waters超高效液相色谱

合集下载

(沃特世)UPLC超高效液相色谱介绍

(沃特世)UPLC超高效液相色谱介绍

UPLC超高效液相色谱(沃特世)主要特点超高速度1.小颗粒填料色谱柱能超乎寻常地提高分析速度而不降低分离度2.显著增加样品的通量,提高工作效率,降低分析成本3.节省以往一向耗时的方法开发与认证的时间超高灵敏度1.小颗粒技术和整体化的仪器设计,UPLC®能在改善分离度的同时提高灵敏度2.更高的柱效和更窄的色谱峰,意味着更高的色谱峰高和更高的灵敏度3.在得到超高分离度和超高速度的同时能够得到超高灵敏度超高分离度1.利用高效创新小颗粒填料(1.7μL),获得超强分离能力2.超低扩散体积,充分发挥小颗粒填料分离能力3.超高分离度,适合复杂混合物的分离分析超级创新为满足色谱实验室对历史追踪不断增长的需求,每根ACQUITY UPLC®色谱柱出售时均带一个永久性的eCord,它能记录进样次数,最高的反压和柱温,其中还含有由沃特世公司提供的该色谱柱的分析测试合格证书。

色谱柱安装后,智能化的芯片会自动地把关键参数采集进入色谱柱的历史文档,并记录色谱柱整个寿命周期的历史。

该记录不能被删除。

技术参数最大操作压力:15000psi(1mL/min)溶剂输送精度:0.075%RSD或0.02minSD流速范围:0.010-2.000mL/min,增量0.001mL/min梯度曲线:11种。

包括线性、凹线、凸线和两种步进梯度变化有效系统体积:<140μL,与系统反压无关。

带标准混合器溶剂选择:最多四种。

可在A1与A2和B1和B2之间选择交叉污染:0.005%或2nL进样范围:0.5-50μL进样精度:<0.3%RSD进样线性:>0.999样品室温度控制:4 - 40℃色谱柱历史追踪:使用eCord技术检测器配置:紫外可见检测器、光电二极管矩阵检测器、蒸发光散射检测器以及所有质谱检测器超高速度,超高灵敏度,超高分离度,超级创新为满足色谱实验室对历史追踪不断增长的需求,每根ACQUITY UPLC®色谱柱出售时均带一个永久性的eCord,它能记录进样次数,最高的反压和柱温,其中还含有由Waters公司提供的该色谱柱的分析测试合格证书。

