单服务台排队系统的仿真

合集下载

MATLAB模拟银行单服务台排队模型

MATLAB模拟银行单服务台排队模型

MATLAB模拟银行单服务台排队模型银行单服务台排队模型是一种常见的排队模型,主要用于描述在银行等排队服务场所中,只有一个服务员的情况下,客户如何排队等待服务的情况。

1.模型假设在进行银行单服务台排队模型的建模过程中,我们需要进行一些假设,以简化问题的复杂性。

这些假设包括:-客户到达时间服从泊松分布:客户到达时间间隔服从泊松分布,即客户到达服从一个固定的时间间隔。

-服务时间服从指数分布:每个客户的服务时间是独立同分布的,服从指数分布。

-服务台只有一个:我们假设只有一个服务台,客户按照到达的顺序排队等待服务。

-客户不能提前离开:我们不考虑客户在等待期间可能会放弃等待而提前离开的情况。

2.模型参数在建立银行单服务台排队模型时,我们需要定义一些模型参数。

这些参数包括:-平均到达率λ:客户的平均到达率,表示单位时间内到达的客户数量的期望值。

-平均服务率μ:服务员的平均服务率,表示单位时间内服务的客户数量的期望值。

-服务台利用率ρ:服务台的利用率,表示服务台的平均使用率。

-平均等待时间W:客户平均等待服务的时间。

-平均队列长度L:客户平均排队等待的队列长度。

3.模拟过程为了模拟银行单服务台排队模型,我们使用MATLAB编程进行模拟。

以下是一个简单的模拟过程:-生成客户到达时间间隔:使用泊松分布生成客户到达时间间隔。

-生成客户服务时间:使用指数分布生成客户的服务时间。

-计算客户到达时间和服务完成时间:根据客户的到达时间间隔和服务时间,计算客户的到达时间和服务完成时间。

-计算客户的等待时间:根据客户的到达时间和服务完成时间,计算客户的等待时间。

-统计模拟结果:统计客户的等待时间、队列长度等模拟结果。

4.结果分析通过对模拟结果的分析,我们可以得到一些关键的结果,包括:-平均等待时间:通过计算客户的平均等待时间,可以评估服务台的效率和客户的等待体验。

-平均队列长度:通过计算客户的平均排队等待的队列长度,可以评估服务台的负载情况。

队列的应用——单服务台排队系统的模拟

队列的应用——单服务台排队系统的模拟

队列的应用:单服务台排队系统的模拟一、三个模拟1.离散事件模拟系统在排队系统中,主要有两类事件:顾客的到达事件和服务完毕后顾客的离去事件,整个系统就是不断有到达事件和离开事件的发生,这些事件并不是连续发生的,因此这样的系统被称为离散事件模拟系统。

(1)事件处理过程如果服务员没空,就去队列中排队;否则就为这个顾客生成服务所需的时间t,表示服务员开始为它服务,所需的服务时间是t。

每当一个离开事件发生,就检查有没有顾客在排队,如果有顾客在排队,则让队头顾客离队,为它提供服务,如果没有顾客排队,则服务员可以休息。

(2)如何产生顾客到达事件和离开事件在一个排队系统中,顾客的到达时间和为每个顾客服务的时间并不一定是固定的。

但从统计上来看是服从一定的概率分布。

假设到达的间隔时间和服务时间都满足均匀分布,则可以用随机数产生器产生的随机数。

①以生成顾客到达事件为例子如顾客到达的间隔时间服从[a,b]之间的均匀分布,则可以生成一个[a,b]之间的随机数x,表示前一个顾客到达后,经过了x的时间后又有一个顾客到达。

[a,b]之间的随机数可以按照下面的过程产生:假如系统的随机数生成器生成的随机数是均匀分布在0到RAND_MAX之间,可以把0到RAND_MAX之间的区间等分成b-a+1个,当生成的随机数落在第一个区间,则表示生成的是a,当落在第二个区间,则表示生成的是a+1…当落在最后一个区间,则表示生成的是b。

这个转换可以用rand()*(b-a+1)/( RAND_MAX+1)+a实现,rand 表示系统的随机数生成函数。

2.离散的时间驱动模拟在得到了在x秒后有一个事件生成的信息时,并不真正需要让系统等待x秒再处理该事件。

在模拟系统中,一般不需要使用真实的精确事件,只要用一个时间单位即可,这个时间单位是嘀嗒tick,可以表示1秒,也可以表示1min\1h.沿着时间轴,模拟每一个嘀嗒中发生了什么事件并处理该事件。

