6-3多服务台指数分布排队系统
排队问题知识点总结

排队问题知识点总结排队论起源于20世纪初学者与工程师们在电报、电话交换、交通运输等实际工作中遇到的问题。
20世纪20年代,这些问题引起了数学家的注意。
1925年丹麦学者A.K.厄劳札( Agner Krarup Erlang )首先提出要建立一个数学模型对通信系统中的电报在传递和处理中的排队问题进行研究。
他用数学上的标准方法解决了问题,从此排队论这一学科便有了起步发展的积淀。
今天,排队论已在交通运输、电信通讯、工程及服务管理、医学卫生、经济学、统计学、计算机科学等系统分析领域中得以广泛应用。
排队问题所涉及的知识点包括排队论基本概念、排队模型、排队系统性能评价、排队过程中的成本分析、排队优化模型等。
下面就对排队问题的相关知识点进行总结阐述。
排队论基本概念排队论是研究由于服务台能力有限以及到达率和要求的总体量之差异所引起的待服务队列问题。
在排队论中,通常会涉及到以下几个基本概念:- 顾客到达模型:描述顾客到达的规律,常用的到达模型包括泊松过程、指数分布、正态分布等。
- 服务台模型:描述服务台的服务能力,包括单一服务台、多重服务台、无限服务台等。
- 排队规则:描述顾客在队列中等待和被服务的规则,包括先来先服务(FIFO)、最短排队等待(SJF)、最高优先权优先服务(HPF)等。
- 排队系统性质:包括平均队长、平均等待时间、系统繁忙度等系统性能指标。
排队模型排队模型是对排队系统进行描述和分析的数学模型。
在排队模型中,通常会考虑到以下几种基本排队模型:- M/M/1模型:描述单一服务台、顾客到达符合泊松过程、服务时间符合指数分布的排队系统。
- M/M/c模型:描述多重服务台、顾客到达符合泊松过程、服务时间符合指数分布的排队系统。
- M/G/1模型:描述单一服务台、顾客到达符合泊松过程、服务时间符合一般分布的排队系统。
- M/D/1模型:描述单一服务台、顾客到达符合泊松过程、服务时间是固定的排队系统。
排队系统性能评价排队系统性能评价是对排队系统性能进行量化与分析的过程,主要包括以下几个方面:- 平均队长:描述系统队列中平均存在的顾客数量。
排队论模型

排队论模型排队论也称随机服务系统理论。
它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。
现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。
排队的内容虽然不同,但有如下共同特征:➢有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。
➢有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。
由顾客和服务员就组成服务系统。
➢顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。
排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。
一、排队论的一些基本概念为了叙述一个给定的排队系统,必须规定系统的下列组成部分:➢输入过程即顾客来到服务台的概率分布。
排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。
我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。
所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。
➢排队规则即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。
所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。
等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。
➢服务机构服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。
和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。
若以ξn表示服务员为第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξn},n=1,2,…所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ1,ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{Tn}也是独立的。
排队论

f ( w n 1)
n!
e w
w0
f ( w ) Pn f ( w n 1) n0 ( w ) n w (1 ) n e ( )e ( ) w n0 n!
熊燕华
6.