waters超高效液相色谱仪操作步骤

waters超高效液相色谱仪操作步骤

第一部分:仪器准备1. 确保waters超高效液相色谱仪处于正常工作状态,检查仪器是否连接电源,是否有故障指示灯显示。

2. 打开色谱仪软件,检查仪器参数设置是否符合实验要求,包括流速、温度、检测波长等。

3. 准备所需的色谱柱、色谱柱连接器、进样器以及其他实验所需的耗材。

第二部分:样品准备1. 准备实验所需的样品,确保样品已经滤过或者处理过以去除杂质。

2. 根据实验要求,将样品溶解在适当的溶剂中,并进行稀释或者稀释。

第三部分:超高效液相色谱仪操作步骤1. 开始操作前,先进行系统平衡。

具体操作步骤为:将色谱柱连接至色谱柱连接器上,然后连接至色谱仪,用洗脱液平衡色谱柱。

2. 设置色谱仪的操作参数,包括流速、温度、检测波长等。

3. 进行样品进样,具体操作步骤为:将进样器连接至色谱仪,将稀释好的样品注入进样器中,设置好进样量。

4. 开始进行实验,监控色谱图谱的变化,记录实验数据。

5. 实验结束后,对色谱柱和色谱仪进行清洗和维护,确保仪器干净、整洁。

第四部分:数据处理和分析1. 对实验获得的数据进行处理和分析,比对标准曲线,计算样品中所含物质的浓度或者纯度。

2. 对实验结果进行统计分析,进行数据呈现,如绘制色谱图谱、制作数据统计图表等。

3. 通过数据处理和分析,得出实验结论,对实验结果进行解释和讨论。

第五部分:实验安全及注意事项1. 在操作过程中,注意个人安全,避免发生化学品溅泼或者接触有害物质。

2. 操作过程中需严格按照实验要求和操作规程进行,如有疑问请及时向实验指导老师或专业人士请教。

3. 实验结束后,及时清理实验台面和仪器设备,妥善存放试剂和耗材。

通过以上步骤的操作,可以保证在使用waters超高效液相色谱仪进行实验时,能够得到准确、可靠的实验结果,为科研工作和学术研究提供有力支持。

第六部分:精密控制与调试1. 在进行实验操作前,要确保色谱仪的各项参数已经精确调试完毕。

这包括流速、温度、压力、检测波长等参数的精准控制。

超高效液相色谱串联质谱法和离子色谱法测定饮用水中二氯乙酸、三氯乙酸的比对

超高效液相色谱串联质谱法和离子色谱法测定饮用水中二氯乙酸、三氯乙酸的比对

超高效液相色谱串联质谱法和离子色谱法测定 饮用水中二氯乙酸、三氯乙酸的比对寇 斐(郑州自来水投资控股有限公司,河南郑州 450000)摘 要:目的:分别利用超高效液相色谱串联质谱法与离子色谱法对生活饮用水中二氯乙酸、三氯乙酸进行测定,比较其检测性能。

方法:样品经滤膜过滤后,以乙腈/0.05%乙酸水溶液作为流动相,梯度洗脱,以三重四极杆质谱检测器进行检测,根据保留时间和特征离子峰进行定量分析。

离子色谱法以KOH作为淋洗液,IonPac AS19分析柱和IonPac AG19保护柱,8~40 mmol·L-1梯度淋洗,以电导检测器检测。

从检测时间、准确度、精密度、检出限等方面对两种方法进行对比。

结果:两种方法测定二氯乙酸、三氯乙酸线性良好,超高效液相色谱串联质谱法测定二氯乙酸检出限为0.000 6 mg·L-1,三氯乙酸检出限为0.001 8 mg·L-1,检测时间为4.5 min;离子色谱法测定二氯乙酸检出限为0.001 2 mg·L-1,三氯乙酸检出限为0.002 2 mg·L-1,检测时间为32 min。

两种方法精密度和准确度均满足实验要求。

结论:生活饮用水中二氯乙酸、三氯乙酸可以用以上两种方法进行定性和定量分析,其中离子色谱法所需有机试剂少,但检测时间长,检测限较高;超高效液相色谱串联质谱法检测限较低,灵敏度高,检测时间短。

日常检测工作中,可根据水样具体情况,选择合适的检测方法。

关键词:二氯乙酸;三氯乙酸;生活饮用水Comparison Between Ultra High Performance LiquidChromatography Tandem Mass Spectrometry and Ion Chromatography for the Determination of Dichloroacetic Acid and Trichloroacetic Acid in Drinking WaterKOU Fei(Zhengzhou Water Supply Investment Holdings Company Limited, Zhengzhou 450000, China) Abstract: Objective: Dichloroacetic acid and trichloroacetic acid in drinking water were determined by ultra-high performance liquid chromatography tandem mass spectrometry and ion chromatography respectively, and their detection performance was compared.. Method: The liquid chromatography tandem mass spectrometry sample was filtered through a filter membrane, and acetonitrile/0.05% acetic acid aqueous solution was used as the mobile phase for gradient elution. The detection was performed using a triple quadrupole mass spectrometer detector, and quantitative analysis was performed based on retention time and characteristic ion peaks. The ion chromatography method used KOH as the eluent, IonPac AS19 analysis column and IonPac AG19 protection column, with a gradient elution of 8~40 mmol·L-1, and conductivity detector detection. Compare the two methods based on indicators such as detection time, accuracy, precision, and detection limit. Result: The linearity of the two methods for determining dichloroacetic acid and trichloroacetic acid was good. The detection limit of dichloroacetic acid by ultra performance liquid chromatography tandem mass spectrum was 0.000 6 mg·L-1, and the detection limit of trichloroacetic acid was 0.001 8 mg·L-1, with a detection time of 4.5 min; the detection limit of ion chromatography for dichloroacetic acid is 0.001 2 mg·L-1, and for trichloroacetic acid is 0.002 2 mg·L-1, with a detection time of 32 min. The precision and accuracy of both methods meet the experimental requirements. Conclusion: Dichloroacetic acid and trichloroacetic acid in drinking water can be qualitatively and quantitatively analyzed by the above two methods. Ion chromatography生活饮用水的安全越来越受到人们的重视,随着饮用水消毒技术的发展,氯化消毒、臭氧消毒、二氧化氯等消毒技术的应用越来越广泛。