模拟开始时时钟是0嘀嗒,随后每一步都把时钟加1嘀嗒,并检查这个时间内是否有事件发生,如果有,则处理并生成统计信息。

单服务台排队系统仿真研究报告

单服务台排队系统仿真研究报告

物流系统建模与仿真09级自动化学院物流工程1班20085435 詹乐思20095277 安静20095278 陈红玲20095289 陈均剑20095290 翟瑞20095291 胡旺单服务台排队系统仿真研究报告——选重庆大学A区门口中国银行分行某一服务窗口为单服务台排队系统研究对象一、系统基本背景社会的进步越来越快,人们的生活节奏也随之越来越快。

在科技的发展,新技术的普及下, 我国的银行业以计算机和信息技术、互联网技术为前提, 通过大量资金和科技的投入, 不断地开发出新产品和新业务。

另外有网上银行、支付宝等新业务的出现, 大大提高了工作效率。

然而现代的金融服务并不是都可以靠刷卡来解决, 许多技术还不完善, 这些新技术也并不适合所有顾客群,去银行办理业务的顾客仍然经常性地出现排队现象。

顾客等待时间过长, 造成顾客满意度下降, 矛盾较为突出, 因此本报告试利用单服务台排队论的方法, 定性定量地对具有排队等候现象的银行服务系统进行统计调查与分析研究,希望能帮助改进银行工作效率, 优化系统的运营。

本报告研究对象为中国银行重庆大学处分行某一服务窗口,数据取自银行内唯一非现金业务柜台。

研究对象的选取虽然不是最典型的,但是综合考虑了研究地域范围和小组成员作业时间有限,另有其他方案由于各种原因无法进行,故选择离学校较近的有代表性的中国银行中的服务窗口作为最终方案。

中国银行简介:中国银行是中国历史最为悠久的银行之一,在大家对银行的概念中有着一定地位。

中国银行主营传统商业银行业务,包括公司金融业务、个人金融业务和金融市场业务。

公司业务以信贷产品为基础,致力于为客户提供个性化、创新的金融服务和融资、财务解决方案。

个人金融业务主要针对个人客户的金融需求,提供包括储蓄存款、消费信贷和银行卡在内的服务。

作为中国金融行业的百年品牌,中国银行在稳健经营的同时,积极进取,不断创新,创造了国内银行业的许多第一,在国际结算、外汇资金和贸易融资等领域得到业界和客户的广泛认可和赞誉。

实验单服务台单队列排队系统仿真

实验单服务台单队列排队系统仿真

实验单服务台单队列排队系统仿真简介实验单服务台是指在实验室或研究机构等地,为科学实验、研究项目提供相关服务的地方。

对于一个实验室来说,合理的排队系统可以提高实验员的工作效率,并且能够更好地管理实验项目。

本文将介绍一种基于单队列的排队系统仿真方法,通过模拟实验单的排队过程,评估实验室排队系统的性能,为实验室提供有效的管理建议。

目标本次排队系统仿真的目标是评估实验室中的排队系统性能,包括等待时间、队列长度等指标,以及不同服务台数量下的性能表现。

通过仿真实验,可以找出最优的服务台数量,从而提高实验室的工作效率,减少实验员的等待时间,提供更好的服务。

方法实验单生成在排队系统仿真中,需要生成一批实验单用于模拟实验员的需求。

实验单的生成可以根据实验室的实际情况和需求来设计,可以包括实验名称、实验员姓名、实验日期等信息。

生成一批实验单后,即可进行排队模拟实验。

单队列排队模型本文使用单队列排队模型来模拟实验室的排队系统。

模型中有一个服务台,实验员依次排队等待被服务。

当服务台空闲时,队列中的第一个实验员将被服务,其余实验员依次推进队列。

在模拟过程中,需要记录实验员进入队列的时间和离开队列的时间,以计算等待时间、队列长度等性能指标。

仿真实验仿真实验的过程可以分为以下几个步骤:1.生成实验单:根据实验室的实际情况,生成一批实验单。

2.初始化队列和服务台:将生成的实验单放入队列中,并初始化服务台的状态。

3.开始仿真:根据队列中实验员的情况,模拟实验员进入队列、离开队列以及服务台的状态变化。

记录实验员的等待时间,计算队列长度等性能指标。

4.评估实验结果:根据实验的性能指标,评估排队系统的表现,并分析不同服务台数量下的性能差异。

5.提出改进建议:根据实验结果,提出优化排队系统的建议,如增加服务台数量、调整队列管理策略等。

结果与分析通过对排队系统的仿真实验,可以得到一些重要的结果和分析:1.等待时间分布:通过模拟实验员的等待时间,可以得到等待时间的分布情况,从而评估实验室排队系统的性能。