忙期和闲期
系统忙的概率为ρ ,则闲的概率为1-ρ 。可以 认为在一段时间内,忙期和闲期的长度比为 ρ :(1-ρ ) 由于顾客到达间隔服从无记忆性的负指数分布, 且与服务时间无关。闲期I(系统从空闲开始到新 的顾客到达时刻)服从参数为λ 的负指数分布,则 E[I]=1/λ E[B]= ρ/(1-ρ) E[I]=1/(μ-λ )=Ws
熊燕华
L S n Pn
n0
1
Little公式
Ls=Lq+λ/μ Ws=Wq+1/μ
L q (n 1) Pn n 1
Ws=E(W)=1/(μ-λ) Wq=Ws-1/μ=ρ/(μ-λ)
Ws=Ls/λ
Wq=Lq/λ
熊燕华
定理: 对于存在平稳分布的任何排队系统,下列 关系成立:
熊燕华
七、随机过程知识准备
系统的状态
系统中的顾客数,即如果系统中有n个顾客即说系统 状态为n。在平稳过程中,在时刻t、系统状态为n的概率 Pn(t)是不变的,即Pn(t) =Pn是不随时间变化的统计平衡 状态解。
注:本章研究的均为平稳过程,即输入、输出过程 的概率分布、参数均不随时间变化,与所选取的时
第八章 排队论
基本概念 单服务台泊松到达负指数服务时间排队模型 多服务台泊松到达负指数服务时间排队模型 其他排队模型 经济分析
熊燕华
排队论之简单排队系统

1.//1/M M ∞排队系统//1/M M ∞排队系统是单服务台等待制排队模型,可描述为:假设顾客以Poisson 过程(具有速率λ)到达单服务员服务台,即相继到达时间间隔为独立的指数型随机变量,具有均值1λ,若服务员空闲,则直接接受服务,否则,顾客排队等待,服务完毕则该顾客离开系统,下一个排队中的顾客(若有)接受服务。
相继服务时间假定是独立的指数型随机变量,具有均值μ。
两个M 指的是相继到达的间隔时间和服务时间服从负指数分布,1指的是系统中只有一个服务台,∞指的是容量为无穷大,而且到达过程与服务过程是彼此独立的。
为分析之,我们首先确定极限概率0,1,2,n p n •••=,,为此,假定有无穷多房间,标号为 0,1,2,•••,并假设我们指导某人进入房间n (当有n 个顾客在系统中),则其状态转移框图如图所示。
图 //1/M M ∞排队系统状态转移速率框图由此,我们有状态 离开速率=进入速率0 01p p λμ=,1n n ≥ ()11n n n p p p λμλμ-++=+解方程组,容易得到00,1,2,ii p p i λμ•••⎛⎫== ⎪⎝⎭,再根据0011()1n n n n p p p λμλμ∞∞=====-∑∑得到:01p λμ=-, ()(1),1nn p n λλμμ=-≥ 令/ρλμ=,则ρ称为系统的交通强度(traffic intensity )。
值得注意的是这里要求1ρ<,因为若1ρ>,则0n p =,且系统中的人数随着时间的推移逐渐增多直至无穷,因此对大多数单服务排队系统,我们都假定1ρ<。
于是,在统计平衡的条件下(1ρ<),平均队长为,1,1j j L jp λρρμλρ∞====<--∑(5-52)由于a λλ=,根据式(5-2)、(5-3)以及上式,可得: 平均逗留时间为:1,1LW ρλμλ==<- (5-53) 平均等待时间为:1[],1()(1)Q W W E S W λρρμμμλμρ=-=-==<-- (5-54)平均等待队长为:22,1()1Q Q L W λρλρμμλρ===<-- (5-55)另外,根据队长分布易知,01ρρ=-也是系统空闲的概率,而ρ正是系统繁忙的概率。
排队论

(t )n et P( X (t ) n) n!
E ( X (t )) t
e t f T (t ) 0 1 E (T )
for t 0 for t 0
服务时间的概率 = t 1/ : 平均服务时间
在t时间内已经服务n个顾客 的概率 平均服务率=
队列
队列容量
有限/无限 先来先服务(FCFS);后来先服务; 随机服务; 有优先权的服务;
排队规则
3.服务机构
服务机构
服务设施, 服务渠道与服务台 服务台数量:1台和多台 服务时间分布:
指数, 常数,
排队模型分类-Kendall记号
Kendall 记号: X/Y/Z/ A/B/C 顾客到达时间间隔分布/服务时间分布/服务台数 目/排队系统允许的最大顾客容量/顾客总体数量/ 排队规则 M/M/1///FCFS M/M/1 / M: 指数分布 (Markovian) D: 定长分布 (常数时间) Ek: k级Erlang 分布 GI:一般相互独立的时间间隔分布 G: 普通的概率分布 (任意概率分布)
0.3 0.25 0.2 0.15 0.1 0.05 0 0 2 4 6 8 10 12 14 16 18 20 22 24 NUMBER IN SYSTEM 26 28 30 32 34 36 38 40
Probability
74.94% 0.2506 1.2294 1.9788 0.2734 0.4401 0.7494 0.1007
排队模型的记号
系统状态 = 排队系统顾客的数量。 N(t) = 在时间 t 排队系统中顾客的数量。 队列长度 = 等待服务的顾客的数量。 Pn(t) = 在时间t,排队系统中恰好有n个顾客的概率。 s = 服务台的数目。
交通流理论—排队论

组成
排队系统的组成 (1) 输入过程:就是指各种类型的"顾客(车辆或行人)"按怎样的规律到 达。有各式各样的输入过程,例如: D—定长输入:顾客等时距到达。 M—泊松输入:顾客到达时距符合负指数分布。 Ek—爱尔朗输入:顾客到达时距符合爱尔朗分布。
组成
排队系统的组成
(2)排队规则:指到达的顾客按怎样的次序接受服务。 例如: • 损失制:顾客到达时,若所有服务台均被占,该顾客就自动消失,永不再来。 • 等待制:顾客到达时,若所有服务台均被占,他们就排成队伍,等待服务,
离去 1
到达
离去 2
到达 1
离去
2
...
