二次函数中三角形存在问题(二)
二次函数与等边三角形的存在性问题

二次函数与等边三角形的存在性问题引言本文旨在研究二次函数与等边三角形的存在性问题。
通过了解二次函数和等边三角形的定义和性质,我们将探讨它们之间是否存在关联,并通过简单的策略来解决这个问题。
二次函数的定义和性质二次函数是一种具有形式为$f(x) = ax^2 + bx + c$ 的函数,其中 $a$、$b$ 和 $c$ 是实数,且 $a \neq 0$。
二次函数的图像通常是一个抛物线,可向上开口(当 $a > 0$)或向下开口(当 $a < 0$)。
二次函数的图像关于其顶点对称。
等边三角形的定义和性质等边三角形是一种具有三条边长度相等的三角形。
等边三角形的内角均为 $60^\circ$。
等边三角形也可以看作是一个正三角形。
二次函数与等边三角形的关联分析我们将研究二次函数与等边三角形的存在性问题,即我们要找到一个二次函数,使得它的图像与一个等边三角形的图像重合。
根据二次函数的性质,我们知道它的图像总是是一个抛物线,而等边三角形的图像是正三角形。
由此可见,单纯的二次函数是不可能与等边三角形相重合的。
然而,我们可以采用一些简单的策略来实现这一目标。
例如,我们可以将二次函数进行线性变换,使得抛物线的形状与正三角形更加接近。
通过适当的调整函数的参数,我们能够使得抛物线的顶点位置和曲线开口方向与等边三角形完全相匹配。
这样,我们就能够找到一个满足题设的二次函数,使其图像与等边三角形的图像重合。
结论通过简单策略的运用,我们可以找到一个二次函数,使其图像与等边三角形的图像重合。
这个问题的关键在于适当调整二次函数的参数,以使其图像的形状与等边三角形完全相匹配。
通过这种方法,我们可以解决二次函数与等边三角形的存在性问题。
参考文献:。
二次函数背景下的相似三角形存在性问题

二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题是中考数学常考的题型,在考试中一般出现在压轴题的位置,综合性强,难度略大。
这篇文章主要来讨论下二次函数背景下的相似三角形存在性问题的解题思路方法及应用举例。
【模型解读】
在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.
【相似判定】
判定1:三边对应成比例的两个三角形是相似三角形;
判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;
判定3:有两组角对应相等的三角形是相似三角形.
以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.
【题型分析】
通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.
【思路总结】
根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!
所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.
然后再找:
思路1:两相等角的两边对应成比例;
思路2:还存在另一组角相等.
事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.
一、如何得到相等角?
二、如何构造两边成比例或者得到第二组角?
搞定这两个问题就可以了.
【例题】
【分析】
综上所述,点P的坐标为(3,2)或(3,9).
【总结】
【练习】
声明:文章图文来源网络,意在分享,仅限交流学习使用,如有分享不当或侵权,请联系删除。
二次函数中等腰三角形存在问题

中考二次函数中等腰三角形存在问题如图1-1,在平面直角坐标系xOy中,已知点D的坐标为(3,4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标.图1-1分三种情况讨论等腰三角形△DOP:①DO=DP,②OD=OP,③PO=PD.①当DO=DP时,以D为圆心、DO为半径画圆,与x轴的正半轴交于点P,此时点D在OP的垂直平分线上,所以点P的坐标为(6,0)(如图1-2).②当OD=OP=5时,以O为圆心、OD为半径画圆,与x轴的正半轴交于点P(5,0)(如图1-3).③当PO=PD时,画OD的垂直平分线与x轴的正半轴交于点P,设垂足为E(如图1-4).在Rt△OPE中,3cos5OEDOPOP∠==,52OE=,所以256OP=.此时点P的坐标为25 (,0) 6.1.2.如图,已知抛物线2y ax bx c =++(a ≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.3.如图,抛物线2y ax bx c =++(a 、b 、c 为常数,a ≠0)经过点A (﹣1,0),B (5,﹣6),C (6,0).(1)求抛物线的解析式;(2)如图,在直线AB 下方的抛物线上是否存在点P 使四边形PACB 的面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)若点Q 为抛物线的对称轴上的一个动点,试指出△QAB 为等腰三角形的点Q 一共有几个?并请求出其中某一个点Q 的坐标.3.如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.5.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.6.如图1,抛物线y=﹣[(x﹣2)2+n]与x轴交于点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC 面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=-x2+b x+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.(1)求抛物线的解析式及点C的坐标;(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA 的中点,那么是否存在这样的直线l,使得△M ON是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.。
二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。
2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。
2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。
二次函数中三角形问题(含问题详解)

二次函数中的三角形一.与三角形面积例1:如图,已知在同一坐标系中,直线22k y kx =+-与y 轴交于点P ,抛物线k x k x y 4)1(22++-=与x 轴交于)0,(),0,(21x B x A 两点。
C 是抛物线的顶点。
(1)求二次函数的最小值(用含k 的代数式表示); (2)若点A 在点B 的左侧,且021<⋅x x 。
①当k 取何值时,直线通过点B ;②是否存在实数k ,使ABC ABP S S ∆∆=?如果存在,请求出此时抛物线的解析式;如果不存在,请说明理由。
例2:已知抛物线)1(3)4(2-+---=m x m x y 与x 轴交于A 、B 两点,与y 轴交于C 点, (1)求m 的取值范围;(2)若0<m ,直线1-=kx y 经过点A ,与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式; (3)若A 点在B 点左边,在第一象限内,(2)中所得的抛物线上是否存在一点P ,使直线P A 平分ACD ∆的面积?若存在,求出P 点的坐标;若不存在,请说明理由。
例3.已知矩形ABCD 中,AB =2,AD =4,以AB 的垂直平分线为x 轴,AB 所在的直线为y 轴,建立平面直角坐标系(如图)。
(1)写出A 、B 、C 、D 及AD 的中点E 的坐标;(2)求以E 为顶点、对称轴平行于y 轴,并且经过点B 、C 的抛物线的解析式; (3)求对角线BD 与上述抛物线除点B 以外的另一交点P 的坐标;(4)△PEB 的面积S △PEB 与△PBC 的面积S △PBC 具有怎样的关系?证明你的结论。
A BC DO E x y(第25题图)例4.如图1,已知直线12y x =-与抛物线2164y x =-+交于AB ,两点. (1)求A B ,两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.二.与三角形形状例5. 如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.图2图1例 6.如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式.(3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标.(4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明师.x 图①x 图②x 图③例7. 已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ),请求出△CBE 的面积S 的值; (3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并写出0P 点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由.例8.如图,在直角坐标系中,点A 的坐标为(-2,0),连接OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方, 那么△P AB 是否有最大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)(第25题图)三.二次函数与三角形相似 例9:已知一次函数1243--=x y 的图象分别交x 轴、y 轴于A 、C 两点, (1)求出A 、C 两点的坐标;(2)在x 轴上找出点B ,使ACB ∆∽AOC ∆,若抛物线过A 、B 、C 三点,求出此抛物线的解析式; (3)在(2)的条件下,设动点P 、Q 分别从A 、B 两点同时出发,以相同速度沿AC 、BA 向C 、A 运动,连结PQ ,使m AP =,是否存在m 的值,使以A 、P 、Q 为顶点的三角形与ABC ∆相似,若存在,求出所有m 的值;若不存在,请说明理由。
