单服务台排队系统仿真报告

合集下载

排队系统仿真matlab实验报告

排队系统仿真matlab实验报告

M/M/1排队系统实验报告一、实验目的本次实验要求实现M/M/1单窗口无限排队系统的系统仿真,利用事件调度法实现离散事件系统仿真,并统计平均队列长度以及平均等待时间等值,以与理论分析结果进行对比。

二、实验原理根据排队论的知识我们知道,排队系统的分类是根据该系统中的顾客到达模式、服务模式、服务员数量以及服务规则等因素决定的。

1、 顾客到达模式设到达过程是一个参数为λ的Poisson 过程,则长度为t 的时间内到达k 个呼叫的概率 服从Poisson 分布,即e t kk k t t p λλ-=!)()(,⋅⋅⋅⋅⋅⋅⋅⋅⋅=,2,1,0k ,其中λ>0为一常数,表示了平均到达率或Poisson 呼叫流的强度。

2、 服务模式设每个呼叫的持续时间为i τ,服从参数为μ的负指数分布,即其分布函数为{}1,0t P X t e t μ-<=-≥3、 服务规则先进先服务的规则(FIFO )4、 理论分析结果在该M/M/1系统中,设λρμ=,则稳态时的平均等待队长为1Q ρλρ=-,顾客的平均等待时间为T ρμλ=-。

三、实验内容M/M/1排队系统:实现了当顾客到达分布服从负指数分布,系统服务时间也服从负指数分布,单服务台系统,单队排队,按FIFO (先入先出队列)方式服务。

四、采用的语言MatLab 语言源代码:clear;clc;%M/M/1排队系统仿真SimTotal=input('请输入仿真顾客总数SimTotal='); %仿真顾客总数;Lambda=0.4; %到达率Lambda;Mu=0.9; %服务率Mu;t_Arrive=zeros(1,SimTotal);t_Leave=zeros(1,SimTotal);ArriveNum=zeros(1,SimTotal);LeaveNum=zeros(1,SimTotal);Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间t_Arrive(1)=Interval_Arrive(1);%顾客到达时间ArriveNum(1)=1;for i=2:SimTotalt_Arrive(i)=t_Arrive(i-1)+Interval_Arrive(i);ArriveNum(i)=i;endt_Leave(1)=t_Arrive(1)+Interval_Serve(1);%顾客离开时间LeaveNum(1)=1;for i=2:SimTotalif t_Leave(i-1)<t_Arrive(i)t_Leave(i)=t_Arrive(i)+Interval_Serve(i);elset_Leave(i)=t_Leave(i-1)+Interval_Serve(i);endLeaveNum(i)=i;endt_Wait=t_Leave-t_Arrive; %各顾客在系统中的等待时间t_Wait_avg=mean(t_Wait);t_Queue=t_Wait-Interval_Serve;%各顾客在系统中的排队时间t_Queue_avg=mean(t_Queue);Timepoint=[t_Arrive,t_Leave];%系统中顾客数随时间的变化Timepoint=sort(Timepoint);ArriveFlag=zeros(size(Timepoint));%到达时间标志CusNum=zeros(size(Timepoint));temp=2;CusNum(1)=1;for i=2:length(Timepoint)if (temp<=length(t_Arrive))&&(Timepoint(i)==t_Arrive(temp)) CusNum(i)=CusNum(i-1)+1;temp=temp+1;ArriveFlag(i)=1;elseCusNum(i)=CusNum(i-1)-1;endend%系统中平均顾客数计算Time_interval=zeros(size(Timepoint));Time_interval(1)=t_Arrive(1);for i=2:length(Timepoint)Time_interval(i)=Timepoint(i)-Timepoint(i-1);endCusNum_fromStart=[0 CusNum];CusNum_avg=sum(CusNum_fromStart.*[Time_interval 0] )/Timepoint(end);QueLength=zeros(size(CusNum));for i=1:length(CusNum)if CusNum(i)>=2QueLength(i)=CusNum(i)-1;elseQueLength(i)=0;endendQueLength_avg=sum([0 QueLength].*[Time_interval 0] )/Timepoint(end);%系统平均等待队长%仿真图figure(1);set(1,'position',[0,0,1000,700]);subplot(2,2,1);title('各顾客到达时间和离去时间');stairs([0 ArriveNum],[0 t_Arrive],'b');hold on;stairs([0 LeaveNum],[0 t_Leave],'y');legend('到达时间','离去时间');hold off;subplot(2,2,2);stairs(Timepoint,CusNum,'b')title('系统等待队长分布');xlabel('时间');ylabel('队长');subplot(2,2,3);title('各顾客在系统中的排队时间和等待时间');stairs([0 ArriveNum],[0 t_Queue],'b');hold on;stairs([0 LeaveNum],[0 t_Wait],'y');hold off;legend('排队时间','等待时间');%仿真值与理论值比较disp(['理论平均等待时间t_Wait_avg=',num2str(1/(Mu-Lambda))]);disp(['理论平均排队时间t_Wait_avg=',num2str(Lambda/(Mu*(Mu-Lambda)))]);disp(['理论系统中平均顾客数=',num2str(Lambda/(Mu-Lambda))]);disp(['理论系统中平均等待队长=',num2str(Lambda*Lambda/(Mu*(Mu-Lambda)))]);disp(['仿真平均等待时间t_Wait_avg=',num2str(t_Wait_avg)])disp(['仿真平均排队时间t_Queue_avg=',num2str(t_Queue_avg)])disp(['仿真系统中平均顾客数=',num2str(CusNum_avg)]);disp(['仿真系统中平均等待队长=',num2str(QueLength_avg)]);五、数据结构1.仿真设计算法(主要函数)利用负指数分布与泊松过程的关系,产生符合泊松过程的顾客流,产生符合负指数分布的随机变量作为每个顾客的服务时间:Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔,结果与调用exprnd(1/Lambda,m)函数产生的结果相同Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间间隔t_Arrive(1)=Interval_Arrive(1);%顾客到达时间时间计算t_Wait=t_Leave-t_Arrive;%各顾客在系统中的等待时间t_Queue=t_Wait-Interval_Serve; %各顾客在系统中的排队时间由事件来触发仿真时钟的不断推进。