单服务台排队系统仿真报告

单服务台排队系统仿真报告

单服务台排队系统仿真报告一、模型准备1、 顾客到达特性在该系统中,顾客的到达规模(成批到达还是单个到达)是单个到达,假设顾客到达率Ai 服从均值为 的指数分布,即2、 顾客服务时间顾客服务时间为Si ,服从指数分布,假设均值为,即二、 仿真模型设计1、 元素定义(Define )本系统的元素定义如表1所示。

2、 元素可视化设置(Display )本系统中各个元素的显示特征定义设置如图2所示:m in 5=A βAs Ae Af ββ/)(-=)0(≥A min 4=s βSA Se Sf ββ/)(-=)0(≥S图2 各元素的显示特征(1)Part元素可视化设置在元素选择窗口选择customer元素,鼠标右键点击Display,跳出Display 对话框(图3),设置它的Text(图4)、Icon(图5)。

图3 Display对话框图4 Display Text对话框图5 Display Icon对话框(2)Buffer元素可视化设置在元素选择窗口选择paidui元素,鼠标右键点击Display,跳出Display对话框(图3),设置它的Text、Icon、Rectangle(图6)。

图6 Display Rectangle对话框(3)Machine元素可视化设置在元素选择窗口选择Fuwuyuan元素,鼠标右键点击Display,跳出Display 对话框(图3),设置它的Text、Icon、Part Queue(图7)。

图7 Display Part Queue对话框(4)Variable元素可视化设置在元素选择窗口选择Jifen0元素,鼠标右键点击Display,跳出Display对话框(图3),设置它的Text 、Value(图8)。

图8 Display Value对话框(5)Timeseries元素可视化设置在元素选择窗口选择duichang元素,鼠标右键点击Display,跳出Display 对话框(图3),设置它的Text、Timeseries(图9)。

