第3讲 排队系统的基本概念

合集下载

排队论

排队论

排队长度:等待服务的顾 客数量
平均等待时间:顾客在系统 中等待服务的平均时间
平均排队长度:系统中平均 排队的顾客数量
服务台数量:系统中的服 务台数量
利用率:服务台被利用的 程度
排队系统的稳定性:系统是 否处于稳定状态,即平均等 待时间和平均排队长度是否
收敛
排队系统的分析方法
01
排队论的基本概 念:顾客到达、 服务时间、等待
服务台:提供服务的地方
队列:等待服务的顾客队列
顾客到达时间:顾客到达服 务台的时间 服务台容量:服务台可以同 时服务的顾客数量 排队系统状态:当前系统中 顾客和服务员的状态
排队系统的参数
顾客到达率:单位时间内到 达系统的顾客数量
服务速率:单位时间内服务 台能够服务的顾客数量
排队规则:先进先出(FIFO) 或后进先出(LIFO)
谢谢
排队论
演讲人
排队论的基本概念 排队论的基本原理Biblioteka 目录CONTENTS
排队论的应用实例
排队论的基本概念
排队系统的定义
1
排队系统:由顾 客和服务台组成 的系统,顾客需 要等待服务台的
服务。
2
服务台:提供某 种服务的设施, 如收银台、售票
窗口等。
3
顾客:需要接受 服务台的服务的 人,如顾客、乘
客等。
4
时间均服从指数分布
M/G/1模型:单服务台、单 队列、顾客到达服从泊松分 布、服务时间服从指数分布
M/G/c模型:单服务台、多 队列、顾客到达服从泊松分 布、服务时间服从指数分布
M/G/∞模型:单服务台、 无限队列、顾客到达服从泊 松分布、服务时间服从指数
分布
G/M/1模型:多服务台、单 队列、顾客到达服从泊松分 布、服务时间服从指数分布

排队系统

排队系统

2. 排队系统的概念
在实际应用中,有一大类系统被称之为随机服务系统或排队系统。在这些系统中顾 客到来的时刻与服务时间的长短都是随机的,并且可能会随不同的条件而变化,因而 服务系统的状况也是随机的,会随各种条件而波动。在电信网络中,交换机就可以看 成是一种随机服务系统。对于不同的电信网络,可以使用不同的排队系统模拟不同的 电信业务交换机进行分析。模拟这些系统的排队系统的状态变化实际上是一个生灭过 程。
到来的顾客流
队列
离开的顾客流 服务员
服务机构
图1.排队系统模型

要仔细描述一个排队系统,主要需要描述三个方面的内容:输入过程、服务 时间、排队方式等。下面使用一个随机点移动模型来说明关于排队系统的模型 和假设。
t1 t2 服务员 队列
服务机构
τ1
τ2
图2 排队系统的点移动模型 如果只有一个服务员,在轴上有一些点从左向右做同 速率的匀速直线运动,图中的t1,t2….表示顾客到达排队系 统的到达间隔,它们均为随机变量;在系统忙时,τ1, τ2…表示不同顾客的服务时间,它们也是随机变量,关于 ti和τi满足下面3个假设: (1)ti独立同分布; (2)τi独立同分布; (3)ti和τi独立。
图4到达过程A(t)和离开过程B(t)
列德尔(Little)公式

如果N 表示系统中的平均顾客数,T 表示顾 客在系统中的平均时间(这个时间 有时也 被称为系统时间),λ 表示单位时间到达系 统的顾客数,对于任意排队系统,有 N= T λ 上面结论可以证明对于 任意排队系统都是正确的,直观意义就是 一种平衡关系。
图3 排队系统模型
3. Little公式
Little 公式描述了任意排队系统满足的关系,下面通过简单描述来说明该公式。 下 面考虑一个任意的排队系统,为了说明 Little 公式,首先定义:A(t)为在(0,t ) 内到达的顾客数;B(t)为在(0,t)内离开的顾客数;那么t时刻系统内的顾客数为 N(t)=A(t)-B(t)