二次函数与三角形存在性问题

4二次函数与三角形存在性问题(2-3次课)(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次函数与三角形存在性问题一、等腰三角形的存在性问题例1、如图,抛物线与x轴交于A、B两点,与y轴交于点C.在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形若存在,请求出符合条件的P点坐标;若不存在,请说明理由。
巩固练习 1、如图,抛物线与轴交于、两点,与轴交于点,已知A(3,0),且M(1,38 )是抛物线上另一点。
连接,设点是轴上任一点,若以、、三点为顶点的三角形是等腰三角形,求点的坐标。
2、如图1,直线与轴、轴分别交于点、点,经过、两点的抛物线与轴的另一个交点为,顶点为。
(1)求该抛物线的解析式。
(2)在该抛物线的对称轴上是否存在点,使以、、为顶点的三角形为等腰三角形若存在,请直接写出所有符合条件的点的坐标;若不存在,请说明理由。
(3)当<x<3时,在抛物线上求一点,使△CBE的面积有最大值。
(图2、图3供画图探究)二、直角三角形存在性例2、如图所示,将一边长为3的正方形放置到平面直角坐标系中,其顶点A、B均落在坐标轴上,一抛物线过点A、B,且顶点为P(1,4)(1)求抛物线的解析式;(2)y轴上是否存在一点N,恰好使得△PNB为直角三角形若存在,直接写出满足条件的所有点N的坐标;若不存在,请说明理由.巩固练习1、如图,抛物线=-x2+2x+3与x轴交于B、E两点,与y轴交于A 点.点P是直线AE上方抛物线上一动点,设点P的横坐标为t,是否存在点P,使△PAE为直角三角形若存在,求出t的值;若不存在,说明理由2、如图,已知直线与抛物线相交于A,B两点,且点为抛物线的顶点,点B在x轴上.若点Q是y轴上一点,且为直角三角形,求点Q的坐标.三、等腰直角三角形存在性例3、在平面直角坐标系中,抛物线3-x与x轴交于A,B两点(A在=x2y2+-B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形若存在,求出点P的坐标,若不存在,请说明理由.巩固练习1、如图,抛物线bx=2经过A(4,0),B(1,3)两点,点B、C关于抛物线的y+ax对称轴l对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的解析式;(2)若点M在直线BH上运动,点N在x轴上运动,是否存在这样的点M、N,使得以点M为直角顶点△CNM是等腰直角三角形若存在,请求出点M、N的坐标;若不存在,请说明理由.2、如图,已知直线3y与x轴、y轴分别交于A,B两点,抛物=x+-线c-+=2经过A,B两点,点P在线段OA上,从点O出发,向点A以bxxy+每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B 以每秒2个单位的速度匀速运动,连接PQ,设运动时间为t秒.3、(1)求抛物线的解析式;4、(2)问:当t为何值时,△APQ为等腰直角三角形;四、全等三角形的存在性问题例4、如图所示,将一边长为3的正方形放置到平面直角坐标系中,其顶点A、B均落在坐标轴上,一抛物线过点A、B,且顶点为P(1,4)(1)求抛物线的解析式;(2)点M为抛物线上一点,恰使△MOA≌△MOB,求点M的坐标;巩固练习如图,已知直线与抛物线相交于A,B两点,且点为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使与全等若存在,求出点P的坐标;若不存在,请说明理由;五、相似三角形的存在性问题例5、如图,直线与轴、轴分别相交于点、,经过、两点的抛物线与轴的另一个交点为,顶点为,且对称轴为直线2=x 。
中考复习专题2二次函数与直角三角形问题(含解析)
专题2二次函数与直角三角形问题我们先看三个问题:1.已知线段AB,以线段AB为直角边的直角三角形ABC有多少个?顶点C的轨迹是什么?2.已知线段AB,以线段AB为斜边的直角三角形ABC有多少个?顶点C的轨迹是什么?3.已知点A(4,0),如果△OAB是等腰直角三角形,求符合条件的点B的坐标.图1图2图3如图1,点C在垂线上,垂足除外.如图2,点C在以AB为直径的圆上,A、B两点除外.如图3,以OA为边画两个正方形,除了O、A两点以外的顶点和正方形对角线的交点,都是符合题意的点B,共6个.如图4,已知A(3,0),B(1,-4),如果直角三角形ABC的顶点C在y轴上,求点C的坐标.我们可以用几何的方法,作AB为直径的圆,快速找到两个符合条件的点C.如果作BD⊥y轴于D,那么△AOC∽△CDB.设OC=m,那么341m m-=.这个方程有两个解,分别对应图中圆与y轴的两个交点.对于代数法,可以采用两条直线的斜率之积来解决.【例1】.(2022•滨州)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴相交于点A、B(点A 在点B的左侧),与y轴相交于点C,连接AC、BC.(1)求线段AC的长;(2)若点P为该抛物线对称轴上的一个动点,当PA=PC时,求点P的坐标;(3)若点M为该抛物线上的一个动点,当△BCM为直角三角形时,求点M的坐标.【分析】(1)根据坐标轴上点的特点求出点A,C的坐标,即可求出答案;(2)设出点P的坐标,利用PA=PC建立方程求解,即可求出答案;(3)分三种情况,利用等腰直角三角形的性质求出前两种情况,利用三垂线构造出相似三角形,得出比例式,建立方程求解,即可求出答案.【解析】(1)针对于抛物线y=x2﹣2x﹣3,令x=0,则y=﹣3,∴C(0,﹣3);令y=0,则x2﹣2x﹣3=0,∴x=3或x=﹣1,∵点A在点B的左侧,∴A(﹣1,0),B(3,0),∴AC==;(2)∵抛物线y=x2﹣2x﹣3的对称轴为直线x=﹣=1,∵点P为该抛物线对称轴上,∴设P(1,p),∴PA==,PC==,∵PA=PC,∴=,∴p=﹣1,∴P(1,﹣1);(3)由(1)知,B(3,0),C(0,﹣3),∴OB=OC=3,设M(m,m2﹣2m﹣3),∵△BCM为直角三角形,∴①当∠BCM=90°时,如图1,过点M作MH⊥y轴于H,则HM=m,∵OB=OC,∴∠OCB=∠OBC=45°,∴∠HCM=90°﹣∠OCB=45°,∴∠HMC=45°=∠HCM,∴CH=MH,∵CH=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,∴﹣m2+2m=m,∴m=0(不符合题意,舍去)或m=1,∴M(1,﹣4);②当∠CBM=90°时,过点M作M'H'⊥x轴,同①的方法得,M'(﹣2,5);③当∠BMC=90°时,如图2,Ⅰ、当点M在第四象限时,过点M作MD⊥y轴于D,过点B作BE⊥DM,交DM的延长线于E,∴∠CDM=∠E=90°,∴∠DCM+∠DMC=90°,∵∠DMC+∠EMB=90°,∴∠DCM=∠EMB,∴△CDM∽△MEB,∴,∵M(m,m2﹣2m﹣3),B(3,0),C(0,﹣3),∴DM=m,CD=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m,ME=3﹣m,BE=﹣(m2﹣2m﹣3)=﹣m2+2m+3,∴,∴m=0(舍去)或m=3(点B的横坐标,不符合题意,舍去)或m=(不符合题意,舍去)或m=,∴M(,﹣),Ⅱ、当点M在第三象限时,M(,﹣),即满足条件的M的坐标为(1,﹣4)或(﹣2,5)或(,﹣),或(,﹣).【例2】.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【分析】(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,即可求解;(2)过点D作DG⊥AB交于G,交AC于点H,设D(n,﹣n2﹣3n+4),H(n,n+4),由DH∥OC,可得==,求出D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=45°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,证明△MDF≌△NOD(AAS),可得D点纵坐标为2,求出D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,证明△KDF≌△LFO(AAS),得到D点纵坐标为4,求得D(0,4)或(﹣3,4).【解析】(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=45°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).【例3】(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.【分析】(1)把点B,C两点坐标代入抛物线的解析式,解方程组,可得结论;(2)存在.如图1中,设D(t,t2+t﹣4),连接OD.构建二次函数,利用二次函数的性质,解决问题;(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M (﹣1,﹣4),分三种情形:∠PAB=90°,∠PBA=90°,∠APB=90°,分别求解可得结论.【解析】(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D(t,t2+t﹣4),连接OD.令y=0,则x2+x﹣4=0,解得x=﹣4或2,∴A(﹣4,0),C(2,0),∵B(0,﹣4),∴OA=OB=4,=S△AOD+S△OBD﹣S△AOB=×4×(﹣﹣t+4)+×4×(﹣t)﹣×4×4=﹣t2﹣4t=﹣∵S△ABD(t+2)2+4,∵﹣1<0,∴t=﹣2时,△ABD的面积最大,最大值为4,此时D(﹣2,﹣4);(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M (﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).