n
单通道多服务台系统
到达
离去
1
到达
离去
(组1)成单通道服务系统
到达
离去
服务台的排列方式1
服务台
单通道单服务台系统
(2)多通道服务系统
(2) 多通道服务系统
离去
1
到达
离去 2
3
离去
可通的多通道系统
到达 1
离去
2
...
n
单通道多服务台系统
到达
离去
1
到达
离去
2
到达
M/M/1系统及其应用
其他参数
平均非零排队长度:
qw
1
1
(qw q ) (辆)
即排队不计算没有顾客的时间,仅计算有顾客时的平均排队长度, 即非零排队。如果把有顾客时计算在内,就是前述的平均排队长度。
M/M/1系统及其应用
其他参数
系统中顾客数超过k的概率:
P(n k) 1 P(n k)
k
1- Pi 1 (1 (1 ) ... k (1 )) i 0
排队论模型及其应用

排队论模型及其应用摘要:排队论是研究系统随机服务系统和随机聚散现象匸作过程中的的数学理论和方法,乂叫随机服务的系统理论,而且为运筹学的一个分支。
乂主要称为服务系统,是排队系统模型的基本组成部分。
而且在日常生活中,排队论主要解决存在大量无形和有形的排队或是一些的拥挤现象。
比如:学校超市的排队现象或岀行车辆等现象,。
排队论的这个基本的思想是在1910年丹麦电话工程师埃尔朗在解决自动电话设计问题时开始逐渐形成的。
后来,他在热力学统计的平衡理论的启发下,成功地建立了电话的统讣平衡模型,并山此得到了一组呈现递推状态方程,从而也导出著名的埃尔朗电话损失率公式。
关键词:出行车辆;停放;排队论;随机运筹学引言:排队论既被广泛的应用于服务排队中,乂被广泛的应用于交通物流领域。
在服务的排队中到达的时间和服务的时间都存在模糊性,例如青岛农业大学歌斐木的人平均付款的每小时100人,收款员一小时服务30人,因此,对于模糊排队论的研究更具有一些现实的意义。
然而有基于扩展原理乂对模糊排队进行了一定的分析。
然而在交通领域,可以非常好的模拟一些交通、货运、物流等现象。
对于一个货运站建立排队模型,要想研究货物的一个到达形成的是一个复合泊松过程,每辆货车的数量为陷而且不允许货物的超载,也不允许不满载就发车,必须刚刚好,这个还是一个具有一般分布装车时间的一个基本的物流模型。
一.排队模型排队论是运筹学的一个分支,乂称随机服务系统理论或等待线理论,是研究要求获得某种服务的对象所产生的随机性聚散现象的理论。
它起源于A.K.Er-lang的著名论文《概率与电话通话理论》。
一般排队系统有三个基本部分组成⑴:(1)输入过程:输入过程是对顾客到达系统的一种描述。
顾客是有限的还是无限的、顾客相继到达的间隔时间是确定型的也可能是随机型的、顾客到达是相互独立的还是有关联的、输入过程可能是平稳的还是不平稳的。
(2)排队规则:排队规则是服务窗对顾客允许排队及对排队测序和方式的一种约定。
( 数学建模)排队论模型

导出 pn (t ) 满足的微分方程组
p0 (t t ) p0 (t )(1 t ) p1 (t ) t (1 t ) o(t ) p0 (t t ) p0 (t ) p0 (t ) t p1 (t ) t o( t )
(1)流具有平衡性 对任何 a 0和 0 t1 t2 tn , x(a ti ) x(a ) (1 i n) 的分布只取决于 t1 , t2 , , tn 而与 a 无关。 (2)流具有无后效性 对互不交接的时间区间序列 ai , bi (1 i n) , x (bi ) x ( ai ) 是一组相互独立的随机变量。 (3)流具有普通性 Prx(a t ) x(a) 1
Prx(t ) k
E x (t ) t
k!