排队系统分析 全

排队系统分析 全

= 0.122;
(2) P4 = ρ 4P0 = 1.254 × 0.122 = 0.298;
(3) λe = λ(1 − P4 ) = 1× (1 − 0.298) = 0.702;
(4)
Ls
=ρ 1− ρ

(4 + 1)ρ 1− ρ5
5
=
1
1.25 − 1.25

5 1
× −
1.255 1.255
Pn,表示系统中有n个顾客的概率;队长的平均值记为Ls。
排队长:系统中正在排队等待的顾客数,记其均值为Lq。
三.排队问题的求解
2 . 逗留时间和等待时间
逗留时间:
一个顾客在系统中的停留时间,记为W,其均值记为Ws。
等待时间:
一个顾客在系统中排队等待的时间,记其均值为Wq 。
第二节 到达与服务的规律
现实中的例子:
•程控电话交换系统 •知识竞赛的抢答环节
2. 排队规则
(2)等待制
指顾客到达时若所有服务设施均被占用,则留下 来等待,直至被服务完离去。 等待的服务规则又可分为: • 先到先服务(FCFS) • 后到先服务(LCFS) • 带有优先权的服务(PS)
ห้องสมุดไป่ตู้ 2. 排队规则
(3)混合制
是损失制和等待制的混合。允许排队但不允 许队列无限长;或允许等待但不允许等待时间无 限长。
二. 排队模型的表示 火车站排队.flv
(X/Y/Z/A/B/C)
X:顾客到达时间间隔的分布 Y:服务时间的分布 Z:服务台个数 A:系统容量 B:顾客源数量 C:服务规则
二. 排队模型的表示
M / M / 1 / ∞ / ∞ / FCFS)表示:

排 队 系 统

排 队 系 统

17
顾客到达
队列
服务台1 服务台2 服务台3
(e)多队列、多服务台、单服务阶段
顾客离去
18
2、排队结构类型的特点
队列数量对排队类型特点的影响
单队列:比较公平,先来者先服务,顾 客不必担心排错队 多队列:感觉比较短、比较快,离服务 员距离近;当发现自己选择对了队伍, 比先来者先获得服务,那么他会获得一 种幸运的感觉。
4
2、顾客源总量
有限总量:是指到服务系统接受服务的顾客数量比
较少,每一位顾客的到来和离去都会影响到队列的长度, 影响到下一次要求服务的概率。
例如:咨询公司、律师事务所、美容店的 顾客人数 无限总量:是指到服务系统接受服务的顾客数量非
常多,顾客人数的少量增减不会对顾客到达时间的概率 分布产生显著影响。
也就是说,随机变量“顾客到达率”或“顾 客到达人数”服从参数为λt(当t取1时,该参数 为λ,即平均顾客到达人数)的泊松分布。
11
二、排队规则
排队规则:也就是优先服务规则,它决定了顾
客队列中哪些顾客将优先获得服务。
排队规则的制定:它可能是由服务系统明确规定的,
也可能是出于行规或人们普遍接受的社会观念。
例如,高速公路收费服务
5
3、顾客群规模
含义:是指一起来消费的同一组顾 客的数量。到达的顾客群规模一般 服从一定的概率分布。 对顾客群规模的预测,将会关系到 服务系统服务能力的配置和调整。 例如,餐馆的餐桌配置应当依据顾 客群规模的预测。
6
4、耐心程度
耐心顾客:在接受服务前一直在等待的顾客。 不够耐心的顾客分为两类:
负指数分布具有连续型的概率密度函数 泊松分布是一种离散型的概率函数
8
负指数分布

排队论

排队论

排队论道路上交通流排队现象随时可见,如高速公路收费站的车辆排队,加油站等候加油的车辆排队等等。

因此,有必要研究交通流中的排队理论及其应用。

排队论是研究“服务”系统因“需求”拥挤而产生等待行列(即排队)的现象,以及合理协调“需求”与“服务”关系的一种数学理论,是运筹学中以概率论为基础的一门重要分支,亦称“随机服务系统理论”。