【例4】.(2022•柳州)已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C(0,5).(1)求b,c,m的值;(2)如图1,点D是抛物线上位于对称轴右侧的一个动点,且点D在第一象限内,过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,垂足为点F,当四边形DEFG 的周长最大时,求点D的坐标;(3)如图2,点M是抛物线的顶点,将△MBC沿BC翻折得到△NBC,NB与y轴交于点Q,在对称轴上找一点P,使得△PQB是以QB为直角边的直角三角形,求出所有符合条件的点P的坐标.【分析】(1)把A(﹣1,0),C(0,5)代入y=﹣x2+bx+c,解二元一次方程组即可得b,c的值,令y =0即可得m的值;(2)设D(x,﹣x2+4x+5),则E(4﹣x,﹣x2+4x+5),表示出四边形DEFG的周长,根据二次函数的最值即可求解;(3)过点C作CH⊥对称轴于H,过点N作NK⊥y轴于K,证明△MCH≌△NCK,根据全等三角形的性质得NK=MH=4,CK=CH=2,则N(﹣4,3),利用待定系数法可得直线BN的解析式为y=﹣x+,可得Q(0,),设P(2,p),利用勾股定理表示出PQ2、BP2、BQ2,分两种情况:①当∠BQP=90°时,②当∠QBP=90°时,利用勾股定理即可求解.【解析】(1)把A(﹣1,0),C(0,5)代入y=﹣x2+bx+c,得,解得.∴这个抛物线的解析式为:y=﹣x2+4x+5,令y=0,则﹣x2+4x+5=0,解得x1=5,x2=﹣1,∴B(5,0),∴m=5;(2)∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,∴对称轴为x=2,设D(x,﹣x2+4x+5),∵DE∥x轴,∴E(4﹣x,﹣x2+4x+5),∵过点D作x轴的平行线交抛物线于点E,作y轴的平行线交x轴于点G,过点E作EF⊥x轴,∴四边形DEFG是矩形,∴四边形DEFG的周长=2(﹣x2+4x+5)+2(x﹣4+x)=﹣2x2+12x+2=﹣2(x﹣3)2+20,∴当x=3时,四边形DEFG的周长最大,∴当四边形DEFG的周长最大时,点D的坐标为(3,8);(3)过点C作CH⊥对称轴于H,过点N作NK⊥y轴于K,∴∠NKC=∠MHC=90°,由翻折得CN=CM,∠BCN=∠BCM,∵B(5,0),C(0,5).∴OB=OC,∴∠OCB=∠OBC=45°,∵CH⊥对称轴于H,∴CH∥x轴,∴∠BCH=45°,∴∠BCH=∠OCB,∴∠NCK=∠MCH,∴△MCH≌△NCK(AAS),∴NK=MH,CK=CH,∵抛物线的解析式为:y=﹣x2+4x+5=﹣(x﹣2)2+9,∴对称轴为x=2,M(2,9),∴MH=9﹣5=4,CH=2,∴NK=MH=4,CK=CH=2,∴N(﹣4,3),设直线BN的解析式为y=mx+n,∴,解得,∴直线BN的解析式为y=﹣x+,∴Q(0,),设P(2,p),∴PQ2=22+(p﹣)2=p2﹣p+,BP2=(5﹣2)2p2=9+p2,BQ2=52+()2=25+,分两种情况:①当∠BQP=90°时,BP2=PQ2+BQ2,∴9+p2=p2﹣p++25+,解得p=,∴点P的坐标为(2,);②当∠QBP=90°时,P′Q2=BP′2+BQ2,∴p2﹣p+=9+p2+25+,解得p=﹣9,∴点P′的坐标为(2,﹣9).综上,所有符合条件的点P的坐标为(2,),(2,﹣9).1.(2022•公安县模拟)如图,已知二次函数y=﹣x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(2,0),AC=BC.(1)求抛物线的解析式;的最大值以及此时E点的坐标;(2)点E是抛物线AB之间的一个动点(不与A,B重合),求S△ABE(3)根据问题(2)的条件,判断是否存在点E使得△ABE为直角三角形,如果存在,求出E点的坐标,如果不存在,说明理由.【分析】(1)先求得点B的坐标,然后将点A和点B的坐标代入抛物线的解析式可得到关于b、c的方程组,从而可求得b、c的值;(2)过点E作EF∥y轴交线段AB于点F,设点E(t,﹣t2+2t+3),则F(t,t+1),则可得到EF与x 的函数关系式,利用配方法可求得EF的最大值以及点E的坐标,最后根据EF的最大值可得△ABE的面积;(3)存在,设E(m,﹣m2+2m+3),分三种情况:分别以A,B,E为直角顶点,作出辅助线,构造相似列出方程,解方程即可.【解析】(1)∵点A(﹣1,0),C(2,0),∴AC=3,OC=2,∵AC=BC=3,∴B(2,3),把A(﹣1,0)和B(2,3)代入二次函数y=x2+bx+c中得:,解得:,∴二次函数的解析式为:y=﹣x2+2x+3;(2)∵直线AB经过点A(﹣1,0),B(2,3),设直线AB的解析式为y=kx+b′,∴,解得:,∴直线AB的解析式为:y=x+1,如图,过点E作EF∥y轴交线段AB于点F,∴设点E(t,﹣t2+2t+3),则F(t,t+1),∴EF=﹣t2+2t+3﹣(t+1)=﹣(t﹣)2+,∴当t=时,EF的最大值为,∴点E的坐标为(,),最大,S△ABE=•EF•(x B−x A)=××(2+1)=.∴此时S△ABE(3)在问题(2)的条件下,存在点E使得△ABE为直角三角形;设E(m,﹣m2+2m+3),①当点A为直角顶点,过点A作AB的垂线,与AB之间的抛物线无交点,故不可能存在点E使得△ABE为以点A为直角顶点的直角三角形,②当点B为直角顶点,如下图,此时∠EBA=90°,过点E作EG⊥CB,交CB延长线于点G,∵BC⊥x轴于点C,且AC=BC,∴△ABC是等腰直角三角形,∠ABC=45°,∴∠EBG=45°,∴△BEG是等腰直角三角形,EG=BG,∵EG的长为点E与直线BC的距离,即2﹣m,且BG=CG﹣BC=﹣m2+2m+3﹣3=﹣m2+2m,∴2﹣m==﹣m2+2m,解得m=1或m=2(舍),∴E(1,4);③如下图,此时∠AEB=90°,作EM∥x轴,交CB的延长线于点M,过点A作AN⊥x轴交ME的延长线于点N,∴∠BEM+∠AEN=90°,∵在Rt△AEN中,∠EAN+∠AEN=90°,∴∠BEM=∠EAN,∴△AEN∽△BEM,∴BM:EN=EM:AN,∴(﹣m2+2m):(m+1)=(2﹣m):(﹣m2+2m+3),即﹣m(2﹣m)(m+1)(m﹣3)=(2﹣m)(m+1),∵2﹣m≠0,m+1≠0,∴m2﹣3m+1=0,解得m=或m=(舍).∴E(,)综上,根据问题(2)的条件,存在点E(1,4)或(,)使得△ABE为直角三角形.2.(2022•高邮市模拟)如图,抛物线y=ax2+bx﹣3经过A(﹣1,0),与y轴交于点C,过点C作BC∥x 轴,交抛物线于点B,连接AC、AB,AB交y轴于点D,若.(1)求点B的坐标;(2)点P为抛物线对称轴上一点,且位于x轴上方,连接PA、PC,若△PAC是以AC为直角边的直角三角形,求点P的坐标.【分析】(1)根据A(﹣1,0),得到OA=l,对于y=ax2+bx﹣3,令x=0,则y=﹣3,得到C(0,﹣3),OC=3,根据BC∥x轴,得到△AOD∽△BCD,推出,得到BC=2,即可得B(2,﹣3);(2)把A(﹣1,0),B(2,﹣3)代入y=ax2+bx﹣3,求得a=1,b=﹣2,得到抛物线解析式并配方为y=x2﹣2x﹣3=(x﹣1)2﹣4,得到抛物线的对称轴是直线x=1,设P(1,m),写出PA2=m2+22=m2+4.PC2=(m+3)2+12=(m+3)2+1.AC2=12+32=10.根据△PAC是以AC为直角边的直角三角形,当∠PAC=90°时,PA2+AC2=PC2.得到m2+4+10=(m+3)2+1,求得m=;当∠PCA=90°时,PC2+AC2=AP2,得到(m+3)2+1+10=m2+4,求出m=﹣;即可得点P的坐标.【解析】∵A(﹣1,0),∴OA=l,在y=ax2+bx﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),∴OC=3,∵BC∥x轴,∴△AOD∽△BCD,∴,∴BC=2,∴B(2,﹣3);(2)把A(﹣1,0),B(2,﹣3)代入y=ax2+bx﹣3,∴,解得,∴抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴是直线x=1,设P(1,m),∴PA2=m2+22=m2+4.PC2=(m+3)2+12=(m+3)2+1.AC2=12+32=10.∵△PAC是以AC为直角边的直角三角形,当∠PAC=90°时,PA2+AC2=PC2.∴m2+4+10=(m+3)2+1,解得m=;当∠PCA=90°时,PC2+AC2=AP2,∴(m+3)2+1+10=m2+4,解得m=﹣(不符合题意,舍去).∴P(1,).3.(2022•碑林区校级模拟)如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣2,0),B(4,0)两点.(1)求b,c的值;(2)点E为抛物线y=﹣x2+bx+c上一点,且点E在x轴上方,连接BE,以点E为直角顶点,BE为直角边,作等直角△BED,使得点D恰好落在直线y=x上,求出满足条件的所有点E的坐标.【分析】(1)运用待定系数法即可求得答案;(2)设D(m,m),E(n,﹣n2+2n+8),分两种情况:当点E1在点D左侧,∠DE1B=90°,BE1=D1E1时,当点E2在点D2右侧,∠D2E2B=90°,BE2=D2E2时,利用等腰直角三角形性质,添加辅助线构造全等三角形,再利用全等三角形的性质建立方程求解即可得出答案.