单服务台排队系统仿真研究报告

单服务台排队系统仿真研究报告

物流系统建模与仿真09级自动化学院物流工程1班20085435 詹乐思20095277 安静20095278 陈红玲20095289 陈均剑20095290 翟瑞20095291 胡旺单服务台排队系统仿真研究报告——选重庆大学A区门口中国银行分行某一服务窗口为单服务台排队系统研究对象一、系统基本背景社会的进步越来越快,人们的生活节奏也随之越来越快。

在科技的发展,新技术的普及下, 我国的银行业以计算机和信息技术、互联网技术为前提, 通过大量资金和科技的投入, 不断地开发出新产品和新业务。

另外有网上银行、支付宝等新业务的出现, 大大提高了工作效率。

然而现代的金融服务并不是都可以靠刷卡来解决, 许多技术还不完善, 这些新技术也并不适合所有顾客群,去银行办理业务的顾客仍然经常性地出现排队现象。

顾客等待时间过长, 造成顾客满意度下降, 矛盾较为突出, 因此本报告试利用单服务台排队论的方法, 定性定量地对具有排队等候现象的银行服务系统进行统计调查与分析研究,希望能帮助改进银行工作效率, 优化系统的运营。

本报告研究对象为中国银行重庆大学处分行某一服务窗口,数据取自银行内唯一非现金业务柜台。

研究对象的选取虽然不是最典型的,但是综合考虑了研究地域范围和小组成员作业时间有限,另有其他方案由于各种原因无法进行,故选择离学校较近的有代表性的中国银行中的服务窗口作为最终方案。

中国银行简介:中国银行是中国历史最为悠久的银行之一,在大家对银行的概念中有着一定地位。

中国银行主营传统商业银行业务,包括公司金融业务、个人金融业务和金融市场业务。

公司业务以信贷产品为基础,致力于为客户提供个性化、创新的金融服务和融资、财务解决方案。

个人金融业务主要针对个人客户的金融需求,提供包括储蓄存款、消费信贷和银行卡在内的服务。

作为中国金融行业的百年品牌,中国银行在稳健经营的同时,积极进取,不断创新,创造了国内银行业的许多第一,在国际结算、外汇资金和贸易融资等领域得到业界和客户的广泛认可和赞誉。

