人教版七年级数学下册课件:第八章8.3
合集下载
七年级数学人教版下册课件8.3实际问题与二元一次方程组

题中有哪些等量关系?
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
新知探究
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
如何用二元一次方程组表示上面的两个等量关系? 可设每头大牛和小牛平均1天各需用的饲料为 x kg和 y kg. 30x 15y 675 , 42x 20 y 940 .
人教版-数学-七年级-下册
二元一次方程组
8.3 实际问题与二元一次方程组 课时1
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-拓展提升
知识回顾
解二元一次方程组的方法有哪些? 代入消元法和加减消元法.
用代入消元法解二元一次方程组的步骤:
变形
代入
求解
回代
用加减消元法解二元一次方程组的步骤:
变形
加减
基本关系:路程=速度×时间;
同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.
(2)求 A、B 两工程队分别整治河道多少米.
A.24岁,14岁
B.26岁,14岁
拓展提升
A 工程队用的时间 A 工程队治理的米数
B 工程队用的时间 B 工程队治理的米数
拓展提升
(2)求 A、B 两工程队分别整治河道多少米.
A 工程队整治河道的米数为 12x=60, B 工程队整治河道的米数为 8y=120. 答:A 工程队整治河道 60 米,B 工程队整治河道 120 米.
未知量有每头大牛1天需用的饲料和每 头小牛1天需用的饲料.
新知探究
探究1 养牛场原有30头大牛和15头小牛,1天约用饲料675 kg; 一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲 养员李大叔估计每头大牛1天约需饲料18~20 kg,每只小牛1天 约需饲料7~8 kg.你能通过计算检验他的估计吗?
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
新知探究
30头大牛和15头小牛一天需用饲料675kg; (30+12)头大牛和(15+5)头小牛一天需用饲料940kg.
如何用二元一次方程组表示上面的两个等量关系? 可设每头大牛和小牛平均1天各需用的饲料为 x kg和 y kg. 30x 15y 675 , 42x 20 y 940 .
人教版-数学-七年级-下册
二元一次方程组
8.3 实际问题与二元一次方程组 课时1
知识回顾-课堂导入-新知探究-随堂练习-课堂小结-拓展提升
知识回顾
解二元一次方程组的方法有哪些? 代入消元法和加减消元法.
用代入消元法解二元一次方程组的步骤:
变形
代入
求解
回代
用加减消元法解二元一次方程组的步骤:
变形
加减
基本关系:路程=速度×时间;
同学们可以先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流.
(2)求 A、B 两工程队分别整治河道多少米.
A.24岁,14岁
B.26岁,14岁
拓展提升
A 工程队用的时间 A 工程队治理的米数
B 工程队用的时间 B 工程队治理的米数
拓展提升
(2)求 A、B 两工程队分别整治河道多少米.
A 工程队整治河道的米数为 12x=60, B 工程队整治河道的米数为 8y=120. 答:A 工程队整治河道 60 米,B 工程队整治河道 120 米.
未知量有每头大牛1天需用的饲料和每 头小牛1天需用的饲料.
新知探究
探究1 养牛场原有30头大牛和15头小牛,1天约用饲料675 kg; 一周后又购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲 养员李大叔估计每头大牛1天约需饲料18~20 kg,每只小牛1天 约需饲料7~8 kg.你能通过计算检验他的估计吗?
人教版七年级下册数学《实际问题与二元一次方程组—图形问题》课件

yy yyy
4x + 7y = 34 x
x
解得:xy
5 2
∴大长方形的长为:2x=10
y x
y x
宽为:x+y=5+2=7. ∴长方形的面积为:10×7=70c㎡
答:大长方形的面积是70c㎡
60
练一练: 8块相同的小长方形地砖拼成一个大长方形, 每块小长方形地砖的长和宽分别是多少?(单位cm)
解:设小长方形地砖的长为x, 宽为y, 由题意,得 x+y=60 x=3y 解此方程组得: x =45, y=15.
三、组内合作、交流探索
【变式】一个长方形,长减少6,宽增加3,或长增加 4,宽减少1,面积都与原长方形的面积相等求原长方 形的长与宽。
三、组内合作、交流探索
例题4、把棱长为4的正方体分割成29个棱长为整数的正方体 (且没有剩余),求其中棱长为1的正方体的个数
课堂练习
1.如图,将矩形ABCD分割成一个灰色矩形和148个面积相等的小正 方形,若黑色矩形的长与宽的比是5:3,则AD:AB的值是 47:29.