【解析】(1)∵抛物线y=﹣x2+bx+c与x轴交于A(﹣2,0),B(4,0)两点,∴,解得:,∴b=2,c=8;(2)∵点D在直线y=x上,点E在抛物线解析式为y=﹣x2+2x+8上,∴设D(m,m),E(n,﹣n2+2n+8),当点E1在点D左侧,∠DE1B=90°,BE1=D1E1时,如图,过点E1作E1G∥x轴,过点B作BF⊥EG 于点F,过点D1作D1G⊥E1G于点G,则∠BFE1=∠E1GD1=90°,BF=﹣n2+2n+8,E1F=4﹣n,E1G=m﹣n,D1G=m﹣(﹣n2+2n+8)=n2﹣2n﹣8+m,∴∠E1BF+∠BE1F=90°,∵∠D1E1G+∠BE1F=90°,∴∠E1BF=∠D1E1G,在△BE1F和△E1D1G中,,∴△BE1F≌△E1D1G(AAS),∴E1F=D1G,BF=E1G,∴,解得:,当n=2时,﹣n2+2n+8=﹣22+2×2+8=8,∴E1(2,8);当点E2在点D2右侧,∠D2E2B=90°,BE2=D2E2时,如图,过点E2作E2H⊥x轴于点H,过点D2作D2K⊥E2H于点K,则∠BHE2=∠E2KD2=90°,BH=4﹣n,E2H=﹣n2+2n+8,E2K=﹣n2+2n+8﹣m,D2K=n﹣m,同理可得△BE2H≌△E2D2K(AAS),∴E2H=D2K,BH=E2K,∴,解得:或,∴E(1+,2)或(1﹣,2);综上所述,满足条件的所有点E的坐标为(2,8)或(1+,2)或(1﹣,2).4.(2022•雁峰区校级模拟)如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,与y轴交于点C,直线y=x+1与x轴交于点E,与y轴交于点D.(1)求抛物线的解析式;(2)P为抛物线上的点,连接OP交直线DE于Q,当Q是OP中点时,求点P的坐标;(3)M在直线DE上,当△CDM为直角三角形时,求出点M的坐标.【分析】(1)根据抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,列方程组,于是得到答案;(2)令x=0,则y=x+1=1,求得OD=1,作PH⊥OB,垂足为H,得到∠COA=∠PHO=90°,根据平行线的性质得到∠P=∠DOQ,∠PFQ=∠ODQ,根据全等三角形的性质得到PF=OD=1,设P点横坐标为x,得到方程﹣x2+2x+3﹣(x+1)=1,求得x1=2,x2=﹣,当x=2时,y=3,当x=﹣时,y=,于是得到答案;(3)求得CD=OC﹣OD=2,设M(a,a+1),分两种情况①当∠CMD=90°时,②当∠DCM=90°时,根据勾股定理即可得到结论.【解析】(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线的解析式是y=﹣x2+2x+3;(2)令x=0,则y=x+1=1,∴OD=1,如图,作PH⊥OB,垂足为H,交ED于F,则∠COA=∠PHO=90°,∴PH∥OC,∴∠OPF=∠DOQ,∠PFQ=∠ODQ,又Q是OP中点,∴PQ=OQ,∴△PFQ≌△ODQ(AAS),∴PF=OD=1设P点横坐标为x,则﹣x2+2x+3﹣(x+1)=1,解得:x1=2,x2=﹣,当x=2时,y=3,当x=﹣时,y=,∴点P的坐标是(2,3)或(﹣,);(3)令x=0,则y=﹣x2+2x+3=3,∴OC=3,∴CD=OC﹣OD=2,设M(a,a+1),∴CM2=a2+(3﹣a﹣1)2=a2﹣2a+4,DM2=a2+(a+1﹣1)2=a2,①当∠CMD=90°时,∴CD2=CM2+DM2,∴22=a2﹣2a+4+a2,解得:a1=,a2=0(舍去),当a=时,a+1=,∴M(,);②当∠DCM=90°时,∴CD2+CM2=DM2,∴22+a2﹣2a+4=a2,解得:a=4,当a=4时,a+1=3,∴M(4,3);解法二:∵∠DCM=90°,∴CM∥x轴,∴a+1=3,解得a=4,∴M(4,3);综上所述:点M的坐标为(,)或(4,3).5.(2022•平南县二模)如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A (﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠PAB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【分析】(1)设y=(x﹣2)2+k,用待定系数法可得抛物线的解析式为y=x2﹣4x﹣5;(2)过点P作PM⊥x轴于点M,设P(m,m2﹣4m﹣5),根据∠PAB=45°知AM=PM,即|m2﹣4m﹣5|=m+1,解得m的值,即可得P的坐标是(6,7)或P(4,﹣5);(3)由y=x2﹣4x﹣5求出B(5,0),C(0,﹣5),设Q(2,t),有BC2=50,BQ2=9+t2,CQ2=4+(t+5)2,分三种情况:当BC为斜边时,9+t2+4+(t+5)2=50,当BQ为斜边时,50+4+(t+5)2=9+t2,当CQ为斜边时,50+9+t2=4+(t+5)2,分别解得t的值,即可求出相应Q的坐标.【解析】(1)设y=(x﹣2)2+k,把A(﹣1,0)代入得:(﹣1﹣2)2+k=0,解得:k=﹣9,∴y=(x﹣2)2﹣9=x2﹣4x﹣5,答:抛物线的解析式为y=x2﹣4x﹣5;(2)过点P作PM⊥x轴于点M,如图:设P(m,m2﹣4m﹣5),则PM=|m2﹣4m﹣5|,∵A(﹣1,0),∴AM=m+1∵∠PAB=45°∴AM=PM,∴|m2﹣4m﹣5|=m+1,即m2﹣4m﹣5=m+1或m2﹣4m﹣5=﹣(m+1),当m2﹣4m﹣5=m+1时,解得:m1=6,m2=﹣1(不合题意,舍去),当m2﹣4m﹣5=﹣(m+1),解得m3=4,m4=﹣1(不合题意,舍去),∴P的坐标是(6,7)或P(4,﹣5);(3)在抛物线的对称轴上存在一点Q,使得△BCQ是直角三角形,理由如下:在y=x2﹣4x﹣5中,令x=0得y=﹣5,令y=0得x=﹣1或x=5,∴B(5,0),C(0,﹣5),由抛物线y=x2﹣4x﹣5的对称轴为直线x=2,设Q(2,t),∴BC2=50,BQ2=9+t2,CQ2=4+(t+5)2,当BC为斜边时,BQ2+CQ2=BC2,∴9+t2+4+(t+5)2=50,解得t=﹣6或t=1,∴此时Q坐标为(2,﹣6)或(2,1);当BQ为斜边时,BC2+CQ2=BQ2,∴50+4+(t+5)2=9+t2,解得t=﹣7,∴此时Q坐标为(2,﹣7);当CQ为斜边时,BC2+BQ2=CQ2,∴50+9+t2=4+(t+5)2,解得t=3,∴此时Q坐标为(2,3);综上所述,Q的坐标为(2,3)或(2,﹣7)或(2,1)或(2,﹣6).6.(2022•太原一模)综合与实践如图,抛物线y=x2+2x﹣8与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.点D在直线AC 下方的抛物线上运动,过点D y轴的平行线交AC于点E.(1)求直线AC的函数表达式;(2)求线段DE的最大值;(3)当点F在抛物线的对称轴上运动,以点A,C,F为顶点的三角形是直角三角形时,直接写出点F的坐标.【分析】(1)分别令x=0,y=0,求得点C、A的坐标,再运用待定系数法即可求得答案;(2)设D(m,m2+2m﹣8),则E(m,﹣2m﹣8),可得DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m=﹣(m+2)2+4,运用二次函数的性质即可求得线段DE的最大值;(3)设F(﹣1,n),根据两点间距离公式可得:AF2=32+n2=n2+9,AC2=42+82=80,CF2=12+(n+8)2=n2+16n+65,分三种情况:①当∠AFC=90°时,②当∠CAF=90°时,③当∠ACF=90°时,分别建立方程求解即可.【解析】(1)在y=x2+2x﹣8中,令x=0,得y=﹣8,∴C(0,﹣8),令y=0,得x2+2x﹣8=0,解得:x1=﹣4,x2=2,∴A(﹣4,0),B(2,0),设直线AC的解析式为y=kx+b,则,解得:,∴直线AC的解析式为y=﹣2x﹣8;(2)设D(m,m2+2m﹣8),则E(m,﹣2m﹣8),∵点D在点E的下方,∴DE=﹣2m﹣8﹣(m2+2m﹣8)=﹣m2﹣4m=﹣(m+2)2+4,∵﹣1<0,∴当m=﹣2时,线段DE最大值为4;(3)∵y=x2+2x﹣8=(x+1)2﹣9,∴抛物线的对称轴为直线x=﹣1,设F(﹣1,n),又A(﹣4,0),C(0,﹣8),∴AF2=32+n2=n2+9,AC2=42+82=80,CF2=12+(n+8)2=n2+16n+65,①当∠AFC=90°时,∵AF2+CF2=AC2,∴n2+9+n2+16n+65=80,解得:n1=﹣4﹣,n2=﹣4+,∴F(﹣1,﹣4﹣)或(﹣1,﹣4+);②当∠CAF=90°时,∵AF2+AC2=CF2,∴n2+9+80=n2+16n+65,解得:n=,∴F(﹣1,);③当∠ACF=90°时,∵CF2+AC2=AF2,∴n2+16n+65+80=n2+9,解得:n=﹣,∴F(﹣1,﹣);综上所述,点F的坐标为(﹣1,﹣4﹣)或(﹣1,﹣4+)或(﹣1,)或(﹣1,﹣).7.(2022•桐梓县模拟)在平面直角坐标系xOy中,已知抛物线y=﹣与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,它的对称轴与x轴交于点D,直线L经过C,D两点,连接AC.(1)求A,B两点的坐标及直线L的函数表达式;(2)探索直线L上是否存在点E,使△ACE为直角三角形,若存在,求出点E的坐标;若不存在,说明理由.【分析】(1)令x=0,y=0,可分别求出A、B、C三点坐标,在求出函数的对称轴即可求D点坐标,利用待定系数法求直线解析式即可;(2)设E(t,﹣t+2),分三种情况讨论:①当∠CAE=90°时,AC2+AE2=CE2,②当∠ACE =90°时,AC2+CE2=AE2,③当∠AEC=90°时,AE2+CE2=AC2,分别利用勾股定理求解即可.【解析】(1)令y=0,则﹣=0,解得x=﹣2或x=6,∴A(﹣2,0),B(6,0),令x=0,则y=2,∴C(0,2),∵y=﹣=﹣(x﹣2)2+,∴抛物线的对称轴为直线x=2,∴D(2,0),设直线CD的解析式为y=kx+b,∴,解得,∴y=﹣x+2;(2)在点E,使△ACE为直角三角形,理由如下:设E(t,﹣t+2),∴AC2=16,AE2=4t2﹣8t+16,CE2=4t2,①当∠CAE=90°时,AC2+2CE2,∴16+4t2﹣8t+16=4t2,∴t=4,∴E(4,2);②当∠ACE=90°时,AC2+CE2=AE2,∴16+4t2=4t2﹣8t+16,∴t=0(舍);③当∠AEC=90°时,AE2+CE2=AC2,∴4t2﹣8t+16+4t2=16,∴t=0(舍)或t=1,∴E(1,);综上所述:E点坐标为(4,2)或(1,).8.