单服务台排队系统仿真

单服务台排队系统仿真

单服务台排队系统仿真单服务台排队系统是指在一个服务台只有一个服务员的情况下,客户需要按顺序等待服务的系统。

本文将介绍一个针对单服务台排队系统的仿真模型。

在设计仿真模型之前,我们需要确定一些重要的参数。

首先是服务时间,即每个客户接受服务所需要的时间。

服务时间可以通过实际观察数据或者估算得出。

其次是到达间隔时间,即每个客户到达的时间间隔。

到达间隔时间可以通过实际观察数据或者使用随机数生成器进行模拟。

首先,我们需要创建一个事件队列来模拟客户的到达和离开。

事件队列是一个按照发生时间顺序排序的队列,每个事件都包含两个属性:时间和类型。

接下来,我们创建一个时钟来记录仿真进行的时间。

初始时,时钟指向第一个到达事件的时间。

然后,我们从事件队列中取出第一个事件,并更新时钟指向该事件的时间。

如果当前事件类型是到达事件,我们需要进行如下操作:首先,模拟下一个客户到达的时间,并将该事件添加到事件队列中。

然后,判断当前是否有客户正在接受服务。

如果没有,我们将当前事件类型设置为离开事件,并模拟该客户的服务时间和离开时间,并将该离开事件添加到事件队列中。

如果有客户正在接受服务,我们将当前事件类型设置为到达事件。

如果当前事件类型是离开事件,我们需要进行如下操作:首先,更新服务台的空闲状态。

然后,判断是否还有等待服务的客户。

如果有,我们将当前事件类型设置为离开事件,并模拟下一个客户的服务时间和离开时间,并将该离开事件添加到事件队列中。

如果没有等待服务的客户,我们将当前事件类型设置为到达事件。

重复上述步骤,直到事件队列中没有事件为止。

最后,我们可以根据仿真的结果,比如客户的等待时间、服务时间和系统繁忙率等指标,来评估和优化该排队系统的性能。

通过以上的模型,我们可以对单服务台排队系统进行仿真,并评估其性能。

我们可以通过改变服务时间、到达间隔时间等参数,来探究不同情况下系统的表现和优化方案。

同时,我们还可以根据仿真结果,对系统进行调整和改进,以提高客户的满意度和服务效率。

单服务台排队系统的仿真

单服务台排队系统的仿真

实验2---单服务台排队系统的仿真姓名:学号:一、目标任务①模拟路由器缓存区M|M|1|m实验。

②设定:λ=8/s,μ=10/s,ρ=0.8,m=10。

③模拟系统106s,求系统报文的丢失率及报文在路由器中停留时间的均值。

④模拟100次,图展示每次的模拟结果,并与理论值0.0184比较。

二、编程语言Matlab三、关键代码lamda = 8; %报文到达强度u = 10; %路由器处理强度m = 10; %路由器缓冲区长度T = 1000000; %模拟时间a = []; %模拟运行时丢失率的运行结果mean_a = 0; %模拟运行时丢失率的平均运行结果ref_value = 0.0184; %丢失率理论值大小b = []; %模拟运行时报文在路由器中的停留时间mean_b = 0; %模拟运行时报文在路由器中停留时间的均值%模拟运行一百次for i=1:100time = 0; %绝对时钟t = 0; %路由器的下一空闲时刻N = 0; %到达报文数NI = 0; %丢失报文数q = 0; %队长stay_time = 0; %报文在路由器中的停留时间%按指数分布产生随机到达时间和服务时间while 1CRTime = exprnd(1/lamda); %按指数分布产生下一报文的到达随机时间间隔time = CRTime + time; %下一个报文到达的时间if time > Tbreak;endN = N + 1;q = q + 1;while q > 0 & t < timeq = q - 1;ServeTime = exprnd(1/u);%按指数分布产生报文的随机服务时间if q == 0t = time + ServeTime;elset = t + ServeTime;endstay_time = stay_time + ServeTime * (q + 1);endif q == m + 1 %如果超过缓冲区长,则丢失报文数加1,队长减1 NI = NI + 1;q = q - 1;endenda = [a, NI/N];b = [b, stay_time/(N-NI)];end%计算结果mean_a = mean(a);mean_b = mean(b);%绘图x = 1:100;plot(x, a, x, mean_a); %绘制模拟运行时丢包率变化图以及均值线scatter(x, a, '.'); %绘制模拟运行时丢包率变化散点图scatter(x, b, '.'); %绘制模拟运行时平均停留时间变化散点图fprintf('平均丢包率%6.5f\n', mean_a); % 打印平均丢包率fprintf('平均停留时间%6.5f\n', mean_b); % 打印平均停留时间四、实验结果与分析图1 丢包率和平均停留时间图2模拟运行时丢包率变化图以及均值线M/M/1/∞/∞ 模型模型条件(1) 输入过程――顾客源是无限的, 单个到来, 到达过程服从泊松分布, 即顾客到达间隔时间服从负指数分布;(2) 排队规则――单队, 且队长没有限制, 先到先服务;(3) 服务机构――单服务台, 服务时间的长短是随机的,服从相同的负指数分布 。

单服务台排队系统建模与仿真研究报告

单服务台排队系统建模与仿真研究报告

单服务台排队系统建模与仿真研究报告物流系统建模与仿真单服务台排队系统仿真研究报告——选重庆大学A区门口中国银行分行某一服务窗口为单服务台排队系统研究对象一、系统基本背景社会的进步越来越快,人们的生活节奏也随之越来越快。

在科技的发展,新技术的普及下, 我国的银行业以计算机和信息技术、互联网技术为前提, 通过大量资金和科技的投入, 不断地开发出新产品和新业务。

另外有网上银行、支付宝等新业务的出现, 大大提高了工作效率。

然而现代的金融服务并不是都可以靠刷卡来解决, 许多技术还不完善, 这些新技术也并不适合所有顾客群,去银行办理业务的顾客仍然经常性地出现排队现象。

顾客等待时间过长, 造成顾客满意度下降, 矛盾较为突出, 因此本报告试利用单服务台排队论的方法, 定性定量地对具有排队等候现象的银行服务系统进行统计调查与分析研究,希望能帮助改进银行工作效率, 优化系统的运营。

本报告研究对象为中国银行重庆大学处分行某一服务窗口,数据取自银行内唯一非现金业务柜台。

研究对象的选取虽然不是最典型的,但是综合考虑了研究地域范围和小组成员作业时间有限,另有其他方案由于各种原因无法进行,故选择离学校较近的有代表性的中国银行中的服务窗口作为最终方案。