一、排队论的基本概念1.“排队”与“排队系统”“排队”单指等待服务的,不包括正在被服务的,而“排队系统”既包括了等待服务的,又包括了正在服务的车辆。

2.排队系统的三个组成部分(1)输入过程指各种类型的“顾客(车辆或行人)”按怎样的规律到来。

有各种类型的输入过程,例如:定长输入——顾客等时距到达。

泊松输入——顾客到达时距符合负指数分布。

这种输入过程最容易处理:因而应用最广泛。

爱尔朗分布——顾客到达时距符合爱尔朗分布。

(2)排队规则指到达的顾客按怎样的次序接受服务。

例如:损失制——顾客到达时,若所有服务台均被占,该顾客就自动消失,永不再来;等待制——顾客到达时,若所有服务台均被占,它们就排成队伍,等待服务。

服务次序有先到先服务(这是最通常的情形)和优先服务(如急救车、消防车)等多种规则;混合制——顾客到达时,若队长小于L,就排入队伍;若队长大于等于L,顾客就离去,永不再来。

(3)服务方式指同一时刻有多少服务台可接纳顾客,每一顾客服务了多少时间。

每次服务可以接待单个顾客,也可以成批接待,例如公共汽车一次就装载大批乘客。

服务时间的分布主要有如下几种:定长分布——每一顾客的服务时间都相等;负指数分布——即各顾客的服务时间相互独立,服从相同的负指数分布;爱尔朗分布——即各顾客的服务时间相互独立,具有相同的爱尔朗分布。

3.排队系统的主要数量指标(1)等待时间——从顾客到达时起到开始接受服务时的这段时间; (2)忙期——服务台连续繁忙的时期,这关系到服务台的工作强度;(3)队长——有排队顾客数与排队系统中顾客数之分,这是排队系统提供的服务水平的一种衡量。

排队系统

排队系统

排队系统的主要数量指标
队长——是指系统中的平均顾客数(排队等待的顾客数与
正在接受服务的顾客数之和)。
L或Ls—— 平均队长,即稳态系统任一时刻的所有顾客数 平均队长,
的期望值;
队列长——是指系统中正在排队等待服务的平均顾客数。 Lq—— 平均等待队长或队列长 , 即稳态系统任一时刻的 平均等待队长或队列长,
排队模型
典型的排队例子
到达的顾客 在公路收费站排队的车辆 病人 到达机场上空的飞机 不能运转的机器 到达港口的货船 客户 进入我方阵地的敌机 汽车驾驶员 需加油车辆 服务内容 收费 看病 降落 修理 装货(卸货) 装货(卸货) 法律咨询 我方防空火力射 执照年码头或泊位 法律咨询人员 我方高炮或防空导弹 管理部门年审办事员 加油站的加油机
排队系统基本概念
“顾客”——要求服务的对象统称; 顾客” 服务台” 服务员” “服务台”或“服务员”——提供服务的人或机 构;
不同的顾客与服务组成了各式各样的服务系统。 不同的顾客与服务组成了各式各样的服务系统 。 顾客为了得到某种服务而到达系统, 顾客为了得到某种服务而到达系统 , 若不能立即获得 服务而又允许排队等待,则加入等待队伍, 服务而又允许排队等待 , 则加入等待队伍 , 待获得服 务后离开系统,见图1至图5 务后离开系统,见图1至图5。
按以上数据可推算出每一顾客到达、服务开始、服务结束 的时刻以及顾客排队等待时间、在系统中停留时间和售票 员空闲的时间。将数据依次填入表中。 20次试验中顾客停留时间的平均值:72/20=3.60分。 售票员空闲时间占总时间的百分数:34/103=33%
三、排队论研究的基本问题 排队论研究的首要问题是排队系统主要数 量指标的概率规律,即研究系统的整体性质,然 后进一步研究系统的优化问题。与这两个问题相 关的还包括排队系统的统计推断问题。 (1)通过研究主要数量指标在瞬时或平稳状 态下的概率分布及其数字特征,了解系统运行的 基本特征。 (2)统计推断问题,建立适当的排队模型是 排队论研究的第一步,建立模型过程中经常会碰 到如下问题:检验系统是否达到平稳状态;检验 顾客相继到达时间间隔的相互独立性;确定服务 时间的分布及有关参数等。