长方形ABCD分割为两个小长方形,
长方形1和长方形2分别种甲、乙作物,
甲、乙单位面积产量的比是1:2.
A
B
目标:甲、乙两种作物的总产量的比是3:4
这里研究的实际上是长方形什的么面积分割 问 把一题个. 长方形分成两个小长方形有哪些分割方式? 01 竖着画,把长分成两段,则 宽 不变
02 横着画,把宽分成两段,则 长 不变
分析:如图,设在黑色长方形的长上摆x个小正方形,宽上摆y个小 正 方 形 . 又 知 道 一 共 有 148 个 正 方 形 , 所 以 2(x+y)=148–4 ; 再 根 据 “黑色矩形的长与宽的比为5:3”,得到x:y=5:3.可列出方程组 求解x,y的值,即可求出AD:AB=(x+2):(y+2)=47:29.
人教版七年级下册8.3 实际问题与二元一次方程组第1课时 实际问题与二元一次方程组(1)课件

①
解:整理,得:
x-3y=-2
②
①+②×3,得11x=11.解得x=1.
把x=1代入②,得1-3y=-2.解得y=1.
x=1 ∴这个方程组的解为:
y=1
3.一支部队第一天行军4h,第二天行军5h,两 天共行军98km,且第一天比第二天少走2km,第一 天和第二天行军的平均速度各是多少?
解:设第一天行军的平均速度为xkm/h,第二天行
种树 3 棵,女生每人种树 2 棵.设男生有 x 人,女生有 y 人,
根据题意,下列方程组正确的是( D )
x+y=52, A.3x+2y=20
B.x2+x+y=3y=52,20
x+y=20, C.2x+3y=52
D.x3+x+y=2y=205,2
2.根据如图提供的信息,可知一个热水瓶的价格是( C )
二、填空题(每小题 7 分,共 28 分) 7.一艘轮船顺水航行的速度是 20 海里/时,逆水航行的速度 是 16 海里/时,则水流的速度是 2 海里/时. 8.一个两位数,它的个位数字是十位数字的 2 倍,且十位数 字与个位数字和的 4 倍等于 36,则这个两位数是 36 . 1 9.a 的相反数是 2b+1,b 的相反数是 3a+1,则 a2+b2= 5 .
练习
某校七年级学生在会议室开会,每排坐12 人,则有11人无座位;每排坐14人,则最后一 排只有1人独坐.这间会议室共有座位多少排? 该校七年级有多少学生?
解:设这间会议室共有座位x排,该校七年级有 y名学生,根据题意,得
12x+11=y 14x-13=y
解得:
x=12 y=155
答:这间会议室共有座位12排,该校七年级有 155名学生.
亲爱的读者: 春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一 样阳光,心情像桃花一样美丽,感谢你的阅读。
人教版七年级数学下册第八章《8.3 实际问题与二元一次方程组》优课件(共20张PPT)

教 材 分 析
另一方面使学
生能在解决实 际问题的情境 中运用所学数 学知识,进一 步提高分析问 题和解决问题 的综合能力 本节内容是具有一定综
合性的问题,提供给学 生利用方程组为工具进 行具有一定深度的思考, 增加运用方程组解决实 际问题的实践,将全章 所强调的以方程组为工 具把实际问题模型化的 思想提高到新的高度
问题1:怎样判断李大叔的估计是否正确? 1.先假设李大叔的估计正确,再根据问题中给定的数量关系来检验。 2.根据问题中给定的数量关系求出平均每只大牛和每只小牛1天各约需用饲 料量,再来判断李大叔的估计是否正确。
问题2:思考:题目中有哪些已知量?哪些未知量?等量关系有哪些?
本题的等量关系是 ⑴30只大牛和15只小牛1天需用饲料为675kg; ⑵(30+12)只大牛和(15+5)只小牛需用饲料为940kg。
环节二:探究新知,解决问题
例题:养牛场原有30只大牛和15只小牛,1天约需用饲料675kg; 一周后又购进12只大牛和5只小牛,这时1天约需用饲料940kg。饲养 员李大叔估计平均每只大牛1天约需用饲料18~20kg,每只小牛1天约 需饲料7~8kg。你能够通过计算检验他的估计?
问题3:如何解这个应用题?