(2022•沈阳模拟)如图1,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0),与y轴交于点C(0,﹣3).(1)求抛物线的解析式.(2)若点M是抛物线上B,C之间的一个动点,线段MA绕点M逆时针旋转90°得到MN,当点N恰好落在y轴上时,求点M,点N的坐标.(3)如图2,若点E坐标为(2,0),EF⊥x轴交直线BC于点F,将△BEF沿直线BC平移得到△B'E'F',在△B'E'F'移动过程中,是否存在使△ACE'为直角三角形的情况?若存在,请直接写出所有符合条件的点E′的坐标;若不存在,请说明理由.【分析】(1)将A(﹣1,0),B(3,0),C(0,﹣3)代入y=ax2+bx+c,即可求解;(2)过点M作HG∥y轴,交H,过点N作NG⊥HG交于点G,证明△AMH≌△MNG(AAS),设M(t,t2﹣2t﹣3),由HM=NG,可求t=即可求M、N点的坐标;(3)设△BEF沿x轴方向平移t个单位长,则沿y轴方向平移t个单位长,则E'(2+t,t),分三种情况讨论:①当∠ACE'=90°时,过点E'作E'H⊥y轴交于点H,可得△ACO∽△CE'H,利用相似比可求E'(﹣,﹣);当N点与E'重合时,也符合题意;②当∠CAE'=90°时,过点A作MN⊥x轴,过点C作CN⊥MN交于N点,过点E'作E'M⊥MN交于M点,可得△AME'∽△CNA,利用相似比可求E'(,);③当∠AE'C=90°时,过点E'作ST⊥x轴交于S点,过点C作CT⊥ST交于T点,可得△ASE'∽△E'TC,利用相似比可求E'(1,﹣1).【解析】(1)将A(﹣1,0),B(3,0),C(0,﹣3)代入y=ax2+bx+c,∴,∴,∴y=x2﹣2x﹣3;(2)过点M作HG∥y轴,交x轴于点H,过点N作NG⊥HG交于点G,∴∠AMH+∠NMG=90°,∵∠AMH+∠MAH=90°,∴∠NMG=∠MAH,∵AM=MN,∴△AMH≌△MNG(AAS),∴AH=MG,HM=NG,设M(t,t2﹣2t﹣3),∴HM=﹣t2+2t+3,NG=t,∴﹣t2+2t+3=t,∴t=,∵点M是抛物线上B,C之间,∴0<t<3,∴t=,∴M(,﹣),∴AH=1+=,∴HG=+=2+,∴N(0,﹣2﹣);(3)存在使△ACE'为直角三角形,理由如下:∵OB=OC,∴∠OBC=45°,设△BEF沿x轴方向平移t个单位长,则沿y轴方向平移t个单位长,∵E(2,0),∴E'(2+t,t),①如图2,当∠ACE'=90°时,过点E'作E'H⊥y轴交于点H,∴∠ACO+∠E'CH=90°,∵∠ACO+∠CAO=90°,∴∠E'CH=∠CAO,∴△ACO∽△CE'H,∴=,∵AO=1,CO=3,CH=﹣3﹣t,E'H=﹣2﹣t,∴=,解得t=﹣,∴E'(﹣,﹣);②如图3,当∠CAE'=90°时,过点A作MN⊥x轴,过点C作CN⊥MN交于N点,过点E'作E'M⊥MN交于M点,∴∠MAE'+∠NAC=90°,∵∠MAE'+∠ME'A=90°,∴∠NAC=∠ME'A,∴△AME'∽△CNA,∴=,∵NC=1,AN=3,AM=t,ME'=3+t,∴=,解得t=,∴E'(,);当E'点与N重合时,△ACE'为直角三角形,∴E'(﹣1,﹣3);③如图3,当∠AE'C=90°时,过点E'作ST⊥x轴交于S点,过点C作CT⊥ST交于T点,∴∠AE'S+∠CE'T=90°,∵∠AE'S+∠E'AS=90°,∴∠CE'T=∠E'AS,∴△ASE'∽△E'TC,∴=,∵AS=3+t,SE'=﹣t,CT=2+t,E'T=t+3,∴=,解得t=﹣1,∴E'(1,﹣1);综上所述:E'的坐标为(﹣,﹣)或(,)或(1,﹣1)或(﹣1,﹣3).9.(2022•东坡区校级模拟)如图,抛物线y=x2﹣(m+2)x+4的顶点C在x轴的正半轴上,直线y=x+2与抛物线交于A,B两点,且点A在点B的左侧.(1)求m的值;(2)点P是抛物线y=x2﹣(m+2)x+4上一点,当△PAB的面积是△ABC面积的2倍时,求点P的坐标;(3)将直线AB向下平移k(k>0)个单位长度,平移后的直线与抛物线交于D,E两点(点D在点E 的左侧),当△DEC为直角三角形时,求k的值.【分析】(1)令y=0得x2﹣(m+2)x+4=0,由Δ=0求得;(2)作CD∥AB交y轴于D,求得CD的函数表达式是y=x﹣2,在DF的延长线上截取EF=2DF=8,过点E作EG∥AB,求得EG的函数表达式,与抛物线函数表达式联立求得;(3)当∠CDE=90°时,可得直线CD的函数表达式是:y=﹣x+2,求出它与抛物线的交点即可,当∠DCE=90°时,设平移后的表达式是y=x+b,与抛物线的表达式联立求得D和E的坐标,再求出DE中点坐标,根据DE=2CI,进而求得b,根据平移的距离得出k值.【解析】(1)令y=0,∴x2﹣(m+2)x+4=0,∵Δ=(m+2)2﹣4×1×4=0,∴m=2或m=﹣6,又﹣,∴m>﹣2,∴m=2;(2)当m=2时,y=x2﹣4x+4=(x﹣2)2,如图1,作CD∥AB交y轴于D,∴CD的函数表达式是y=x﹣2,∴D(0,﹣2),∵y=x+=2与y轴交点F(0,2),∴DF =4,在DF 的延长线上截取EF =2DF =8,过点E 作EG ∥AB ,∴EG 的函数表达式是:y =x +10,由x 2﹣4x +4=x +10得,x =﹣1或x =6,当x =﹣1时,y =﹣1+10=9,当x =6时,y =6+10=16,∴P (﹣1,9)或P (6,16);作CM ⊥AB 于M 交EG 于N ,∵CD ∥AB ∥EG ,∴==,∴点P 到AB 的距离是点C 到AB 距离的2倍,∴△PAB 的面积是△ABC 面积的2倍.(3)当∠CDE =90°时,∴直线CD 的函数表达式是:y =﹣x +2,由x 2﹣4x +4=﹣x +2得,x =1或x =2(舍去),当x =1时,y =﹣1+2=1,∴y =x +(2﹣k )过(1,1),∴1+(2﹣k )=1,∴k =2,当∠DCE =90°时,设平移后的表达式是y =x +b ,由x 2﹣4x +4=x +b 得,化简得,x 2﹣5x +(4﹣b )=0,∴x 1=,x 2=,∴x1+x2=5,y1+y2=5+2b,∴DE的中点I(,),∴x1﹣x2=,∴y1﹣y2=x1+b﹣(x2+b)=x1﹣x2=,∵DE2=(x1﹣x2)2+(y1﹣y2)2=()2+()2=2(9+4b),CI2=(﹣2)2+()2=,由DE=2CI得,2(9+4b)=16+4b2+20b,∴b=﹣1或b=﹣2(舍去),∴k=3,综上所述,k=2或3.10.(2022•海沧区二模)抛物线y1=ax2﹣2ax+c(a<2且a≠0)与x轴交于A(﹣1,0),B两点,抛物线的对称轴与x轴交于点D,点M(m,n)在该抛物线上,点P是抛物线的最低点.(1)若m=2,n=﹣3,求a的值;(2)记△PMB面积为S,证明:当1<m<3时,S<2;(3)将直线BP向上平移t个单位长度得直线y2=kx+b(k≠0),与y轴交于点C,与抛物线交于点E,当x<﹣1时,总有y1>y2.当﹣1<x<1时,总有y1<y2.是否存在t≥4,使得△CDE是直角三角形,若存在,求t的值;若不存在,请说明理由.【分析】(1)将点A(﹣1,0)代入抛物线y1=ax2﹣2ax+c中,可得c=﹣3a,所以抛物线y1=ax2﹣2ax ﹣3a.当m=2,n=﹣3时,M(2,﹣3),将点M的坐标代入函数解析式,求解即可;(2)过点M作x轴的垂线,交直线BP于点Q,根据题意可知,P(a,﹣4a),B(3,0),所以直线BP 的解析式为:y=2ax﹣6a,设M(m,am2﹣2am﹣3a),则Q(m,2am﹣6a),根据三角形的面积公式可得出S和a的函数关系式,再根据二次函数的性质求解即可;(3)由平移可知,y2=2ax+2a,点C(0,2a),联立可得E(5,12a).根据题意当△ECD是直角三角形时,需要分三种情况讨论:①当∠ECD=90°时,过点E作y轴的垂线交y轴于点F,②当∠CDE =90°时,过点E作x轴的垂线于点F,③当∠CED=90°时,分别求解即可.【解答】(1)解:将点A(﹣1,0)代入抛物线y1=ax2﹣2ax+c中,∴a+2a+c=0,∴c=﹣3a,∴抛物线y1=ax2﹣2ax﹣3a.当m=2,n=﹣3时,M(2,﹣3),∴4a﹣4a﹣3a=﹣3,解得a=1;(2)证明:过点M作x轴的垂线,交直线BP于点Q,∵点P为y1=ax2﹣2ax﹣3a的最低点,∴P(a,﹣4a),令y1=ax2﹣2ax﹣3a=0,解得x=﹣1或x=3,∴B(3,0),∴直线BP的解析式为:y=2ax﹣6a,设M(m,am2﹣2am﹣3a),∴Q(m,2am﹣6a),∴QM=2am﹣6a﹣(am2﹣2am﹣3a)=﹣am2+4am﹣3a,∴S=|x B﹣x P|•QM=﹣am2+4am﹣3a=﹣a(m﹣2)2+a,∵﹣a<0,开口向下,∴当m=2时,S的最大值为a,∵a<2,∴当1<m<3时,S=a<2.(3)解:∵当x<﹣1时,总有y1<y2,∴直线l必经过点A(﹣1,0),将点A代入直线l:y2=kx+b,∴﹣k+b=0,∵直线l:y2=kx+b由直线PB:y=2ax﹣6a向上平移t个单位长度得到,∴k=b=2a,b=﹣6a+t=2a,∴t=8a,∴y2=2ax+2a,点C(0,2a),令2ax+2a=ax2﹣2ax﹣3a,解得x=﹣1或x=5,∴E(5,12a).①当∠ECD=90°时,过点E作y轴的垂线交y轴于点F,∴△FEC∽△OCD,∴EF:OC=CF:OD,即5:2a=10a:1,∴a=或a=﹣(舍);∴t=8a=4≥4,符合题意;②当∠CDE=90°时,过点E作x轴的垂线于点F,∴△OCD∽△FDE,∴EF:OD=DF:OC,即12a:1=4:2a,解得a=或a=﹣(舍),∴t=8a=<=4,不符合题意;③当∠CED=90°时,显然不存在.综上,存在,且t的值为.11.(2021•葫芦岛模拟)如图,在平面直角坐标系中,矩形OABC,点A在y轴上,点C在x轴上,其中B (﹣2,3),已知抛物线y=﹣x2+bx+c经过点A和点B.(1)求抛物线解析式;(2)如图1,点D(﹣2,﹣1)在直线BC上,点E为y轴右侧抛物线上一点,连接BE、AE,DE,若S△BDE=4S△ABE,求E点坐标;(3)如图2,在(2)的条件下,P为射线DB上一点,作PQ⊥直线DE于点Q,连接AP,AQ,PQ,若△APQ为直角三角形,请直接写出P点坐标.