八上综合测试题2015.12.26
八年级上册综合测试题(共6套,含答案)

八年级上册综合测试题(共6套)一、选择题(共20题,每题2分,共40分)1、血吸虫是扁形动物,能寄生在人、畜的血管内,引起肠炎,肝硬化等疾病。
我国科研工作者通过长期调查研究总结出预防血吸虫病的有效方法是( A )A 消灭钉螺B 避免下水作业C 不吃草鱼、鲫鱼等淡水鱼以及虾类D 不吃猪肉2、在生活中,有很多平时叫鱼的动物却不是真正的鱼类,下列都属于鱼类的一组是( C )A 比目鱼、带鱼、鲍鱼B 鲳鱼、娃娃鱼、草鱼C 鳙鱼、金钱鱼、草鱼D 鳙鱼、鳄鱼、青鱼解析:A项中鲍鱼属于软休动物,B 项中娃娃鱼属于两栖动物,D项中鳄鱼属于爬行动物。
3、美丽的工艺品珊瑚属于( D )A 一种具有优美造型的天然矿物质B 一种植物的化石C 一种原生动物分泌的石灰质物质D 一种腔肠动物分泌的石灰质物质4、人很可能感染蛔虫病的生活习惯是( B)①喝白开水②喝生水③睡懒觉④随地大便⑤不勤洗手⑥不勤濑口A ①②④B ②④⑤C ①②③④D ①②③⑥5、把甲蚯蚓的尾部切去,把乙蚯蚓的头部切去,过一段时间,结果是( C )A 甲不能长出尾部,乙能长出头部B 甲和乙均不能长出失去的部分C 甲和乙均能长出失去的部分D 甲能长出失去的尾部,乙不能长出头部。
6、世界上许多国家成立了蚯蚓养殖厂,并把蚯蚓养殖厂称为“环境净化装置”。
蚯蚓能用来净化环境的主要原因是( D )A 能在湿润土壤的深层生活B 身体柔软软,能在垃圾中钻洞C 身体分节,运动灵活自如D 能分解枯叶、配根等中的有机物7、有关河蚌体内的珍珠的形成,下列叙述正确的是( A )A 由外套膜分泌的珍珠质包被异物形成的B 由闭壳肌的分泌物包被异物形成的C 由斧足上的细胞分泌的黏液形成的D 由贝壳外层细胞分裂形成的8、到海边去游玩时,我们喜欢在沙滩上拾贝壳、捉螃蟹,具有贝壳的动物和螃蟹分别属于( B)A 软体动物和环节动物B 软体动物和节肢动物C 无脊椎动物和脊椎动物D 环节动物和爬行动物9、如果你想了解蜜蜂的结构特点和生活习性,应从下列哪本书中查找比较方便( B )A 《生物学》B 《昆虫学》C 《软体动物学》D 《脊椎动物学》10、你有过捉鱼的经历吗?下河摸鱼时,已经捉到手的鱼往往又会让它挣脱,这是由于其体表生有很滑的黏液。
八年级上册全册全套试卷综合测试卷(word含答案)