超高效液相色谱(UPLC)的应用

超高效液相色谱(UPLC)的应用

超高效液相色谱(UPLC)的应用
超高效液相色谱是分离科学中的一个全新类别, UPLC借助于HPLC的理论及原理,涵盖了小颗粒填料、非常低系统体积及快速检测手段等全新技术,增加了分析的通量、灵敏度及色谱峰容量。

超高效液相色谱(UPLC)是一个新兴的领域,作为世界第一个商品化UPLC产品的Waters ACQUITY UPLCTM 超高效液相色谱系统也是刚刚出现,因此目前已发表的文献资料还很缺乏。

与传统的HPLC相比,UPLC的速度、灵敏度及分离度分别是HPLC的9倍、3倍及1.7倍。

因此其在蛋白质、多肽、代谢组学分析及其它一些生化领域里将会得到广泛应用。

另外,在天然产物的分析方面,使用UPLC与质谱检测器连接,会对天然产物分析,特别是中药研究领域的发展是一个极大的促进。

在提到“蛋白组学”或“代谢组学”时,与没有“组”的差别从分析的角度说就是样品量极大,需要在短时间分析成千上万的样品。

UPLC不损失分离度的高速度优点在这里就能充分体现。

多数生化样品及天然产物都十分复杂,图1是多肽指纹图的HPLC与UPLC两个色谱图(紫外检测)比较。

在同样条件下,UPLC能分离的色谱峰比HPLC多出一倍还多。

图2是代谢产物分析的色谱图。

在同样条件下,UPLC的分辨率能够认出更多的色谱峰(质谱检测器- LCT)。

watershsst3色谱柱说明书

watershsst3色谱柱说明书

watershsst3色谱柱说明书Waters HSS T3色谱柱是一种高效液相色谱柱,被广泛应用于生命科学、制药、环境和食品分析等领域。

该柱具有优异的分离性能和稳定性,可用于分离复杂的混合物,提供准确和可靠的分析结果。

以下是关于Waters HSS T3色谱柱的详细说明:1. 柱材料:Waters HSS T3色谱柱采用高质量的硅胶材料制成,具有特殊的表面处理,能够提供优异的色谱性能和稳定性。

2. 柱尺寸:Waters HSS T3色谱柱的常见尺寸为4.6mm乘250mm,具有较大的分离能力和样品容量。

此外,还提供其他规格的色谱柱可供选择。

3. 分离性能:Waters HSS T3色谱柱具有极好的分离性能,可有效分离复杂样品中的成分。

其独特的柱底和柱壁结构可以增强样品和柱相之间的相互作用,提高分离效果。

4. 稳定性:Waters HSS T3色谱柱具有出色的稳定性和重现性,可持续运行大量样品分析而不产生漂移或降解。

柱底和柱壁的特殊表面处理使得该色谱柱不易受到污染和损害,有助于保持柱的使用寿命。

5. 应用范围:Waters HSS T3色谱柱广泛适用于各种样品类型的分析,包括有机化合物、天然产物、药物、代谢产物等。

它可用于定量和定性分析,以及结构鉴定和纯化工作。

6. 色谱条件:Waters HSS T3色谱柱适用于反相液相色谱和离子对色谱法。

在反相液相色谱中,可以使用不同的流动相和梯度条件来优化分离效果。

在离子对色谱中,可以添加离子对试剂来改变运行条件。

7. 包装和存储:Waters HSS T3色谱柱以高压不锈钢柱体包装,旨在保护柱底和柱壁免受损坏和污染。

柱体上标有批号和有效期,以便用户能够正确追踪使用日期和有效期限。

该色谱柱应存放在避光、干燥和温度控制的环境中,以确保其质量和性能。

总之,Waters HSS T3色谱柱是一种优质的色谱柱,具有卓越的分离性能和稳定性,适用于各种复杂样品的分析工作。

Waters高效液相色谱系统操作规程

Waters高效液相色谱系统操作规程

Waters高效液相色谱系统操作规程一. 准备1. 使用前应根据待检样品的检验方法准备所需的流动相(应足够;流动相必须用滤膜过滤)、样品和标准溶液(也可在平衡系统时配制)。

2. 通电前应检查仪器设备之间的电源线、数据线和输液管道是否连接正常。

3. 接通电源,依次打开1525泵、2487检测器,待检测器自检结束显示测量状态时,打开打印机、电脑显示器、主机。

4. 打开Breeze软件,进入系统主界面。

二. 操作步骤1.更换流动相。

2.在主界面中点击“Manage Breeze”按钮,选择system选项,出现系统连接示意图,观察各个部件是否连接好。

若未连接好,则需点击“Diagnostics/Reconfigure”进行诊断。

3.回到主界面,选择“Manage Breeze”中的project选项,单击“Make a new project”,“Next”,在“Project Name”中输入名称,单击“Finish”。