中国银行简介:中国银行是中国历史最为悠久的银行之一,在大家对银行的概念中有着一定地位。

中国银行主营传统商业银行业务,包括公司金融业务、个人金融业务和金融市场业务。

公司业务以信贷产品为基础,致力于为客户提供个性化、创新的金融服务和融资、财务解决方案。

个人金融业务主要针对个人客户的金融需求,提供包括储蓄存款、消费信贷和银行卡在内的服务。

作为中国金融行业的百年品牌,中国银行在稳健经营的同时,积极进取,不断创新,创造了国内银行业的许多第一,在国际结算、外汇资金和贸易融资等领域得到业界和客户的广泛认可和赞誉。

二、系统描述该银行工作时间为上午8:30至下午16:30(周一至周日),另周末不办理对公业务,属于每天8小时工作制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2---单服务台排队系统的仿真
姓名:学号:
一、目标任务
①模拟路由器缓存区M|M|1|m实验。

②设定:λ=8/s,μ=10/s,ρ=0.8,m=10。

③模拟系统106s,求系统报文的丢失率及报文在路由器中停留时间的均值。

④模拟100次,图展示每次的模拟结果,并与理论值0.0184比较。

二、编程语言
Matlab
三、关键代码
lamda = 8; %报文到达强度
u = 10; %路由器处理强度
m = 10; %路由器缓冲区长度
T = 1000000; %模拟时间
a = []; %模拟运行时丢失率的运行结果
mean_a = 0; %模拟运行时丢失率的平均运行结果
ref_value = 0.0184; %丢失率理论值大小
b = []; %模拟运行时报文在路由器中的停留时间
mean_b = 0; %模拟运行时报文在路由器中停留时间的均值
%模拟运行一百次
for i=1:100
time = 0; %绝对时钟
t = 0; %路由器的下一空闲时刻
N = 0; %到达报文数
NI = 0; %丢失报文数
q = 0; %队长
stay_time = 0; %报文在路由器中的停留时间
%按指数分布产生随机到达时间和服务时间
while 1
CRTime = exprnd(1/lamda); %按指数分布产生下一报文的到达随机时间间隔
time = CRTime + time; %下一个报文到达的时间
if time > T
break;
end
N = N + 1;
q = q + 1;
while q > 0 & t < time
q = q - 1;
ServeTime = exprnd(1/u);%按指数分布产生报文的随机服务时间
if q == 0
t = time + ServeTime;
else
t = t + ServeTime;
end
stay_time = stay_time + ServeTime * (q + 1);
end
if q == m + 1 %如果超过缓冲区长,则丢失报文数加1,队长减1 NI = NI + 1;
q = q - 1;
end
end
a = [a, NI/N];
b = [b, stay_time/(N-NI)];
end
%计算结果
mean_a = mean(a);
mean_b = mean(b);
%绘图
x = 1:100;
plot(x, a, x, mean_a); %绘制模拟运行时丢包率变化图以及均值线
scatter(x, a, '.'); %绘制模拟运行时丢包率变化散点图
scatter(x, b, '.'); %绘制模拟运行时平均停留时间变化散点图
fprintf('平均丢包率%6.5f\n', mean_a); % 打印平均丢包率
fprintf('平均停留时间%6.5f\n', mean_b); % 打印平均停留时间
四、实验结果与分析
图1 丢包率和平均停留时间
图2模拟运行时丢包率变化图以及均值线
M/M/1/∞/∞ 模型
模型条件
(1) 输入过程――顾客源是无限的, 单个到来, 到达过程服从泊松分布, 即顾客到达间隔时间服从负指数分布;
(2) 排队规则――单队, 且队长没有限制, 先到先服务;
(3) 服务机构――单服务台, 服务时间的长短是随机的,服从相同的负指数分布 。

基本思路:
1. 输入参数:m ,,μλ和模拟时间T
2. 各变量初始值为0,包括绝对时钟time ,路由器的下一空闲时间t ,到达报文数N ,丢失报文数为NI,队长为q
3. 产生下一报文的到达时间间隔CRTime ,time+=CRTime 若time>T ,输出NI/N
4. N++,q++
5. 若q>0且t<time
q--
产生报文的处理时间ServeTime 若q==0,t=time+ServeTime
否则t+=ServerTime
转5
6. 若q==m+1,则NI++,q--,转3。

相关文档
最新文档