实验2单服务台单队列排队系统仿真

实验2单服务台单队列排队系统仿真

实验2排队系统仿真一、学习目的1.了解仿真的特点2.学习如何建构模型3.熟悉eM-Plant基本的对象和操作4.掌握排队系统的特点与仿真的实现方法二、问题描述该银行服务窗口为每个到达的顾客服务的时间是随机的,表2.4是顾客服务时间纪录的统计结果表2.4 每个顾客服务时间的概率分布对于上述这样一个单服务待排队系统,仿真分析30天,分析该系统中顾客的到达、等待和被服务情况,以及银行工作人员的服务和空闲情况。

三、系统建模3.1 仿真目标通过对银行排队系统的仿真,研究银行系统的服务水平和改善银行服务水平的方法,为银行提高顾客满意度,优化顾客服务流程服务。

3.2.系统建模3.2.1 系统调研1. 系统结构: 银行服务大厅的布局, 涉及的服务设备2. 系统的工艺参数: 到达-取号-等待-服务-离开3. 系统的动态参数: 顾客的到达时间间隔, 工作人员的服务时间4. 逻辑参数: 排队规则, 先到先服务5. 系统的状态参数: 排队队列是否为空, 如果不为空队长是多少, 服务台是否为空6. 系统的输入输出变量:输入变量确定其分布和特征值,顾客的到达时间间隔的概率分布表和每个顾客被服务时间的概率分布. 输出变量根据仿真目标设定. 包括队列的平均队长、最大队长、仿真结束时队长、总服务人员、每个顾客的平均服务时间、顾客平均排队等待服务时间、业务员利用率等。

3.2.2系统假设1.取号机前无排队,取号时间为02.顾客排队符合先进先出的排队规则3.一个服务台一次只能对一个顾客服务4.所有顾客只有一种单一服务5.仿真时间为1个工作日(8小时)6.等候区的长度为无限长3.2.3系统建模系统模型:3.2.4 仿真模型1.实体:银行系统中的实体是人(主动体)2.属性:到达时间间隔、接受服务的时间、接受服务类型3.事件:顾客到达、开始取号、取号结束、进入队列、出队列、接受服务、服务完成、离开银行。

4.活动:到达、取号、排队、服务、离开5.资源:取号机、排队的座椅、服务柜台4 系统仿真4.1 eM-plant 界面与主要控件介绍1. 实体:eM-Plant 中包括3类实体:entity ,container ,transporter 。

MM排队系统仿真matlab实验报告

MM排队系统仿真matlab实验报告

M /M /1排队系统实验报告一、实验目的本次实验要求实现M/M/1单窗口无限排队系统的系统仿真,利用事件调度法实现离散事件系统仿真,并统计平均队列长度以及平均等待时间等值,以与理论分析结果进行对比。

二、实验原理根据排队论的知识我们知道,排队系统的分类是根据该系统中的顾客到达模式、服务模式、服务员数量以及服务规则等因素决定的。

1、 顾客到达模式设到达过程是一个参数为λ的Poisson 过程,则长度为t 的时间内到达k 个呼叫的概率服从Poisson 分布,即e t kk k t t p λλ-=!)()(,⋅⋅⋅⋅⋅⋅⋅⋅⋅=,2,1,0k ,其中λ>0为一常数,表示了平均到达率或Poisson 呼叫流的强度。

2、 服务模式设每个呼叫的持续时间为i τ,服从参数为μ的负指数分布,即其分布函数为{}1,0t P X t e t μ-<=-≥3、 服务规则先进先服务的规则(FIFO )4、 理论分析结果在该M/M/1系统中,设λρμ=,则稳态时的平均等待队长为1Q ρλρ=-,顾客的平均等待时间为T ρμλ=-。