排队系统

排队系统
M—— 负指数分布(M是Markov的字头,因为负指数分布具有 无记忆性,即Markov 性)。 D —— 确定性(Deterministic)。
X/Y/Z
其中, XEk—— k阶爱尔朗(Erlang)分布。 ——表示相继到达间隔时间的分布; YGI —— 一般相互独立(General Independent)的随机分布。 ——表示服务时间的分布; ZG —— 一般(General)随机分布。 ——表示并列的服务设备的数目。
工业工程与管理系
Industrial Engineering & Management
3.1 排队论的基本概念
排队模型的分类——例题
D/M/2
表示的是并行双服务机构的服务系统,客户到 客户到达系统的间隔时间为确定的定长分布 达的时间间隔符合定长分布,服务时间符合负 系统服务机构的服务时间为负指数分布 指数分布。 系统并行的服务机构数量为2台(单队排队)
队列的度量
已知平均到达速率λ和平均服务速率μ,定义业务量强度u为
u
在某些场合下,到达的动态实体并不全都能够得到服务。 因此有必要区分实际到达速率λ’以及得到服务的到达速率λ。
此时的业务量强度u为
' u
工业工程与管理系
Industrial Engineering & Management
合一般分布。 系统的服务机构数量为1台
工业工程与管理系
Industrial Engineering & Management
3.2 到达时间间隔和服务时间分布 引
收集顾客到达的时间间隔 运用回归法等统计方法, 计算得到到达模式分布的理论值

收集服务的时间统计值 运用回归法等统计方法, 计算得到服务时间分布的理论值

随机服务系统理论排队论

随机服务系统理论排队论

随机服务系统理论排队论
第三,排队系统是由顾客到达过程、服务过程和排队结构组成的。


队结构主要包括单通道排队系统、多通道排队系统和并行排队系统等。


通道排队系统是指只有一个服务设施,顾客依次等待服务;多通道排队系
统是指有多个并行的服务设施,顾客可以选择一个通道等待服务;而并行
排队系统是指有多个并行的服务设施,顾客可以同时接受多个设施的服务。

通过对排队系统的研究,可以分析系统的繁忙程度、排队长度和等待时间
等指标,为系统的设计和管理提供依据。

最后,排队系统的性能评估和优化是排队论研究的核心任务。

性能评
估主要包括系统的平均等待时间、平均服务时间、系统繁忙度等指标;而
优化问题主要包括如何设计系统的排队结构、如何分配资源和如何调整服
务策略等。

通过对性能评估和优化的研究,可以提高系统的服务能力和服
务质量,提高顾客满意度和系统的效益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7
8
北京邮电大学自动化学院物流工程
苏志远
北京邮电大学自动化学院物流工程
苏志远
系统建模与仿真
排队系统
系统建模与仿真
排队系统
1. 输入过程
说明顾客是按什么样的规律到达系统,需 要从三个方面来描述:
顾客总数。可以是有限的,也可以是无限的; 到达方式。单个到达还是成批到达。库存问题中的进 货为成批到达; 顾客相继到达时间间隔的分布。
3
顾客到达
队列
...
完成服务后离去 服务台
正在接受服务的顾客 单服务台排队系统
4
北京邮电大学自动化学院物流工程
苏志远
北京邮电大学自动化学院物流工程
苏志远
系统建模与仿真
排队系统
系统建模与仿真
排队系统
二.排队系统的形式
2. S 个服务台,一个队列的排队系统
二.排队系统的形式
3. S 个服务台,S个队列的排队系统
排队系统的数据指标
五.排队系统的主要数量指标和记号
研究排队系统的目的是通过了解系统的 运行的状况,对系统进行调整和控制,使系统 处于最优的运行状态。因此,首先需要弄清系 统的运行状况。描述一个排队系统的主要数量 指标有:
1. 2. 3. 队长和排队长 等待时间和逗留时间 忙期和闲期