e
(k 0,1,2,)
故参数λ表示单位时间内事件发生次数的平均数。
2.Poisson流的发生时间间隔分布
当流(过程) x(t ) : t 0 构成Poisson过程时,就称 为Poisson流。设流发生的时刻依次为 t1 , t2 , , tn ,…, 发生的时间间隔记为 n tn tn1 (n 1,2,) ,其中t0 0 。
1.最简单流与Poisson过程
记随机过程{x(t):t≥0}为时间[0,t]内 流(事件)发生的次数,例如对于随机到来某电话交换 台的呼叫,以x(t)表示该交换台在[0,t]这段时 间内收到呼叫的次数;若是服务机构,可以用x(t) 表示该机构在[0,t]时间内来到的顾客数。
最简单流应 x(t ) : t 0 具有以下特征称 5 3二、单通道等待制排队问题
(M/M/1排队系统)
对于单通道等待制排队问题主要讨论输入过 程为Poisson流,服务时间服从负指数分布,单服 务台的情形,即M/M/1排队系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、系统的状态转移速度图:
0
1
2
…… c-1
c
c+1 ……
2 3 (c-1) c c c
3、 状态转移速度矩阵:
( )
2 ( 2)
3 ( 3)
c ( c)
c
( c)
( )
2 ( 2)
3 ( 3)
(2)一条线被占用的概率:
p1 p0 3.75 0.029 0.109
(3)顾客损失的概率——
5条线全部被占用的概率
p损
p5
1 ( )5 5!
p0
1 3.755 0.029 5!
0.179
单队多服务台 课
堂 等待制系统
练 习
多个单队单服务台
6-3 等待制系统
比较
某织布车间有两个布机维修组,分别负责 该车间的两个织布组的布机维修工作。设每 组布机平均每天有4台布机需要维修,每个维 修组每天平均可修复5台布机。
Ls
4
(台)
4.4475 (台)
Ws
1
(天)
0.5560 (天)
第十五次作业
习题6:(P197)9; 补充题:
补充题:某厂医务室有2名同等医疗水平的大夫。
已知患病者按泊松流来医务室求诊,平均每小时到 达15人;诊病时间平均每人6min,且服从负指数分 布;医务室最多能容纳6位病人,若已有6位病人, 后来的病人会到别处就诊,问:
顾客到达系统时,若无空闲服务台,系 统中顾客数小于N,则排队等待服务;若系 统中顾客数等于N,则离开系统,另求服务。
2、系统状态转移速度图和状态转移速度矩阵:
λ
λ λλ λ λ λ λ
0
1Байду номын сангаас
2 …… c-1
c …… N-1 N
μ
2μ 3μ (c-1)μ cμ cμ cμ cμ
( )
2 ( 2)
(1)医务室空闲的概率;
(2)在医务室逗留的病人及排队等待就诊的病人 各为多少?
(3)每位病人平均在医务室等待的时间是多少?
稳态概率应满足的关系:
pn
1 ( )n n!
p0
cn n!
n p0
n=1,2, … , c;
c
p0 n0
1 n!
(
)
n
1
c n0
cn n!
n
1
4、系统的基本数量指标:
e (1 pc ), 损 e pc
Ls
e
,
Ws
1
,
Lq 0, Wq 0
例6-5 某电话总机系统有5条中继线,电话 呼叫服从参数为1.5的泊松分布,通话时间 为负指数分布,平均每次通话为2.5分钟。
试求:(1)系统空闲的概率;
(2)一条线被占用的概率;
(3)顾客损失的概率;
题意分析—— 顾客为电话呼叫,输入为Poisson流,平均到 达率λ=1.5次/分; 服务台为中继线,共5条,即为5个服务台, 平均服务率μ=1/平均服务时间=1/2.5=0.4次/分; 故该系统是M/M/5损失制排队系统。
e (1 pN ) 4 (1 0.0222 ) 3.9112 (辆 / h)
Wq
Lq
e
0.0256(h) 1.536(min)
Ws
Wq
1
0.2256(h)
13.536(min)
Ls Ws e 0.082 (辆)
二. M/M/C/∞/∞/FCFS多服务台等待制排队模型
1、系统意义: 顾客按泊松流输入,到达率为λ; 服务时间服从负指数分布,服务率为μ; 有C个服务台; 先到先服务,系统无容量限制,顾客到达系
3 ( 3)
(c 2) ( (c 2))
(c 1)
( (c 1))
c
c
( )
c+1阶矩阵
2 ( 2)
3 ( 3)
(c 2) ( (c 2))
(c 1)
( (c 1))
c c
3、稳态下的状态概率方程:
P ( p0 , p1, p2 ,, pc ) 0
1
0.4286
P1=2ρP0=0.34288 P2=0.13715 P3=0.05486 P4=0.02194 ┇
Lq
22
0.43 0.4286 2!(1 0.4)2
1.524(辆)
λe =4;
Wq
Lq
e
1.524 0.381(h) 4
Ws
Wq
1
0.381
0.2
0.581(h)
试比较维持现状好还是将两个维修组合并 共同负责全车间的布机维修工作效率高?