【分析】(1)求出A点坐标,将A、B点坐标代入y=﹣x2+bx+c即可求解;==2(m+2),S△ABE=m2+m,再由已知得到方程2(m+2)(2)设E(m,﹣m2﹣m+3),求得S△BDE=4(m2+m),求出m的值即可求E点坐标;(3)先求出直线DE的解析式为y=x+1,分三种情况讨论:①当P点与B点重合,此时△APQ为等腰直角三角形,则P(﹣2,3);②过点Q作QM⊥AB交BA的延长线于点M,证明△PAB∽△AQM,设P(﹣2,t),则Q(,),分别求出PB=t﹣3,AB=2,AM=,QM=﹣3=,再由三角形相似可得=,求出t即可求P点坐标;当PQ⊥AP时,AP∥DE,则直线AP的解析式为y=x+3,即可求P点坐标.【解答】解:(1)∵B(﹣2,3),矩形OABC,∴A(0,3),∵抛物线y=﹣x2+bx+c经过点A和点B,∴,∴,∴y=﹣x2﹣x+3;(2)∵D(﹣2,﹣1),∴BD=4,设E(m,﹣m2﹣m+3),=×4×(m+2)=2(m+2),∴S△BDE∵AB=2,=×2×(3+m2+m﹣3)=m2+m,∴S△ABE=4S△ABE,∵S△BDE∴2(m+2)=4(m2+m),解得m=﹣2或m=,∵E点在y轴由侧,∴m=,∴E(,);(3)∵E(,),D(﹣2,﹣1),设直线DE的解析式为y=kx+b,∴,∴,∴y=x+1,∴直线与y轴的交点为(0,1),如图1,当P点与B点重合,Q点为(0,1),此时△APQ为等腰直角三角形,∴P(﹣2,3);如图2,过点Q作QM⊥AB交BA的延长线于点M,∵∠PAQ=90°,∠PBA=90°,∠QME=90°,∴∠PAB=∠AQM,∴△PAB∽△AQM,∴=,设P(﹣2,t),∵直线DE的解析式为y=x+1,PQ⊥DE,∴∠PDQ=45°,∴Q(,),∴PB=t﹣3,AB=2,AM=,QM=﹣3=,∴=,∴t=9,∴P(﹣2,9);如图3,当PQ⊥AP时,∵∠PAQ+∠AQP=90°,∠∠AQE=90°,∴∠APQ=∠AQE,∴AP∥DE,∴直线AP的解析式为y=x+3,∴P(﹣2,1);综上所述:P点的坐标为(﹣2,1)或(﹣2,3)或(﹣2,9).12.(2021•和平区一模)如图,抛物线y=ax2+bx﹣,交y轴于点A,交x轴于B(﹣1,0),C(5,0)两点,抛物线的顶点为D,连接AC,CD.(1)求直线AC的函数表达式;(2)求抛物线的函数表达式及顶点D的坐标;(3)过点D作x轴的垂线交AC于点G,点H为线段CD上一动点,连接GH,将△DGH沿GH翻折到△GHR(点R,点G分别位于直线CD的两侧),GR交CD于点K,当△GHK为直角三角形时.①请直接写出线段HK的长为;②将此Rt△GHK绕点H逆时针旋转,旋转角为α(0°<α<180°),得到△MHN,若直线MN分别与直线CD,直线DG交于点P,Q,当△DPQ是以PQ为腰的等腰三角形时,请直接写出点P的纵坐标为﹣或﹣.【分析】(1)先根据抛物线y=ax2+bx﹣,交y轴于点A,求出点A坐标,再运用待定系数法求直线AC的函数表达式即可;(2)将B(﹣1,0),C(5,0)代入抛物线y=ax2+bx﹣求出a,b,即可得抛物线解析式,运用配方法将抛物线解析式化为顶点式即可得出顶点坐标;(3)①根据△GHK为直角三角形,且点R,点G分别位于直线CD的两侧,可分三种情况:∠GHK=90°或∠HGK=90°或∠GKH=90°,经分析仅有∠GKH=90°符合题意,过点H作HL⊥DG于点L,则HL=HK,先证明△GDK∽△CDF,再运用面积法即可求出答案;②由△DPQ是以PQ为腰的等腰三角形,可分两种情况:PQ=DQ或PQ=DP,分别求出点P的纵坐标即可.【解答】解:(1)设直线AC的函数表达式为:y=kx+c,∵抛物线y=ax2+bx﹣,交y轴于点A,∴A(0,﹣),将A(0,﹣),C(5,0)分别代入y=kx+c,得:,解得:,∴直线AC的函数表达式为:y=x﹣,(2)∵抛物线y=ax2+bx﹣经过B(﹣1,0),C(5,0)两点,∴,解得:,∴抛物线的解析式为y=x2﹣x﹣,∵y=x2﹣x﹣=(x﹣2)2﹣4,∴顶点D的坐标为(2,﹣4);(3)①如图1,∵△GHK为直角三角形,且点R,点G分别位于直线CD的两侧,∴∠GHK=90°或∠HGK=90°或∠GKH=90°,当∠GHK=90°时,∠GHD=90°,点R落在直线DC上,不符合题意,当∠HGK=90°时,∠DGH=∠HGK=90°,点R,点G位于直线CD的同侧,不符合题意,当∠GKH=90°时,点R,点G分别位于直线CD的两侧,符合题意,∴∠GKH=90°,∠DGH=∠RGH,过点H作HL⊥DG于点L,则HL=HK,∵D(2,﹣4),DG⊥x轴,∴G (2,﹣),F (2,0),∴DG =﹣﹣(﹣4)=,CF =5﹣2=3,DF =4,∴CD ===5,∵∠DFC =∠GKH =90°,∠GDK =∠CDF ,∴△GDK ∽△CDF ,∴==,即==,∴GK =,DK =,∵S △GKH +S △GDH =S △GDK ,∴××HK +××HL =××,故答案为:;②∵△DPQ 是以PQ 为腰的等腰三角形,∴PQ =DQ 或PQ =DP ,当PQ =DQ 时,如图2,由旋转知:点H 到PQ 、DQ 的距离相等,∴QH ⊥DP ,DH =HP ,由①知HL =HK =,∵HL ∥CF ,∴=,即=,∴DL =,∴L 的纵坐标为﹣4=﹣,即H 的纵坐标为﹣,∵H 为D 、P 的中点,∴P 的纵坐标为﹣,当PQ =DP 时,如图3,点P 为DQ 的垂直平分线与CD 的交点,∵H (,﹣),∴经过点H平行MN的直线为y=﹣x+,∵点H到直线MN的距离为,∴直线MN的解析式为y=﹣x﹣,∵直线CD的解析式为y=x﹣,∴P(,﹣);综上所述,点P的纵坐标为﹣或﹣.13.(2021•莱芜区三模)二次函数y=ax2+bx+c交x轴于点A(﹣1,0)和点B(﹣3,0),交y轴于点C(0,﹣3).(1)求二次函数的解析式;(2)如图1,点E为抛物线的顶点,点T(0,t)为y轴负半轴上的一点,将抛物线绕点T旋转180°,得到新的抛物线,其中B,E旋转后的对应点分别记为B′,E′,当四边形BEB'E'的面积为12时,求t 的值;(3)如图2,过点C作CD∥x轴,交抛物线于另一点D.点M是直线CD上的一个动点,过点M作x 轴的垂线,交抛物线于点P.当以点B、C、P为顶点的三角形是直角三角形时,求所有满足条件的点M 的坐标.【分析】(1)根据抛物线与x轴的交点坐标,设抛物线解析式为y=a(x+1)(x+3),将C(0,﹣3)代(2)如图1,连接EE′、BB′,延长BE,交y轴于点Q.利用待定系数法求出直线BE的解析式,根据抛物线y=﹣x2﹣4x﹣3绕点T(0,t)旋转180°,可得四边形BEB′E′是平行四边形,运用平行四边形性质即可求得答案;(3)设P(x,﹣x2﹣4x﹣3),根据以点B、C、P为顶点的三角形是直角三角形,分三种情况分别讨论即可:①当∠BP1C=90°时,③当∠P3BC=90°时,③当∠P3BC=90°时,④当∠BCP4=90°时.【解答】解:(1)∵二次函数过点A(﹣1,0),B(﹣3,0),∴设抛物线解析式为y=a(x+1)(x+3),将C(0,﹣3)代入,得:3a=3,解得:a=﹣1,∴二次函数的解析式为:y=﹣x2﹣4x﹣3;(2)如图1,连接EE′、BB′,延长BE,交y轴于点Q.由(1)得y=﹣x2﹣4x﹣3=﹣(x+2)2+1,。
二次函数中的三角形的存在性问题
二次函数中的三角形的存在性问题1.由动点产生的等腰三角形问题(2012•扬州)如图,抛物线y=ax2+bx+c经过A(-l,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当APAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使AMAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.备用图2.由动点产生的直角三角形问题(2013•攀枝花)如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1.0),C(0,-3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设APAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE丄x轴于点E,在y轴上是否存在点M,使得AADM是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.备用图3.由动点产生的等腰直角三角形例.(2011•东营)在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(l,0),如图所示,抛物线y=ax2-ax-2经过点(1)求抛物线的解析式;(2)在抛物线上是否还存在点P(点B除外),使AACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.方法规律1、平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2、平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的两个端点作已知线段的垂线,再以已知线段为直径作圆;3、平面内有两点A(X],y]),B(x2,y3),则AB=,AB中点的坐标为。
4、求三角形的面积:(1)直接用面积公式计算;(2)割补法;(3)铅垂高法;5、平面直角坐标系中直线11和直线I.当l〃l时k二k;当l丄l时k•k=—112121212实战训练1、如图,在平面直角坐标系x Oy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是()A.2B.3C.4D.52、(2007•龙岩)如图,抛物线y=ax2—5ax+4经过AABC的三个顶点,已知BC〃x轴,点A在x轴上,点C 在y轴上,且AC=BC.(1)求抛物线的对称轴3(2)写出A,B,C三点的坐标并求抛物线的解析式3(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在APAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在, 请说明理由.3、(2007•泰安)如图,在A OAB中,Z B二90,Z BOA=30,OA=4,将A OAB绕点O按逆时针方向旋转至△OAB,C点的坐标为(0,4).(1)求A点的坐标;(2)求过C,A,A三点的抛物线y二ax2+bx+c的解析式;(3)在(2)中的抛物线上是否存在点P,使以O,A,P为顶点的三角形是等腰直角三角形?若存在,求出4、(2010•梅州)如图,直角梯形0ABC中,0C〃AB,C(0,3),B(4,1),以BC为直径的圆交x轴于E,D两点(D点在E点右方).1S>求点E,D的坐标;(2)求过B,C,D三点的抛物线的函数关系式;(3)过B,C,D三点的抛物线上是否存在点Q,使ABDQ是以BD为直角边的直角三角形?若不存在,说明理。