环节六 作业布置:
教材108 页 第3、5题
课后思考题
某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大 楼共有4道门,其中相同,两道侧门大小也相同。安全检查中, 对4道门进行了训练:当同时开启一道正门和两道侧门时,2分 钟内可以通过560名学生;当同时开启一道正门和一道侧门时, 4分钟可以通过800名学生。 ⑴求平均每分钟一道正门和一道侧门各可以通过多少名学生? ⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低 20%。安全检查规定,在紧急情况下全大楼的学生应在5分钟内 通过这4道门安全撤离。假设这栋教学大楼每间教室最多有45名 学生,问:建造的这4道门是否符合安全规定?请说明理由。
另一方面使学
生能在解决实 际问题的情境 中运用所学数 学知识,进一 步提高分析问 题和解决问题 的综合能力 本节内容是具有一定综
合性的问题,提供给学 生利用方程组为工具进 行具有一定深度的思考, 增加运用方程组解决实 际问题的实践,将全章 所强调的以方程组为工 具把实际问题模型化的 思想提高到新的高度
问题1:怎样判断李大叔的估计是否正确? 1.先假设李大叔的估计正确,再根据问题中给定的数量关系来检验。 2.根据问题中给定的数量关系求出平均每只大牛和每只小牛1天各约需用饲 料量,再来判断李大叔的估计是否正确。
问题2:思考:题目中有哪些已知量?哪些未知量?等量关系有哪些?
本题的等量关系是 ⑴30只大牛和15只小牛1天需用饲料为675kg; ⑵(30+12)只大牛和(15+5)只小牛需用饲料为940kg。
环节二:探究新知,解决问题
例题:养牛场原有30只大牛和15只小牛,1天约需用饲料675kg; 一周后又购进12只大牛和5只小牛,这时1天约需用饲料940kg。饲养 员李大叔估计平均每只大牛1天约需用饲料18~20kg,每只小牛1天约 需饲料7~8kg。你能够通过计算检验他的估计?
问题3:如何解这个应用题?
环节六 作业布置:
教材108 页 第3、5题
课后思考题
某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大 楼共有4道门,其中相同,两道侧门大小也相同。安全检查中, 对4道门进行了训练:当同时开启一道正门和两道侧门时,2分 钟内可以通过560名学生;当同时开启一道正门和一道侧门时, 4分钟可以通过800名学生。 ⑴求平均每分钟一道正门和一道侧门各可以通过多少名学生? ⑵检查中发现,紧急情况时因学生拥挤,出门的效率将降低 20%。安全检查规定,在紧急情况下全大楼的学生应在5分钟内 通过这4道门安全撤离。假设这栋教学大楼每间教室最多有45名 学生,问:建造的这4道门是否符合安全规定?请说明理由。
人教版七年级数学下册第八章《 8.3 实际问题与二元一次方程组(2)》公开课课件

解:设第一个长方形长为5xcm,第二个长方形长为3ycm.
(5x+4x)×2-(3y+2y)×2=112 解得: x=9
4x-3y×2=6
y=5
所以第一个长方形面积5×9×4×9=1 620(cm2),
第二个长方形面积:3×5×2×5=150(cm2)
探究3
如图所示,长青化工厂与A,B两地有公路、铁路相 连,这家工厂从A地购买一批每吨1000元的原料运回工厂, 制成每吨8000元的产品运到B地,公路运价为1.5元/ (吨·千米),铁路运价为1.2元/(吨·千米),且这 两次运输共支出公路运费15000元,铁路运费97200元。 这批产品的销售款比原料费与运输费的和多多少元?
所以这批产品的销售款比原料费与运输费的和多: 8 000 ×300-1 000 × 400-15 000-97 200=1 887 800(元)
工作量和行程问题
一辆汽车从A地驶往B地,前
1 3
路段为普通公路,
其余路段为高速公路,已知汽车在普通公路上行驶的速度为
60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B
两种作物的种植区域分别为长方形AEFD
A
xE
y
B和BCFE,设 AE xc,B mE ycm
x
y
长为200m
xy200使甲Βιβλιοθήκη 乙两种作物的总产量的比是 3 : 4
1x 0 :1 .0 5 10 y 3 0 :4
解得:
x y
105 94
15 17 2 17
过长方形土地的长边上 离一端约106米处,把这 块地分为两个长方形,较 大一块地种甲作物,较小 一块地种乙作物。
种植方案二
人教初中数学七下 8.3 实际问题与二元一次方程组课件6 【经典初中数学课件】

根据题意得 25(x y) 400, 即 x y 16 ,
(32)x 3y.
