),所以P(点在x 轴上方)=612=12
.
类型③ 统计和概率的综合应用
1.(2017重庆中考A 卷)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图①和如图②两幅不完整的统计图,根据图中提供的信息完成以下问题:
(1)扇形统计图中九年级参赛作文篇数对应的圆心角是________°,并补全条形统计图; (2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.
解:(1)126;100-20-35=45,
补全条形统计图如图所示;
(2)假设4篇荣获特等奖的作文分别为A ,B ,C ,D ,其中A 代表七年级获奖的特等奖作文.
列表如下:
∴P(七年级特等奖作文被选登在校刊上)=612=1
2.
2.(2017贵州中考)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A ,B ,C ,D ,E 等著名景点,该市旅游部门统计绘制出2017年五一长假期间旅游情况统计图,根据以下信息解答下列问题:
(1)2017年五一期间,该市周边景点共接待游客______万人,扇形统计图中A 景点所对应的圆心角的度数是______,并补全条形统计图;
(2)根据近几年到该市旅游人数增长趋势,预计2018年五一节将有80万游客选择该市旅游,请估计有多少万人会选择去E 景点旅游;
(3)甲、乙两个旅行团在A ,B ,D 三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.
解:(1)50,108°;补全条形统计图如图;
(2)∵E 景点接待游客数所占的百分比为:6
50
×100%=12%,
∴2018年五一节选择去E 景点旅游的人数约为:80×12%=9.6(万人);
∴同时选择去同一个景点的概率=39=1
3
.
3.(2017重庆中考B 卷)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校八年级模拟开展“中国诗词大赛”比赛,对全年级同学的成绩进行统计后分为“优秀”“良好”“一般”“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:
(1)扇形统计图中“优秀”所对应的扇形的圆心角为______,并将条形统计图补充完整; (2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.
解:(1)72°;补全条形统计图如图所示;(2)列表如下:
∴选中的两名同学恰好是甲、丁的概率=212=1
6.。

相关文档
最新文档