2019数学中考复习——二次函数中直角三角形存在性问题
二次函数中直角三角形存在性问题
解题方法
一、代数法:
(1)根据条件用坐标表示三边或三边的平方
(2)以直角顶点分三种情况,根据勾股定理列方程,解方程
(3)根据题目条件及方程解确定坐标
二、几何法:
(1)先分三种情况进行构造:若已知边做直角边,过直角边的两端点作垂线,则第三个顶点在垂线上,若已知边为斜边,可取斜边为直径作圆,直角顶点在圆上
(2)计算:注意题目的几何背景,如有直接的相似则表示线段长度,进行相似求解,无直接相似则围绕顶点分别做坐标轴的平行线,构造一线三角模型进行相似求解。
专题训练
例1.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
几何法:
例2.如图,在平面直角坐标系中,已知点A 的坐标是(4,0),并且OA=OC=4OB ,动点P 在过A ,B ,C 三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由;
例3.如图,在平面直角坐标系中,直线交轴于点,交轴于点,抛物线的图象过点,并与直线相交于、两点. 求抛物线的解析式(关系式);
过点作交轴于点,求点的坐标;
除点外,在坐标轴上是否存在点,使得是直角三角形?若存在,请求出点的坐标,若不存在,请说明理由.
123y x =-
+x P y A 212
y x bx c =-++(1,0)E -A B ⑴⑵A AC AB ⊥x C C ⑶C M MAB ∆M。
【 21】第22章 二次函数中的存在性问题-重难点题型总结(学生版)
第22章二次函数中的存在性问题-重难点题型总结【】【题型1 二次函数中直角三角形存在性问题】【例1】(2021•罗湖区校级模拟)如图,已知抛物线y=﹣x2+2x+3与x轴交于点A、B,与y轴交于点C,点P是抛物线上一动点,连接PB,PC.(1)点A的坐标为,点B的坐标为;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求△PBC的面积;(3)抛物线上存在一点P,使△PBC是以BC为直角边的直角三角形,求点P的坐标.【变式1-1】(2021春•望城区校级月考)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x 轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C(0,3),连接AC,点P为第二象限抛物线上的动点.(1)求a、b、c的值;(2)连接P A、PC、AC,求△P AC面积的最大值;(3)在抛物线的对称轴上是否存在一点Q,使得△QAC为直角三角形,若存在,请求出所有符合条件的点Q的坐标;若不存在,请说明理由.【变式1-2】(2021•长沙模拟)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.点P为线段MB上一个动点,过点P作PD⊥x轴于点D,若OD=m.(1)求二次函数解析式;(2)设△PCD的面积为S,试判断S有最大值或最小值?若有,求出其最值,若没有,请说明理由;(3)在MB上是否存在点P,使△PCD为直角三角形?若存在,请写出点P的坐标;若不存在,请说明理由.【变式1-3】(2021•长沙模拟)如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)直接写出点C的坐标,并求出△ABC的面积;(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(4)若点M在直线BH上运动,点N在x轴上运动,是否存在以点C、M、N为顶点的三角形为等腰直角三角形?若存在,请直接写出此时点M的坐标,若不存在,请说明理由.【题型2 二次函数中等腰三角形存在性问题】【例2】(2020秋•曾都区期末)如图,抛物线y=ax2+4x+c经过A(﹣3,﹣4),B(0,﹣1)两点,点P是y轴左侧且位于x轴下方抛物线上一动点,设其横坐标为m.(1)直接写出抛物线的解析式;(2)将线段AB绕点B顺时针旋转90°得线段BD(点D是点A的对应点),求点D的坐标,并判断点D是否在抛物线上;(3)过点P作PM⊥x轴交直线BD于点M,试探究是否存在点P,使△PBM是等腰三角形?若存在,求出点m的值;若不存在,说明理由.【变式2-1】(2020秋•云南期末)如图,直线y=−12x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(﹣1,0).(1)求B,C两点的坐标.(2)求该二次函数的解析式.(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD 为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由.【变式2-2】(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=5 2.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.【变式2-3】(2021•建华区二模)综合与探究如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A、C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)设该抛物线的顶点为点H,则S△BCH=;(3)若点M是线段BC上一动点,过点M的直线ED平行y轴交x轴于点D,交抛物线于点E,求ME 长的最大值及点M的坐标;(4)在(3)的条件下:当ME取得最大值时,在x轴上是否存在这样的点P,使得以点M、点B、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【题型3 二次函数中平行四边形存在性问题】【例3】(2020秋•元阳县期末)如图,直线y=−12x+c与x轴交于点A(﹣3,0),与y轴交于点C,抛物线y=12x2+bx+c经过点A,C,与x轴的另一个交点为B(1,0),连接BC.(1)求抛物线的函数解析式.(2)M为x轴的下方的抛物线上一动点,求△ABM的面积的最大值.(3)P为抛物线上一动点,Q为x轴上一动点,当以B,C,Q,P为顶点的四边形为平行四边形时,求点P的坐标.【变式3-1】(2020秋•泰山区期末)如图,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图.(1)求直线AB和抛物线的表达式;(2)在y轴上找一点Q,使得△AMQ的周长最小,在备用图中画出图形并求出点Q的坐标;(3)在坐标平面内是否存在点N,使以点A、O、C、N为顶点且AC为一边的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【变式3-2】(2021春•雨花区期末)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)求抛物线的解析式;(2)若点P从点B出发,沿着射线BC运动,速度每秒√2个单位长度,过点P作直线PM∥y轴,交抛物线于点M.设运动时间为t秒.①在运动过程中,当t为何值时,使(MA+MC)(MA﹣MC)的值最大?并求出此时点P的坐标.②若点N同时从点B出发,向x轴正方向运动,速度每秒v个单位长度,问:是否存在t使点B,C,M,N构成平行四边形?若存在,求出t,v的值;若不存在,说明理由.【变式3-3】(2021•北碚区校级模拟)如图1,在平面直角坐标系中,抛物线y=ax2+bx﹣6与x轴交于A,C(﹣6,0)两点(点A在点C右侧),交y轴于点B,连接BC,且AC=4.(1)求抛物线的解析式.(2)若P是BC上方抛物线上不同于点A的一动点,连接P A,PB,PC,求当S△PBC−12S△P AC有最大值时点P的坐标,并求出此时的最大值.(3)如图2,将原抛物线向右平移,使得点A刚好落在原点O,M是平移后的抛物线上一动点,Q是直线BC上一动点.当A,M,B,Q组成的四边形是平行四边形时,请直接写出此时点Q的坐标.【题型4 二次函数中菱形存在性问题】【例4】(2020秋•巴南区期末)如图,抛物线y=﹣x2+bx+c与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求b,c的值;(2)如图1,点P为直线BC上方抛物线上的一个动点,设点P的横坐标m.当m为何值时,△PBC的面积最大?并求出这个面积的最大值.(3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点D,点M为直线BC上的一点,点N是平面坐标系内一点,是否存在点M,N,使以点B,D,M,N为顶点的四边形为菱形,若存在,请直接写出点M的坐标;若不存在,请说明理由.【变式4-1】(2021•湘潭)如图,一次函数y=√33x−√3图象与坐标轴交于点A、B,二次函数y=√33x2+bx+c图象过A、B两点.(1)求二次函数解析式;(2)点B关于抛物线对称轴的对称点为点C,点P是对称轴上一动点,在抛物线上是否存在点Q,使得以B、C、P、Q为顶点的四边形是菱形?若存在,求出Q点坐标;若不存在,请说明理由.【变式4-2】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP'C.是否存在点P,使四边形POP'C为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【变式4-3】(2020秋•南岸区期末)如图,在平面直角坐标系xOy中,二次函数y=x2+bx+c的图象与x轴交于点A(4,0)和B(﹣1,0),交y轴于点C.