三、实验内容M/M/1排队系统:实现了当顾客到达分布服从负指数分布,系统服务时间也服从负指数分布,单服务台系统,单队排队,按FIFO (先入先出队列)方式服务。

四、采用的语言MatLab 语言源代码:clear;clc;%M/M/1排队系统仿真SimTotal=input('请输入仿真顾客总数SimTotal='); %仿真顾客总数;Lambda=0.4; %到达率Lambda;Mu=0.9; %服务率Mu;t_Arrive=zeros(1,SimTotal);t_Leave=zeros(1,SimTotal);ArriveNum=zeros(1,SimTotal);LeaveNum=zeros(1,SimTotal);Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间t_Arrive(1)=Interval_Arrive(1);%顾客到达时间ArriveNum(1)=1;for i=2:SimTotalt_Arrive(i)=t_Arrive(i-1)+Interval_Arrive(i);ArriveNum(i)=i;endt_Leave(1)=t_Arrive(1)+Interval_Serve(1);%顾客离开时间LeaveNum(1)=1;for i=2:SimTotalif t_Leave(i-1)<t_Arrive(i)t_Leave(i)=t_Arrive(i)+Interval_Serve(i);elset_Leave(i)=t_Leave(i-1)+Interval_Serve(i);endLeaveNum(i)=i;endt_Wait=t_Leave-t_Arrive; %各顾客在系统中的等待时间t_Wait_avg=mean(t_Wait);t_Queue=t_Wait-Interval_Serve;%各顾客在系统中的排队时间t_Queue_avg=mean(t_Queue);Timepoint=[t_Arrive,t_Leave];%系统中顾客数随时间的变化Timepoint=sort(Timepoint);ArriveFlag=zeros(size(Timepoint));%到达时间标志CusNum=zeros(size(Timepoint));temp=2;CusNum(1)=1;for i=2:length(Timepoint)if (temp<=length(t_Arrive))&&(Timepoint(i)==t_Arrive(temp)) CusNum(i)=CusNum(i-1)+1;temp=temp+1;ArriveFlag(i)=1;elseCusNum(i)=CusNum(i-1)-1;endend%系统中平均顾客数计算Time_interval=zeros(size(Timepoint));Time_interval(1)=t_Arrive(1);for i=2:length(Timepoint)Time_interval(i)=Timepoint(i)-Timepoint(i-1);endCusNum_fromStart=[0 CusNum];CusNum_avg=sum(CusNum_fromStart.*[Time_interval 0] )/Timepoint(end);QueLength=zeros(size(CusNum));for i=1:length(CusNum)if CusNum(i)>=2QueLength(i)=CusNum(i)-1;elseQueLength(i)=0;endendQueLength_avg=sum([0 QueLength].*[Time_interval 0] )/Timepoint(end);%系统平均等待队长%仿真图figure(1);set(1,'position',[0,0,1000,700]);subplot(2,2,1);title('各顾客到达时间和离去时间');stairs([0 ArriveNum],[0 t_Arrive],'b');hold on;stairs([0 LeaveNum],[0 t_Leave],'y');legend('到达时间','离去时间');hold off;subplot(2,2,2);stairs(Timepoint,CusNum,'b')title('系统等待队长分布');xlabel('时间');ylabel('队长');subplot(2,2,3);title('各顾客在系统中的排队时间和等待时间');stairs([0 ArriveNum],[0 t_Queue],'b');hold on;stairs([0 LeaveNum],[0 t_Wait],'y');hold off;legend('排队时间','等待时间');%仿真值与理论值比较disp(['理论平均等待时间t_Wait_avg=',num2str(1/(Mu-Lambda))]);disp(['理论平均排队时间t_Wait_avg=',num2str(Lambda/(Mu*(Mu-Lambda)))]);disp(['理论系统中平均顾客数=',num2str(Lambda/(Mu-Lambda))]);disp(['理论系统中平均等待队长=',num2str(Lambda*Lambda/(Mu*(Mu-Lambda)))]);disp(['仿真平均等待时间t_Wait_avg=',num2str(t_Wait_avg)])disp(['仿真平均排队时间t_Queue_avg=',num2str(t_Queue_avg)])disp(['仿真系统中平均顾客数=',num2str(CusNum_avg)]);disp(['仿真系统中平均等待队长=',num2str(QueLength_avg)]);五、数据结构1.仿真设计算法(主要函数)利用负指数分布与泊松过程的关系,产生符合泊松过程的顾客流,产生符合负指数分布的随机变量作为每个顾客的服务时间:Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔,结果与调用exprnd(1/Lambda,m)函数产生的结果相同Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间间隔t_Arrive(1)=Interval_Arrive(1);%顾客到达时间时间计算t_Wait=t_Leave-t_Arrive;%各顾客在系统中的等待时间t_Queue=t_Wait-Interval_Serve; %各顾客在系统中的排队时间由事件来触发仿真时钟的不断推进。