解这个方程组得, x 6 ,
5x 3y.
y 10 .
答:甲、乙两人的速度分别为6米/秒,10米/秒.
3、一艘轮船顺流航行45千米需要3小时,逆流航行65千 米需要5小时,求船在静水中的速度和水流速度。
解:设船在静水中的速度为x千米/时,水流的速度 为y千米/时,根据题意,得
浓度问题
4.有两种药水,一种浓度为60%, 另一种浓度为90%,现要配制浓度为 70%的药水300g,则每种各需多少克?
关于浓度问题的概念: 依据是: 溶液=溶质+溶剂
溶质=浓度×溶液
等量关系是:混合前溶液的和=混合后的溶液 混合前溶质的和=混合后的溶质
列方程组解应用题也要检验,既要代入方 程组中,还要代入题目中检验。
解:设这批零件有x个,按原计划需y小时完成,根
据题意得 x 10y 3,
x 11(y 1).
解这个方程组得, x 77 , y 8.
答:这批零件有77个,按原计划需8小时完成。
2、10年前,母亲的年龄是儿子的6倍;10年后, 母亲的年龄是儿子的2倍.求母子现在的年龄.
解:设母亲现在的年龄为x岁,儿子现在的年龄为y岁,列 方程组得
方案一:尽可能多的制成奶片,其余直接销售现牛奶
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4 天完成
(1)你认为哪种方案获利最多,为什么? (2)本题解出之后,你还能提出哪些问题?
商战风云再起
方案一:生产奶片4天,共制成4吨奶片,获利 2000×4=8000 其余5吨直接销售,获利500×5=2500(元) ∴共获利:8000+2500=10500(元)
(32)x 3y.
解这个方程组得, x 6 ,
5x 3y.
y 10 .
答:甲、乙两人的速度分别为6米/秒,10米/秒.
3、一艘轮船顺流航行45千米需要3小时,逆流航行65千 米需要5小时,求船在静水中的速度和水流速度。
解:设船在静水中的速度为x千米/时,水流的速度 为y千米/时,根据题意,得
浓度问题
4.有两种药水,一种浓度为60%, 另一种浓度为90%,现要配制浓度为 70%的药水300g,则每种各需多少克?
关于浓度问题的概念: 依据是: 溶液=溶质+溶剂
溶质=浓度×溶液
等量关系是:混合前溶液的和=混合后的溶液 混合前溶质的和=混合后的溶质
列方程组解应用题也要检验,既要代入方 程组中,还要代入题目中检验。
解:设这批零件有x个,按原计划需y小时完成,根
据题意得 x 10y 3,
x 11(y 1).
解这个方程组得, x 77 , y 8.
答:这批零件有77个,按原计划需8小时完成。
2、10年前,母亲的年龄是儿子的6倍;10年后, 母亲的年龄是儿子的2倍.求母子现在的年龄.
解:设母亲现在的年龄为x岁,儿子现在的年龄为y岁,列 方程组得
方案一:尽可能多的制成奶片,其余直接销售现牛奶
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4 天完成
(1)你认为哪种方案获利最多,为什么? (2)本题解出之后,你还能提出哪些问题?
商战风云再起
方案一:生产奶片4天,共制成4吨奶片,获利 2000×4=8000 其余5吨直接销售,获利500×5=2500(元) ∴共获利:8000+2500=10500(元)
人教版七年级数学下册精品课件 第八章 8.3 第1课时 利用二元一次方程组解决实际问题

40 y
370
解得
x 25,
y15.
答:甲种票25张,乙种票15张.
2020/6/11
3.课本中介绍我国古代数学名著《孙子算经》上有这 样的一道题:今有鸡兔同笼,上有三十五头,下有 九十四足,问鸡兔各多少只?
解:设鸡有x只,兔有y只. 则2x xy4y3594
解得
x 23,
y12.
答:鸡有23只,兔有12只.
2020/6/11
剧情发展:随着养牛场规模逐渐扩大,李大叔需聘 请饲养员协助管理现有的42头大牛和20头小牛,已 知甲种饲养员每人可负责8头大牛和4头小牛,乙种 饲养员每人可负责5头大牛和2头小牛,请问李大叔 应聘请甲乙两种饲养员各多少人?