维持现状: 两个单队单服务台
合并维修组: 单队两服务台系统
维修组 维修组
=5
=5
=8
维修组 维修组
=5
=5
=4
=4
单队两个服务台
两个单队单服务台
对于两个单队单服务台系统,λ=4台/天,μ=5台/天,于
是:
P0=1-λ/μ=1-4/5=0.2;
3 ( 3)
c ( c)
c
( c)
c c
3、稳态下的状态概率方程:
P ( p0 , p1, p2 ,, pc , pc1,, pN ) 0
由此,可得稳态概率应满足的关系:
当n<c时,
p0
p1
0
p1
p0
p0 ( ) p1 2p2 0
2p2
p0
(
) p1
(1
)
1
2 0.8
22 2!
0.82 1 0.8
1
0.1112
Lq
cc c1 p0 c!(1 )2
22 0.83 0.1112 2 0.22
2.8475 (台)
Ls
Lq
2.8475
1.6
4.4475(台)
Wq
Lq
2.8475 8
0.3560 (天)
Ws
Wq
1
0.3560
顾客按泊松流输入,到达率为λ;服务时间 服从负指数分布,服务率为μ;有C个服务台, 先到先服务,顾客源无限。
顾客到达系统时,若无空闲服务台,顾客则 离开系统,另求服务。
2、系统状态转移速度图和状态转移速度矩阵:
0
1
2
…… c-1
c
2 3 (c-1) c
( )
2 ( 2)
p0
(
)
p0
2 p2 2 2 p0;
令
c
,称为系统负荷强度,可得Pn的
一般表达式:
pn
n
pn1
c n
pn1;
pn
1 ( )n n!
p0
cn n!
n p0
当c<n≤N时,
pn1
cpn1
(
c) pn
pn
cc c!
n
p0
也可以根据“系统处于稳态时,每个状态的 转入率等于转出率”求得Pn的一般表达式。
Wq
Ws
1
(
)
4 5(5
4)
0.8(天)
e (1 p0 )
Ls
5
4
4
(4 台)
Lq
Wqe
2 ( )
42 5
3.2(台)
Ws
Ls
e
1
1 54
1(天)
单队2个服务台的系统 ——变成4×2=8
8 0.8 1 c 25
p0
c1 n0
cn n!
n
cc c!
c 1
4、系统的基本数量指标:(公式组(6-16))
c (c )n cc ( c N ) 1
p0 n0
n!
c!(1 )
pn
cn n!
n
p0
cc c!
n
p0
1 n c cnN
N
N 1
e n pn pn 0 pN (1 pN )
n0
n0
Ls
Lq
e
Lq
c(1 PN )
p1 2p0 0.348 p2 p1 0.1392 p3 p2 0.0556
p4 p3 0.0222
根据(6-16)的一组公式,可以计算出系统的 其他运行指标:
Lq
22 2!(1 0.4)2
0.43
0.4351 0.442
(4 2)0.442 (1 0.4)
22 0.43 0.4351 3 0.42 2 0.43 0.100224 2!(1 0.4)2
Ls Ws e 0.581 4 2.324 (辆)
课堂练习6-2 试画出M/M/2///FCFS 等待制系统的状态转移速度图
λ 0
μ
λ
1
2
2μ
λ
…… n-1
n
2μ
λ
… …
2μ
三、M/M/C损失制排队系统
M/M/C损失制排队系统可以看作M/M/C/N/∞ 混合制排队系统中N=C时的特例。 1、系统意义:
(例6-1将服务台改为2个)
该系统是M/M/2/4混合制排队系统,
其中λ=4(辆/h),μ=5(辆/h), ?
c=2,ρ=λ/cμ=0.4 ;
1 单位顾客服务时间
(12 /
1 60)小时
(5 辆/ 小时)
p0
[1
2
22 ( 2 5 ) ]1 2!(1 )
[1 0.8 2 0.42 0.45 ]1 0.435 1 0.4
c ( c)
c
( c)