MM1排队系统仿真matlab实验报告

MM1排队系统仿真matlab实验报告

M/M/1排队系统实验报告一、实验目的本次实验要求实现M/M/1单窗口无限排队系统的系统仿真,利用事件调度法实现离散事件系统仿真,并统计平均队列长度以及平均等待时间等值,以与理论分析结果进行对比。

二、实验原理根据排队论的知识我们知道,排队系统的分类是根据该系统中的顾客到达模式、服务模式、服务员数量以及服务规则等因素决定的。

1、 顾客到达模式设到达过程是一个参数为λ的Poisson 过程,则长度为t 的时间内到达k 个呼叫的概率 服从Poisson 分布,即etkk k t t p λλ-=!)()(,⋅⋅⋅⋅⋅⋅⋅⋅⋅=,2,1,0k ,其中λ>0为一常数,表示了平均到达率或Poisson 呼叫流的强度。

2、 服务模式设每个呼叫的持续时间为i τ,服从参数为μ的负指数分布,即其分布函数为{}1,0t P X t e t μ-<=-≥3、 服务规则先进先服务的规则(FIFO ) 4、 理论分析结果在该M/M/1系统中,设λρμ=,则稳态时的平均等待队长为1Q ρλρ=-,顾客的平均等待时间为T ρμλ=-。

三、实验内容M/M/1排队系统:实现了当顾客到达分布服从负指数分布,系统服务时间也服从负指数分布,单服务台系统,单队排队,按FIFO (先入先出队列)方式服务。

四、采用的语言MatLab 语言源代码:clear; clc;%M/M/1排队系统仿真SimTotal=input('请输入仿真顾客总数SimTotal='); %仿真顾客总数;Lambda=0.4; %到达率Lambda;Mu=0.9; %服务率Mu;t_Arrive=zeros(1,SimTotal);t_Leave=zeros(1,SimTotal);ArriveNum=zeros(1,SimTotal);LeaveNum=zeros(1,SimTotal);Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间t_Arrive(1)=Interval_Arrive(1);%顾客到达时间ArriveNum(1)=1;for i=2:SimTotalt_Arrive(i)=t_Arrive(i-1)+Interval_Arrive(i);ArriveNum(i)=i;endt_Leave(1)=t_Arrive(1)+Interval_Serve(1);%顾客离开时间LeaveNum(1)=1;for i=2:SimTotalif t_Leave(i-1)<t_Arrive(i)t_Leave(i)=t_Arrive(i)+Interval_Serve(i);elset_Leave(i)=t_Leave(i-1)+Interval_Serve(i);endLeaveNum(i)=i;endt_Wait=t_Leave-t_Arrive; %各顾客在系统中的等待时间t_Wait_avg=mean(t_Wait);t_Queue=t_Wait-Interval_Serve;%各顾客在系统中的排队时间t_Queue_avg=mean(t_Queue);Timepoint=[t_Arrive,t_Leave];%系统中顾客数随时间的变化Timepoint=sort(Timepoint);ArriveFlag=zeros(size(Timepoint));%到达时间标志CusNum=zeros(size(Timepoint));temp=2;CusNum(1)=1;for i=2:length(Timepoint)if (temp<=length(t_Arrive))&&(Timepoint(i)==t_Arrive(temp)) CusNum(i)=CusNum(i-1)+1;temp=temp+1;ArriveFlag(i)=1;CusNum(i)=CusNum(i-1)-1;endend%系统中平均顾客数计算Time_interval=zeros(size(Timepoint));Time_interval(1)=t_Arrive(1);for i=2:length(Timepoint)Time_interval(i)=Timepoint(i)-Timepoint(i-1);endCusNum_fromStart=[0 CusNum];CusNum_avg=sum(CusNum_fromStart.*[Time_interval 0] )/Timepoint(end);QueLength=zeros(size(CusNum));for i=1:length(CusNum)if CusNum(i)>=2QueLength(i)=CusNum(i)-1;elseQueLength(i)=0;endendQueLength_avg=sum([0 QueLength].*[Time_interval 0] )/Timepoint(end);%系统平均等待队长%仿真图figure(1);set(1,'position',[0,0,1000,700]);subplot(2,2,1);title('各顾客到达时间和离去时间');stairs([0 ArriveNum],[0 t_Arrive],'b');hold on;stairs([0 LeaveNum],[0 t_Leave],'y');legend('到达时间','离去时间');hold off;subplot(2,2,2);stairs(Timepoint,CusNum,'b')title('系统等待队长分布');xlabel('时间');ylabel('队长');subplot(2,2,3);title('各顾客在系统中的排队时间和等待时间');stairs([0 ArriveNum],[0 t_Queue],'b');stairs([0 LeaveNum],[0 t_Wait],'y');hold off;legend('排队时间','等待时间');%仿真值与理论值比较disp(['理论平均等待时间t_Wait_avg=',num2str(1/(Mu-Lambda))]);disp(['理论平均排队时间t_Wait_avg=',num2str(Lambda/(Mu*(Mu-Lambda)))]);disp(['理论系统中平均顾客数=',num2str(Lambda/(Mu-Lambda))]);disp(['理论系统中平均等待队长=',num2str(Lambda*Lambda/(Mu*(Mu-Lambda)))]);disp(['仿真平均等待时间t_Wait_avg=',num2str(t_Wait_avg)])disp(['仿真平均排队时间t_Queue_avg=',num2str(t_Queue_avg)])disp(['仿真系统中平均顾客数=',num2str(CusNum_avg)]);disp(['仿真系统中平均等待队长=',num2str(QueLength_avg)]);五、数据结构1.仿真设计算法(主要函数)利用负指数分布与泊松过程的关系,产生符合泊松过程的顾客流,产生符合负指数分布的随机变量作为每个顾客的服务时间:Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔,结果与调用exprnd(1/Lambda,m)函数产生的结果相同Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间间隔t_Arrive(1)=Interval_Arrive(1);%顾客到达时间时间计算t_Wait=t_Leave-t_Arrive; %各顾客在系统中的等待时间t_Queue=t_Wait-Interval_Serve; %各顾客在系统中的排队时间由事件来触发仿真时钟的不断推进。