单击“Change a project/User”,在“Project”中选择输入的名称,单击“OK”。

4.单击“View Method”按钮,点击“Pump”图标,设置泵的参数。

点击“UV Det”图标,设置紫外检测器的波长。

单击“Save Method”按钮保存设置方法。

5. 打开泵的抽液阀,使用灌注注射器抽取一定量的洗脱剂。

单击Purge图标,出现“Purge Wizard”对话框,选中“Purge Pump”选项,点击“Next”“Next”,调节A、B泵的流量分别为约3ml/min。

打开泵的参考阀,点击“Next”。

Purge结束后关闭参考阀。

6.点击主界面中的“press to equilibrate system/ monitor baseline”按钮,平衡系统0.5-1h,直至基线稳定。

7.点击“press to make a single injection”按钮,进入“Specify Single Inject Parameters”对话框,设置参数,点击“inject”。

UPLC(超高效液相色谱)简介

UPLC(超高效液相色谱)简介

UPLC(超高效液相色谱)简介超越HPLC随着科学技术的进步,对液相色谱技术的要求也不断提高,单从技术角度的改进已经不行。

这就需要同时从科学与技术的角度出发,或者说从理论高度对液相色谱重新认识。

因此,UPLC(超高效液相色谱)概念得以提出,将HPLC的极限作为自己的起点。

在1996年,Waters公司推出Alliance HPLC时的主要目标是提高液相色谱的"精度"。

当时多数公司都认为HPLC技术已经发展到极致了、而同时用户对性能没有更高的需求,因此HPLC的目标应该是降低成本、走向更低的价格以获得更广泛的应用。

针对这样的观念,Waters公司提出:HPLC的技术没有到达极限,用户对HPLC有更高的要求,HPLC精度的提高对更好、更可靠的结果有极大的益处,对法规的遵从也是一个极大的促进。

站在当今世界科技前沿的液相色谱用户现在又有了新的需求。

首先是改进生产力的需求,因为大量的样品需要在很短的时间内完成,例如代谢组学分析;其次是在生化样品及天然产物样品的分析中,样品的复杂性对分离能力提出了更高的要求;第三是在与MS及MS/MS等检测技术联用时,对连接的质量提出了更高的要求。

简而言之,我们需要"更快地得到更好的结果"。

今天我们发现,随着科学技术的进步,对液相色谱技术的要求也不断提高,单从技术角度的改进已经不行。

这就需要同时从科学与技术的角度出发,或者说从理论高度对液相色谱重新认识。

因此UPLC(超高效液相色谱)概念的提出也就十分自然。

简而言之,UPLC是用HPLC的极限作为自己的起点。

理论基础早在1956年,J.J van Deemter就发表了他著名的理论:van Deemter曲线及其方程式。

最早这个理论是用在气相色谱上的,但是后来出现的液相色谱上也能应用这个理论。

Waters公司引入UPLC的概念就是由研究这个著名的方程式开始。

首先探讨一下这个著名的方程式。

waters高效液相色谱

waters高效液相色谱

Waters高效液相色谱操作说明一.简介本高效液相色谱实验包括:waters1525泵+waters2487双波长检测器+色谱柱+电脑(breeze 图谱处理软件)+流动相二.操作流程0.准备工作确定色谱实验方法,处理好流动相1,换好流动相,确定色谱柱选择无误1.开机打开泵开关,听到两声“嘀”的响声之后,再打开波长检测器。

检测器进入预热阶段(此时检测器面板进入5min倒计时)这期间打开电脑,进入英文windows操作系统2,待检测器自检完毕(整个自检过程约6~7min),打开电脑桌面的(Breeze软件)。

待程序完全启动,整个开机过程结束。

系统默认进入上次使用的方案。

2.建立新方法和新方案2.1新建方案方案主要用来储存你的各个实验方法,数据等内容,你可以把它理解为一个文件夹。

2.1.1创建步骤选择→单击→单击"next"→在"project name"中输入方案名称(如abc),"comments"中可填注释,也可不填。

→单击"finish"2.1.2打开创建的方案在界面下→单击→在"project"中找到你创建的方案(如abc)→点击"OK",即进入到我们自己的方案中了2.2新建方法在新建的方案中,需要建立不同的试验方法。