解:设李大叔应聘请甲种饲养员x人,乙种饲养员 y人,则:
根据题意,可列方程组:
x 60
y 80
10
x
y
15.
60 40
解方程组,得
x 300
y400
所以,小明家到学校的距离为700m.
2020/6/11
方法二(间接设元法) 解:设小华下坡路所花时间为xmin,
上坡路所花时间为ymin.
平路 坡路 距离 距离
上学 60(10 x) 80x
放学 60(15 y) 40 y
2020/6/11
02 横着画,把宽分成两段,则长不变
D
200m
C 解:过点E作EF⊥AD,交
BC于点F.
x
甲种作物 200x 100m
设DE=xm,AE=ym.
E y
F
乙种作物 200y
根据题意列方程组为
x+y=100
A
Hale Waihona Puke B200x:400y=3:4
实际问题与二元一次方程组(第1课时)-七年级数学下册课件(人教版)

共55元 1束花+2个礼盒=55元 2束花+3个礼盒=90元
共90元
回顾旧知 列方程组解应用题的步骤:
1. 审题 2. 找等量关系 3. 设未知数 4. 列二元一次方程组 5. 解二元一次方程组 6 .检验 7. 答
合作探究
养牛场原有30头大牛和15头小牛,1天约用饲料675 kg;一周后又 购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲养员李大叔估 计每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7~8 kg. 你能通过计算检验他的估计吗?
运费表 单位:(元/台)
终点
温州
武汉
起点
北京
400
800
上海
300
500
【分析 】(1 )等量 关系为:400 ×北京运 往温州的 台数+800× 北京运 往武汉的 台数+300
×上海运往温州的台数+500×上海运往武汉的台数=8000,温州需要 6 台,把相关数值
代入求解即可;
(2)本着节约运送资金和分配到温州的仪器不能超过 5 台分析即可得到调配方案.
解:设2米的钢材有x段,1米的钢材有y段,根据题意,得
x+y=10 2x +y =18
解方程组,得
x=8 y =2
答:小明估计不正确. 2米钢材有8段,1米钢材2段.
估算作用
在生产和生活中估算具有一定的实用价值的,同学们应该逐渐 具备这种估算能力,但估算通常会产生一定的误差,通过精准 计算可以对估算的结果进行检验.
(2)由表格中的数据可得出,∵上海运送到温州的费用最低,
设北京运送到温州 x 台,则北京运武汉(10﹣x,总费用为 y,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.4种
D.5种
10.(2018永州)在永州市青少年禁毒教育活动中,某班男 生小明与班上同学一起到禁毒教育基地参观.以下是小明和妈 妈的对话,请根据对话内容,求小明班上参观禁毒教育基地 的男生和女生的人数.
11.今年五一小长假期间,某市外来与外出旅游的总人数为 226万人,分别比去年同期增长30%和20%,去年同期外来 旅游比外出旅游的人数多20万人. 求该市今年外来和外出旅 游的人数.
【例4】有一批机器零件共400个,若甲先做1天,然后甲、 乙两人再共做2天,则还有60个未完成;若两人合作3天,则 可超产20个. 问甲、乙两人每天各做多少个零件?
举一反三
3.为了响应市委和市政府“绿色环保,节能减排”的号召, 幸福商场用3 300元购进甲、乙两种节能灯共计100只,很快 售完.这两种节能灯的进价、售价如下表:
(C )
【例2】小明对小亮说:“我比你大8岁.”小亮却说: “我的年龄的两倍比你大3岁.”请你根据以上对话填空: 小明今年 19 岁,小亮今年 11 岁.
举一反三
1.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、 5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y瓶,则可列方程组为( A )
______________ .
3.一条船顺流航行每小时行40 km,逆流航行每小时行32 km,
设该船在静水中的速度为每小时x km,水流速度为每小时y
km,则可列方程组为 .
4. 某班为奖励在校运会上取得较好成绩的运动员,花了400 元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元, 乙种奖品每件12元,求甲、乙两种奖品各买了多少件.该问题 中,若设购买甲种奖品x件,乙种奖品y件,则所列方程组正 确的是( B )
(1)求幸福商场甲、乙两种节能灯各购进了多少只; (2)全部售完100只节能灯后,商场共计获利多少元?
4.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工 中,每天甲队比乙队多铺设100 m钢轨,甲队铺设5天的距 离刚好等于乙队铺设6天的距离.若设甲队每天铺设x m,乙 队每天铺设y m.