单服务台排队系统仿真报告

单服务台排队系统仿真报告

单服务台排队系统仿真报告一、模型准备1、 顾客到达特性在该系统中,顾客的到达规模(成批到达还是单个到达)是单个到达,假设顾客到达率Ai 服从均值为 的指数分布,即2、 顾客服务时间顾客服务时间为Si ,服从指数分布,假设均值为,即二、 仿真模型设计1、 元素定义(Define )本系统的元素定义如表1所示。

2、 元素可视化设置(Display )本系统中各个元素的显示特征定义设置如图2所示:m in 5=A βAs Ae Af ββ/)(-=)0(≥A min 4=s βSA Se Sf ββ/)(-=)0(≥S图2 各元素的显示特征(1)Part元素可视化设置在元素选择窗口选择customer元素,鼠标右键点击Display,跳出Display 对话框(图3),设置它的Text(图4)、Icon(图5)。

图3 Display对话框图4 Display Text对话框图5 Display Icon对话框(2)Buffer元素可视化设置在元素选择窗口选择paidui元素,鼠标右键点击Display,跳出Display对话框(图3),设置它的Text、Icon、Rectangle(图6)。

图6 Display Rectangle对话框(3)Machine元素可视化设置在元素选择窗口选择Fuwuyuan元素,鼠标右键点击Display,跳出Display 对话框(图3),设置它的Text、Icon、Part Queue(图7)。

图7 Display Part Queue对话框(4)Variable元素可视化设置在元素选择窗口选择Jifen0元素,鼠标右键点击Display,跳出Display对话框(图3),设置它的Text 、Value(图8)。

图8 Display Value对话框(5)Timeseries元素可视化设置在元素选择窗口选择duichang元素,鼠标右键点击Display,跳出Display 对话框(图3),设置它的Text、Timeseries(图9)。