试验方法主要设定的包括洗脱方式,检测波长等参数。

2.2.1新建方法步骤单击→单击→单击(Flow选项卡)→在programmed flow中设定你的洗脱方式(此步在2.2.2详述)→单击→单击(channel 1选项卡)→在"wavelength"框内设定你的检测波长(如265nm,280nm,215nm等等)→(设定结束,保存):单击→输入方法名称如(abc 1)→单击"save"32.2.2洗脱方式的设定(重要)在programmed flow中可看到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超高效液相色谱(UPLC®)简介
UPLC原理基础
随着科学技术的进步,液相色谱用户对液相色谱技术的
要求也不断提高,他们需要“更快地得到更好的结果”。


此超高效液相色谱(UltraPerformance LC®)概念的提出也
就十分自然;简单的说:UPLC是用HPLC的极限作为自己的起
点,把分离科学推向一个新领域。

沃特世公司引入UPLC的概念是由研究著名的van
Deemter 方程式及其曲线开始。

由van Deemter曲线可以得到以下几点启示:
首先,颗粒度越小柱效越高;其次,不同的颗粒度有各自
最佳柱效的流速;最后,更小的颗粒度使最高柱效点向更高
流速(线速度)方向移动,而且有更宽的线速度范围。

所以
降低颗粒度不但能提高柱效,同时还能提高分析速度。

使用更高的流速会受到色谱柱填料耐压及仪器耐压的
限制。

反之;如果不用到最佳流速,小颗粒度填料的高柱效
就无法体现。

此外;更高的柱效需要更小的系统体积(死体积)、更快的检测速度等一系列条件的支持,否则小颗粒度填料的高柱效同样无法充分体现。

因此;要真正创建一个全新的分离科学领域- UPLC,必须解决以下几个问题:
1. 大幅度提高色谱柱的性能:第一要解决小颗粒填料的耐压问题,第二要解决小颗粒填
料的装填问题,包括颗粒度的分布以及色谱柱的结构。

2. 高压溶剂输送单元(超过15,000psi)
3. 完善的系统整体性设计,降低整个系统的体积,特别是死体积,并解决超高压下的耐
压及渗漏问题。

4. 快速自动进样器,降低进样的交叉污染
5. 高速检测器;优化流动池以解决高速检测及扩散问题
6. 系统控制及数据管理,解决高速数据的采集、仪器的控制问题
新型的色谱填料及装填技术
UPLC分离只有在新型的、耐压而且颗粒度分布范围很窄的1.7µm颗粒填料合成出来之后才有可能实现。

色谱柱技术应该涵盖几个方面的内容:首先是填料的合成,以得到高质量的填料颗粒,包括:耐高压、耐酸碱等等。

其次是颗粒的筛选,选出颗粒度分布尽可能窄的填料。

最后是装填技术,以保证既能堵住颗粒不使其外流,又不至于引起反压的大幅升高。

沃特世公司的ACQUITY UPLC®BEH色谱柱使用了更严格的筛分技术,使1.7µm填料的分布很窄,并且使用了全新筛板(专利申请中)及其它色谱柱硬件(柱管及其连接件),在超过20,000psi的压力下装填。

沃特世公司为此安装了一条新的色谱柱装填生产线及新的测试设备。

因此;ACQUITY UPLC色谱柱的性能及质量比目前的HPLC柱有了质的飞跃。

基于1.7 μm小颗粒技术的UPLC,与人们熟知的HPLC技术具有相同的分离原理。

不同的是:UPLC不仅比传统HPLC具有更高的分离能力,而且结束了人们多年来不得不在速度和分离度之间忍痛割舍的历史。

使用UPLC可以在很宽的线速度、流速和高反压下进行高效的分离工作,并获得优异的结果。

(见下图)
供的信息达到了一个新的水平。

而且又极大地缩短了开发方法所需的时间。

UPLC:HPLC的未来
UPLC可以更快的速度和更高的质量完成以往HPLC的工作,沃特世将致力于丰富已有的
UPLC产品,现已推出了六种新的色谱柱,包括:BEH C18、C8、苯基和ShieldRP18、 HILIC 及
HSS T3。

同时还有适应UPLC使用的蒸发光散射检测器(ELSD),进一步扩展了UPLC的应用领
域。

我们确信:UPLC将对全球的实验室产生持久而深刻的影响。

UPLC是HPLC的未来。

相关文档
最新文档