(1)求二次函数y=x2+bx+c的表达式;(2)将点C向右平移n个单位得到点D,点D在该二次函数图象上.点P是直线BD下方该二次函数图象上一点,求△PBD面积的最大值以及此时点P的坐标;(3)在(2)中,当△PBD面积取得最大值时,点E是过点P且垂直于x轴直线上的一点.在该直角坐标平面内,是否存在点Q,使得以点P,D,E,Q四点为顶点的四边形是菱形?若存在,直接写出满足条件的点Q的坐标;若不存在,请说明理由.【题型5 二次函数中矩形存在性问题】【例5】(2021春•九龙坡区校级期末)如图1,若二次函数y=﹣x2+3x+4的图象与x轴交于点A、B,与y轴交于点C,连接AC、BC.(1)求三角形ABC的面积;(2)若点P是抛物线在一象限内BC上方一动点,连接PB、PC,是否存在点P,使四边形ABPC的面积为18,若存在,求出点P的坐标;若不存在,说明理由;(3)如图2,若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K为顶点,BC为边的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.【变式5-1】(2021•齐齐哈尔)综合与探究如图,在平面直角坐标系中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A、B,与y轴交于点C,连接BC,OA=1,对称轴为直线x=2,点D为此抛物线的顶点.(1)求抛物线的解析式;(2)抛物线上C、D两点之间的距离是2√2;(3)点E是第一象限内抛物线上的动点,连接BE和CE,求△BCE面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标.【变式5-2】(2021春•杏花岭区校级月考)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(2)若点P为直线BC下方抛物线上一动点,当点P运动到某一位置时,△BCP的面积最大,求△BCP 的最大面积及此时点P的坐标;(3)点M为抛物线对称轴上一动点,点N为坐标平面内一点,若以点B,C,M,N为顶点的四边形是矩形,直接写出点M的坐标.【变式5-3】(2021•北碚区校级模拟)如图,已知抛物线y=ax2+bx﹣4与x轴交于A,B两点,与y轴交于点C,且点A的坐标为(﹣2,0),直线BC的解析式为y=12x﹣4.(2)如图1,过点A作AD∥BC交抛物线于点D(异于点A),P是直线BC下方抛物线上一点,过点P作PQ∥y轴,交AD于点Q,过点Q作QR⊥BC于点R,连接PR.求△PQR面积的最大值及此时点P 的坐标.(3)如图2,点C关于x轴的对称点为点C′,将抛物线沿射线C′A的方向平移2√5个单位长度得到新的抛物线y′,新抛物线y′与原抛物线交于点M,原抛物线的对称轴上有一动点N,平面直角坐标系内是否存在一点K,使得以D,M,N,K为顶点的四边形是矩形?若存在,请直接写出点K的坐标;若不存在,请说明理由.【题型6 二次函数中正方形存在性问题】【例6】(2021•渝中区校级二模)在平面直角坐标系xOy中,抛物线y=ax2+bx+3与y轴交于点C,与x 轴交于A,B两点(点A在点B的左侧),其中A(﹣2,0),并且抛物线过点D(4,3).(1)求抛物线的解析式;(2)如图1,点P为直线CD上方抛物线上一点,过P作PE∥y轴交BC于点E,连接CP,PD,DE,求四边形CPDE面积的最值及点P的坐标;(3)如图2,将抛物线沿射线CB方向平移得新抛物线y=a1x2+b1x+c1(a1≠0),是否在新抛物线上存在点M,在平面内存在点N,使得以A,C,M,N为顶点的四边形为正方形?若在,直接写出此时新抛物线的顶点坐标,若不存在,请说明理由.【变式6-1】(2020秋•高明区期末)如图,抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y 轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求该抛物线的函数表达式;(2)点Q在该抛物线的对称轴上,若△ACQ是以AC为腰的等腰三角形,求点Q的坐标;(3)若P为BD的中点,过点P作PF⊥x轴于点F,G为抛物线上一动点,GM⊥x轴于点M,N为直线PF上一动点,当以F、M、G、N为顶点的四边形是正方形时,直接写出点M的坐标.【变式6-2】(2021•合川区校级模拟)如图,在平面直角坐标系.xOy中,直线y=x﹣4与x轴交于点A,与y轴交于点B,过A,B两点的抛物线交x轴于另一点C(﹣2,0).(1)求抛物线解析式;(2)如图1,点F是直线AB下方抛物线上一动点,连接F A,FB,求出四边形F AOB面积最大值及此时点F的坐标.(3)如图2,在(2)问的条件下,点Q为平面内y轴右侧的一点,是否存在点Q及平面内任意一点M 使得以A,F,Q,M为顶点的四边形是正方形?若存在,直接写出点Q的坐标;若不存在,说明理由.【变式6-3】(2021•海南模拟)如图,平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A(﹣3,0),B (4,0),交y轴于点C(0,4).(1)求抛物线的函数表达式;(2)直线y=34x+94与抛物线交于A、D两点,与直线BC交于点E.若点M(m,0)是线段AB上的动点,过点M作x轴的垂线,交抛物线于点F,交直线AD于点G,交直线BC于点H.①当S EOG=12S△AOE时,求m的值;②在平面内是否存在点P,使四边形EFHP为正方形?若存在,请求出点P的坐标,若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数中三角形存在性问题(二)
1.相似三角形
2.等腰直角三角形
例一:
1.如图,抛物线经过三点A(1,0),B(4,0),C(0,-2)
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以B,P,M为顶点的三角形与OBC△相似(相似比不为1)?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
2.如图,抛物线与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标.
(2)试判断△BCD的形状,并说明理由.
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.
y=向左平移1个单位,再向下平移4个单位,得到抛物线3.如图,在平面直角坐标系xOy中,抛物线2x
()k
-
=2,所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为D。
x
y+
h
(1)求h、k的值。
(2)判断△ACD的形状,并说明理由。
(3)在线段AC上是否存在点M,使△AOM与△ABC相似?若存在,求出点M的坐标;若不存在,说明理由。
4.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y 轴上,OA=OD=2,OC=OE=4,2OB=OD,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由.
5. 在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示:抛物线22
-+=ax ax y 经过点B.
(1)求点B 的坐标; (2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.
6.如图,在平面直角坐标系中,点A 、B 在x 轴上,点C 、D 在y 轴上,且OB=OC=3,OA=OD=1,抛物线
(1)求这条抛物线的解析式。
(2)P 为抛物线上一动点,E 为直线AD 上一动点,是否存在点P ,使以点A 、P 、E 为顶点的三角形为等腰直角三角形?若存在,请求出所有点的坐标;若不存在,请说明理由。
1.在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.
(1)写出这个二次函数图象的对称轴。
(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式。
2.已知:如图,二次函数图象的顶点坐标为C(1,-2),直线y=km+b的图象与该二次函数的图象交于A、B两点,其中A点坐标为(3,0),B点在y轴上.点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这个二次函数的图象交于点E.
(1)求这个二次函数的解析式;
(2)设点P的横坐标为x,求线段PE的长(用含x 的代数式表示);
(3)点D为直线AB与这个二次函数图象对称轴的交点,若以点P、E、D为顶点的三角形与△AOB相似,请求出P点的坐标.
3.如图,抛物线 y=ax 2
−2ax+c(a ≠0) 交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C(0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G. (1)求抛物线的解析式;
(2)抛物线的对称轴l 在边OA(不包括0、A 两点)上平行移动,分别交x 轴于点E ,交CD 于点F ,交AC 于点M ,交抛物线于点P ,若点M 的横坐标为m ,请用含m 的代数式表示PM 的长;
(3)在(2)的条件下,连结PC ,则在CD 上方的抛物线部分是否存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似?若存在,求出此时m 的值,并直接判断△PCM 的形状;若不存在,请说明理由.
4.如图,在平面直角坐标系中,点O 为坐标原点,抛物线52
++=bx ax y 经过点M (1,3)和N (3,5)。
(1)试判断抛物线与x 轴交点的情况。
(2)平移这条抛物线,使平移后的抛物线经过A (-2,0)且与y 轴的交点为B 同时满足以A 、O 、B 为顶点的三角形是等腰直角三角形。
请写出平移的过程,并说明理由。