单服务台排队系统仿真

单服务台排队系统仿真

单服务台排队系统仿真单服务台排队系统是指在一个服务台只有一个服务员的情况下,客户需要按顺序等待服务的系统。

本文将介绍一个针对单服务台排队系统的仿真模型。

在设计仿真模型之前,我们需要确定一些重要的参数。

首先是服务时间,即每个客户接受服务所需要的时间。

服务时间可以通过实际观察数据或者估算得出。

其次是到达间隔时间,即每个客户到达的时间间隔。

到达间隔时间可以通过实际观察数据或者使用随机数生成器进行模拟。

首先,我们需要创建一个事件队列来模拟客户的到达和离开。

事件队列是一个按照发生时间顺序排序的队列,每个事件都包含两个属性:时间和类型。

接下来,我们创建一个时钟来记录仿真进行的时间。

初始时,时钟指向第一个到达事件的时间。

然后,我们从事件队列中取出第一个事件,并更新时钟指向该事件的时间。

如果当前事件类型是到达事件,我们需要进行如下操作:首先,模拟下一个客户到达的时间,并将该事件添加到事件队列中。

然后,判断当前是否有客户正在接受服务。

如果没有,我们将当前事件类型设置为离开事件,并模拟该客户的服务时间和离开时间,并将该离开事件添加到事件队列中。

如果有客户正在接受服务,我们将当前事件类型设置为到达事件。

如果当前事件类型是离开事件,我们需要进行如下操作:首先,更新服务台的空闲状态。

然后,判断是否还有等待服务的客户。

如果有,我们将当前事件类型设置为离开事件,并模拟下一个客户的服务时间和离开时间,并将该离开事件添加到事件队列中。

如果没有等待服务的客户,我们将当前事件类型设置为到达事件。

重复上述步骤,直到事件队列中没有事件为止。

最后,我们可以根据仿真的结果,比如客户的等待时间、服务时间和系统繁忙率等指标,来评估和优化该排队系统的性能。

通过以上的模型,我们可以对单服务台排队系统进行仿真,并评估其性能。

我们可以通过改变服务时间、到达间隔时间等参数,来探究不同情况下系统的表现和优化方案。

同时,我们还可以根据仿真结果,对系统进行调整和改进,以提高客户的满意度和服务效率。

单服务排队系统的仿真

单服务排队系统的仿真

仿真钟:仿真中是离散事件系统仿真中的基 本组成部分,是随仿真的进程而不断更新的 时间推进机构,用来表示仿真时间的变化。
连续系统的仿真和离散系统仿真的区别:
1.在连续系统仿真中,仿真时间的变化是基于仿真步长 确定的;在离散事件系统仿真中,引起状态变化的事件 发生时间是随机的,仿真钟的推进步长完全是随机的。 2.连续系统仿真的模型一般由表征系统变量之间的关 系的方程来描述,如微分方程、差分方程等。离散事 件系统中的变量是反映系统各部分之间相互作用的一 些事件,系统模型则是反映这些事件状态的集合。
单服务排队系统的仿真
永久实体:永久驻留在系统中,是系统处 于活动状态的必要条件,如理发师; 临时实体:仅在系统中存在一段时间,按 一定规律到达,如顾客; 临时实体按一定规律不断产生,在永久实 体作用下通过系统,最后离开系统,整个系 统呈现出动态过程。
属性:每一实体所具有的有效特征。
事件:引起系统状态发生变化的行为;离 散事件系统本质是由事件驱动的(例: 顾客到达事件使服务员状态由闲到忙, 或使队列长度加1 );
Ë ¿ ¹ Í µ ½ ´ ï
Å ¶ Ó ½ á ¹
Å ¶ Ó ¹ æ Ô ò
· þ Î ñ ¹ æ Ô ò
þ Î · ñ » ú ¹
ë È À ¥
¼ 1 Å ¶ Í Ó Ï µ Í ³ Ê ¾ Ò â Í ¼
理发馆排队系统仿真
• • • • • • • •
一.仿真问题 理发馆一天的工作情况如下: 理发馆有1名理发员,同一时刻只能为1位顾客理发。 当顾客进门时,只要理发员状态为闲,就可坐下理发,否则需排队 等候。 一旦顾客理发完离去,排在对头的顾客便可开始理发。 若理发馆每天营业T分钟,求: 一天内顾客在理发馆内平均逗留的时间; 顾客排队等候理发的队列长度平均值; 二.基本要求 1) 模拟理发馆一天的工作过程:必须采用事件驱动的离散模型; 2) 每个顾客到达和下个顾客到达的时间间隔是随机的; 3) 每个顾客进门时都将生成两个随机数: 1>durtime:进门顾客理发所需服务时间(简称理发时间) 2>intertime:下个顾客将到达的时间间隔(简称间隔时间)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单服务台排队系统仿真报告
一、模型准备
1、 顾客到达特性
在该系统中,顾客的到达规模(成批到达还是单个到达)是单个到达,假设顾客到达率Ai 服从均值为 的指数分布,即
2、 顾客服务时间
顾客服务时间为Si ,服从指数分布,假设均值为
,即
二、 仿真模型设计
1、 元素定义(Define )
本系统的元素定义如表1所示。