队长和排队长
1. 队长是指系统中的顾客数(排队等待的顾客 数与正在接受服务的顾客数之和), 2. 排队长是指系统中正在排队等待服务的顾客 数。 3. 队长和排队长一般都是随机变量。
• 一般说来,得到N(t)的分布 p{N (t ) n}(n 0,1,2...) 是比较困难的,因此通常是求当系统达到 平衡状态后的状态分布,记为:
pn, n 0,1,2,...
则称{N(t),t≥0}是一个生灭过程。
27 28
北京邮电大学自动化学院物流工程
苏志远
北京邮电大学自动化学院物流工程
排队系统的数据指标
• 上述指标的常用记号
– N (t ) :时刻t 系统中的顾客数(又称为系统的状 态),即队长。 – N q (t ) :时刻t 系统中排队的顾客数,即排队长。 – T (t ) :时刻t 到达系统的顾客在系统中的逗留时 间。 – Tq (t ) :时刻t 到达系统的顾客在系统中的等待时 间。
t0 t0
(2.1)
9
10
北京邮电大学自动化学院物流工程
苏志远
北京邮电大学自动化学院物流工程
苏志远
系统建模与仿真
排队系统
系统建模与仿真
排队系统
2.
a)

排队及排队规则
排队
有限排队:排队系统中的顾客数是有限的,即系统 的空间是有限的,当系统被占后,后面再来的顾客 不能进入系统接受服务。又可以分为以下两种:
17
18
北京邮电大学自动化学院物流工程
苏志远
北京邮电大学自动化学院物流工程
苏志远
3
2011/9/29
系统建模与仿真
排队系统的数据指标
系统建模与仿真
排队系统的数据指标

等待时间和逗留时间
1. 等待时间:从顾客到达时刻起到他接受服务 止这段时间。 2. 逗留时间:从顾客到达时刻起到接受服务完 成止这段时间。 3. 等待时间、逗留时间都是随机变量
北京邮电大学自动化学院物流工程
苏志远
系统建模与仿真
排队系统
系统建模与仿真
排队系统
一.排队系统的特征
1.
• •
二.排队系统的形式
1. 单服务台的排队系统
排队除了有形的队列外,还可以是无形的队 列。
电话预定租车服务; 网络传输;
2. • • • •
排队的可以是人,也可以是物。 生产线上的原材料、半成品; 故障待修的机器; 要进站的火车由于展台被占而等待; 网络打印
• 平衡状态下的指标
– 当系统达到平衡时处于状态n的概率,记为 ,又记: pn
• N:系统处于平衡状态时的队长,其均值为L,称为平均队长; • N q :系统处于平衡状态时的排队长,其均值为,称为平均排队长; • T :系统处于平衡状态时顾客的逗留时间,其均值为W,称为平均逗 留时间; • T :系统处于平衡状态时顾客的等待时间,其均值为,称为平均等待 q 时间; • •
1 k 2
e b(t ) 0
t
t0 t0
(2.2)
为可知,方差将趋近于零,即为完全非随机的。所以,
13
14
北京邮电大学自动化学院物流工程
苏志远
北京邮电大学自动化学院物流工程
苏志远
系统建模与仿真
排队系统
系统建模与仿真
排队系统
(FIFS/LIFS)
四. 排队系统的符号表示
排队系统的数据指标
• 系统的服务强度
当 为常数时,记为 ;当每个服务台的平
n
• 忙期和闲期
– 忙期为B,闲期为I,平均忙期和平均闲期为 B 和 I ,s为 记每个服务台的服务率为
n