(1)依题意列出二元一次方程组;
12.某商场销售A,B两种品牌的教学设备,这两种教学设备 的进价和售价如下表所示:
该商场计划购进两种教学设备若干套,共需66万元,全部销 售后可获毛利润9万元. 该商场计划购进A,B两种品牌的教 学设备各多少套?
2.为处理甲、乙两种积压服装,商场决定打折销售.已知甲、
乙两种服装的原单价共为880元,现将甲服装打八折,乙服
装打七五折,结果两种服装的单价共为684元,则甲、乙两
种服装的原单价分别是
480元、400元
.
典型例题
新知2:列二元一次方程组解实际问题的一般步骤
【例3】某宾馆有单人间和双人间两种房间,入住3个单人 间和6个双人间共需1 020元,入住1个单人间和5个双人间 共需700元,则入住单人间和双人间各5个共需要多少元?
(2)求出甲、乙两施工队每天各铺设多少米.
【A组】
1.六一儿童节前夕,某超市用3360元购进A,B两种童装共 120套,其中A型童装每套24元,B型童装每套36元. 若设购 买A型童装x套,B型童装y套,依题意列方程组正确的是
(B )
2.公园有一块正方形的空地,后来从这块空地上划出部分区 域栽种鲜花(如图8-3-1),原空地一边减少了 1 m,另一边 减少了 2 m,剩余空地的面积为18 m2,求原正方形空地的 边长. 设原正方形的空地的边长为 x m,则可列方程为( C )
.
6.一篮水果分给一群小孩,若每人分8个,则差3个水果;若每 人分7个,则多4个水果. 在这个问题中,有小孩 7 人, 有水果 53 个.
7.两位数的数字之和是7,这个两位数减去27,它的十位和个 位上的数字就交换了位置,则这个两位数是 52 .
8.在某市“精准扶贫”工作中,甲、乙两个工程队先后接 力为扶贫村庄修建一条210 m长的公路,甲队每天修建15 m,乙队每天修建25 m,一共用10天完成.
D. 11场
4.(2018பைடு நூலகம்义)现有古代数学问题:“今有牛五羊二值金八 两;牛二羊五值金六两,则牛一羊一值金 二 两.”
5.甲、乙两个工程队同时从两端合开一条长为230 m的隧道, 若甲队开7天,乙队开6天,则刚好把隧道开通;若乙队开8 天,甲队开5天,则还差10 m;如果设甲队每天能开x m隧 道,乙队每天能开y m隧道,那么根据题意,可列出方程组 为
第八章 二元一次方程组
8.3 实际问题与二元一次方程组
1.买14支铅笔和6本练习本,共用5.4元. 若铅笔每支x元,练 习本每本y元,写出以x和y为未知数的方程为 14x+6y=5.4 .
2.(2018柳州)篮球比赛中,每场比赛都要分出胜负,每队 胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得 14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为
根据题意,小红和小芳同学分别列出了下列尚不完整的方 程组:
10 210
210
10
(1)请你分别写出小红和小芳所列方程组中未知数x,y表 示的意义:
小红:x表示 甲队修建的天数 ,y表示 乙队修建的天数 ; 小芳:x表示 甲队一共修建的长度 ,y表示 乙队一共修建的
长度 ;
(2)在题中“( )”内把小红和小芳所列方程组补充完整;
5.依依买了7本数学书和2本语文书共花了100元,菲菲买了 4本语文书和2本数学书共花了80元,则买3本数学书要花 (A) A. 30元 B. 20元 C. 15元 D. 45元
典型例题
新知1:列二元一次方程组解实际问题的基本思路
【例1】今年植树节,学校团委组织60位团员去植树,他们 共种了130棵树苗,其中男生每人种3棵,女生每人种2棵. 设男生有x人,女生有y人,根据题意,列方程组正确的是
A. (x+1)(x+2)=18 B. x2-3x+16=0 C. (x-1)(x-2)=18 D. x2+3x+16=0
3.足球比赛的计分规则是:胜一场记3分,平一场记1分,负 一场记0分. 一支足球队参加了15场比赛,负了4场,共得了 29分,那么这支足球队胜了( C )
A. 5场 B. 7场 C. 9场
(3)甲工程队一共修建了 4 天,乙工程队一共修建了
150 m.
【B组】
9.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全 部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元, 乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整 数倍,则购买笔记本的方案有( B )
A.2种
B.3种