2、 元素可视化设置(Display )
本系统中各个元素的显示特征定义设置如图2所示:
m in 5=A βA
s A
e A
f ββ/)(-=
)
0(≥A min 4=s βS
A S
e S
f ββ/)(-=
)
0(≥S
图2 各元素的显示特征
(1)Part元素可视化设置
在元素选择窗口选择customer元素,鼠标右键点击Display,跳出Display 对话框(图3),设置它的Text(图4)、Icon(图5)。

图3 Display对话框
图4 Display Text对话框
图5 Display Icon对话框
(2)Buffer元素可视化设置
在元素选择窗口选择paidui元素,鼠标右键点击Display,跳出Display对话框(图3),设置它的Text、Icon、Rectangle(图6)。

图6 Display Rectangle对话框
(3)Machine元素可视化设置
在元素选择窗口选择Fuwuyuan元素,鼠标右键点击Display,跳出Display 对话框(图3),设置它的Text、Icon、Part Queue(图7)。

图7 Display Part Queue对话框
(4)Variable元素可视化设置
在元素选择窗口选择Jifen0元素,鼠标右键点击Display,跳出Display对话框(图3),设置它的Text 、Value(图8)。

图8 Display Value对话框
(5)Timeseries元素可视化设置
在元素选择窗口选择duichang元素,鼠标右键点击Display,跳出Display 对话框(图3),设置它的Text、Timeseries(图9)。

图9 Timeseries对话框
3、元素细节(Detail)设计
(1)对Part元素Guke细节设计
Type:Active
Input to Model. Inter Arrival:-5 * LN(Random(1))Lot Size:1
Input to Model. To…:Push to paidui
Actions on Create:Icon = 58
Detail Part 对话框如图10所示。

图10 Detail Part对话框
(2)对Part元素Jifen细节设计
Type:Active
Input to Model. Inter Arrival:1.0
Lot Size:1
Input to Model. To…:Push to Ship
Actions on Create:Jifen0 = Jifen0 + Nparts(paidui)
(3)对Buffer元素Paidui细节设计
Capacity:100
(4)对Machine元素Fuwuyuan细节设计
Type:Single
Input. From:Pull from Paidui
Duration. Cycle Time:-4 * LN(Random(2))
Output. To…:Push to Ship
Detail machine 对话框如图11所示。

图11 Detail Machine 对话框
(5)对Timeserises元素Duichang细节设计
●Recording:5.0
●在Plot Expressions下第一个Plot中将“Undefined”改为Nparts(paidui)●在Plot Expressions下第二个Plot中将“Undefined”改为Nparts
(Fuwuyuan)
Detail Timeseries对话框如图12所示。

图12 Detail Timeseries对话框
三、模型运行和数据报告
为了模仿邮局的工作时间(约8小时一天),模型仿真时钟取480个时间单位。

选中系统中所有元素,点击Reports菜单下的Statistics选项(图13),得到如图14所示数据统计报告。

图13 Statistics查看统计报告
图14 数据统计报告
以上为各元素的统计数据报告。

通过报告,可以获得该排队系统此次仿真的平均队长、最大队长、最小队长和平均队长以及平均每位顾客的等待时间、平均服务时间等信息。

通过数据报告发现,不同顾客的服务时间和顾客的到达特性,对应的仿真结果有所不同。

顾客的到达特性以及顾客的服务时间都影响着排队系统的最大队长、最小队长和平均队长以及平均每位顾客的等待时间。

相关文档
最新文档