,则当 n s 时,有
n
s
。因此,顾客相继达到的
苏志远
系统建模与仿真
生灭过程
系统建模与仿真
0 1 2 ┇ n-1
生灭过程
1 p1 0 p0
• 求解状态n的概率 pn, n 0,1,2,... 为求平稳分布,考虑系统可能处的任一状态n。 假设记录了一段时间内进入状态n和离开状态n的 次数,则因为“进入”和“离开”是交替发生的, 所以这两个数要么相等,要么相差为1。但就这两 种事件的平均发生概率是相等的。即当系统运行 相当时间到达平稳状态后,对任一状态n来说,单 位时间内进入该状态的平均次数和单位时间内离 开该状态的平均次数是相等的,这就是系统在统 计平衡下的“流入=流出”原理。根据这一原理, 可得到任一状态下的平衡方程如下:
K阶爱尔朗分布(E k ):每个顾客接受服务的时间服务K阶爱尔朗 分布,其密度函数为
b(t )
k (k t ) k 1 k t e (k 1)!
(2.3)
爱尔朗分布比负指数分布更具有广泛的适应性。当k=1时,爱 尔朗分布为负指数分布;当k增加时,爱尔朗分布逐渐变为对称的。 事实上,当k≥30以后,爱尔朗分布近似于正态分布。当k→∞时, 由方差 K阶爱尔朗分布可看成完全随机(k=1)与完全非随机之间的分布, 能更广泛的适应于现实世界。

忙期和闲期
1. 忙期是指从顾客到达空闲着的服务机构起, 到服务机构再次称为空闲止的这段时间 。 2. 闲期是与忙期相对的,是服务机构连续保持 空闲的时间。 3. 忙期和闲期都是随机变量
19
20
北京邮电大学自动化学院物流工程
苏志远
北京邮电大学自动化学院物流工程
苏志远
系统建模与仿真
排队系统的数据指标
系统建模与仿真
2011/9/29
系统建模与仿真
系统建模与仿真
排队系统

知识回顾
1. 离散事件系统(DEDS或DES)基本概念、基 本要素 2. DES系统举例 3. 离散事件系统仿真步骤 4. 离散事件系统策略 5. 手工仿真 排队系统
系统建模与仿真
第三讲 排队系统的基本概念
1
2
北京邮电大学自动化学院物流工程
苏志远
X/Y/Z/A/B/C
X 表示顾客相继达到时间间隔的分布;
Y Z A B C 表示服务时间的分布 表示服务台的个数 表示系统容量,即可容纳的最多顾客数 表示顾客源的数目 表示服务规则
15
16
北京邮电大学自动化学院物流工程
苏志远
北京邮电大学自动化学院物流工程
苏志远
系统建模与仿真
排队系统的数据指标
系统建模与仿真
北京邮电大学自动化学院物流工程
苏志远
1
2011/9/29
系统建模与仿真
排队系统
系统建模与仿真
排队系统
二.排队系统的形式
4. 多个服务台的串联排队
顾客到达
队列
三.排队系统描述 实际中的排队系统各不相同,但概括起 来都由三个基本部分组成:输入过程、 排队及排队规则和服务机制。
...
队列
服务台
...
完成服务后离去 服务台 多个服务台的串联排队
26
3.
北京邮电大学自动化学院物流工程
苏志远
北京邮电大学自动化学院物流工程
苏志远
系统建模与仿真
生灭过程
系统建模与仿真
生灭过程

定义 1: 设{N(t),t≥0}为一个随机过程。 若N(t)的概率分布有如下性质:
1. 假设N(t)=n,则从时刻t起到下一个顾客到达 的时刻止的时间服从参数为 n 的负指数分布, n=0,1,2,…。 2. 假设N(t)=n,则从时刻t起到下一个顾客离去 的时刻止的时间服从参数为 n 的负指数分布, n=0,1,2,…。 3. 同一时刻只有一个顾客到达或者离去。
队列 1
服务台 1
...
完成服务后离去
完成服务后离去 服务台 1 完成服务后离去 服务台 2 完成服务后离去 服务台 3
顾客到达
队列
...
服务台 2 服务台 3 S 个服务台,一个队列的排队系统
顾客到达
队列 2
...
队列 3
...
S 个服务台,S个队列的排队系统
5 6
北京邮电大学自动化学院物流工程
苏志远
苏志远
北京邮电大学自动化学院物流工程
苏志远
2
2011/9/29
系统建模与仿真
排队系统
系统建模与仿真

排队系统
相关文档
最新文档