八年级上册全册全套试卷综合测试卷(word含答案)一、初二物理声现象实验易错压轴题(难)1.在探究声音的产生和传播的条件时,同学们做了以下实验.(1)小华同学将一只通电的小电铃放在连通了抽气机的玻璃罩内,如图1所示,用抽气机把玻璃罩内的空气逐渐抽出,会发现声音的响度逐渐减小。
如果把空气又逐渐通入玻璃罩内,将会发现_________,此实验说明_______。
(2)小丽等同学利用如图2所示的实验装置进行探究,将系在细线上的乒乓球靠近音叉。
①当小丽同学用小锤敲击音叉的时候,既能听到音叉发出的声音,又能观察到________,通过实验现象得到的结论是__________。
②乒乓球在实验中起到什么作用?_________。
③在实验操作过程中,小丽同学采用:先将音叉离开乒乓球一定距离后敲击音叉,然后再靠近乒乓球,观察现象;小刚同学采用:先将音叉贴紧乒乓球,然后再敲击音叉,观察现象。
你认为哪位同学的操作合理?________。
理由是______。
【答案】声音的响度逐渐增大声音的传播需要介质乒乓球被弹起跳动发声的音叉在振动将不易观察到的音叉的振动转化为乒乓球的弹起小丽小刚的做法分不清是音叉振动让乒乓球跳动起来,还是敲击音叉的人的动作让乒乓球跳动起来【解析】【分析】【详解】(1)[1][2]随着玻璃罩内空气的逐渐减少,声音响度逐渐减小,如果把空气逐渐通入玻璃罩,声音响度会逐渐增大。
说明声音的传播需要介质;(2)[3][4]用小锤敲击音叉时,既能听到声音又能观察到乒乓球被弹起跳动,说明发声的音叉在振动;[5]实验中利用乒乓球把音叉不易观察的微小振动转化为乒乓球的明显振动;[6][7]小丽同学先敲击音叉,然后将音叉再靠近乒乓球,若乒乓球振动,则能证明发声的音叉在振动;小刚先将音叉贴紧乒乓球,然后敲击音叉,若乒乓球振动,则分不清是因为人敲击使球振动,还是音叉引起球的振动。
所以小刚的操作不合理。
2.大海同学为了探究琴弦的音调与音弦的材料、张紧程度、横截面积、长短的关系,设计了如图所示的实验,采用了表一所列各种规格的琴弦、几个钩码和一个能够测量振动频率的仪器.编号材料长度/cm 横截面积/mm2A 铜60 0.76B 铜60 0.89C 铜60 1.02D 铜80 0.76E 铜F 铜100 0.76G 钢80 1.02H 尼龙80 1.02I 尼龙100 1.02实验步骤:(1)在大木板的两边立起两块小木板,在大木板的一端牢牢钉人一根大钉子,把弦的一端绑在钉子上,另一端垂在桌边,把钩码绑在垂下的弦上.(如图)(2)为了验证“琴弦发出声音的音调高低,可能与琴弦的粗细有关”这一猜想,应选用编号为A、____ 、____ 的琴弦进行实验.(如表)(3)为了验证“琴弦发出声音的音调高低,可能与琴弦的长短有关”这一猜想,应选用编号为____ 、____ 、____ 的琴弦进行实验.(如表)(4)表一中有的材料规格还没填全,为了验证“琴弦发出声音的音调高低.可能与琴弦的材料有关”这一猜想,必须知道该项内容.请在表中填上所缺数据.(如表)______、______【答案】B C A D F80 1.02【解析】【详解】(2)在探究“琴弦发出声音的音调高低,可能与琴弦的粗细有关”时,要控制琴弦的材料和长度相同,故选A. B. C的琴弦进行实验;(3)探究“琴弦发出声音的音调高低,可能与琴弦的长短有关”时,应控制琴弦的材料和横截面积相同,所以选A. D. F的琴弦进行实验;(4)为了验证“琴弦发出声音的音调高低。
八年级上册全册全套试卷综合测试(Word版 含答案)

八年级上册全册全套试卷综合测试(Word版含答案)一、八年级数学三角形填空题(难)∠=,边AB的垂直平分线交边BC于点D,边AC的垂直平分线1.在ABC中,BACα∠的度数为______.(用含α的代数式表示)交边BC于点E,连结AD,AE,则DAE【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°-a,再根据角的和差关系进行计算即可.解:有两种情况:①如图所示,当∠BAC⩾90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAC−(∠BAD+∠CAE)=α−(180°−α)=2α−180°;②如图所示,当∠BAC<90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD,同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°−α,∴∠DAE=∠BAD+∠CAE−∠BAC=180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.2.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确.故答案为①②④.点睛:本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.3.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.【答案】12°【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.4.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为_____.【答案】5【解析】【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列式求解即可【详解】解:设这个多边形的边数是n,则(n﹣2)•180°﹣360°=180°,解得n=5.故答案为5.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.5.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB= .【答案】85°.【解析】试题分析:令A→南的方向为线段AE,B→北的方向为线段BD,根据题意可知,AE,DB 是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.6.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠A=60°,则∠BFC=______.【答案】120【解析】【分析】根据角平分线的定义可得出∠CBF=12∠ABC、∠BCF=12∠ACB,再根据内角和定理结合∠A=60°即可求出∠BFC的度数.【详解】∵∠ABC、∠ACB的平分线BE、CD相交于点F,∴∠CBF=12∠ABC,∠BCF=12∠ACB.∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,∴∠BFC=180°﹣(∠CBF+BCF)=180°﹣12(∠ABC+∠ACB)=120°.故答案为120°.【点睛】本题考查了三角形内角和定理,根据角平分线的定义结合三角形内角和定理求出角的度数是解题的关键.二、八年级数学三角形选择题(难)7.如图,小明从A点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地A点时,一共走了()A.80米B.160米C.300米D.640米【答案】A【解析】【分析】利用多边形的外角和得出小明回到出发地A点时左转的次数,即可求出多边形的边数,即可解决问题.【详解】解:由题意可知,小明第一次回到出发地A点时,他一共转了360 ,由题意得10°+20° +30°+40°+50°+60°+70°+80°=360°,所以共转了8次,每次沿直线前进10米,所以一共走了80米.故选:A.【点睛】本题考查根据多边形的外角和解决实际问题,注意多边形的外角和是360︒,要注意第一次转了10°,第二次转了20°,第三次转了30°……,利用好规律解题.8.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是四边形ABCD 内一点, 若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为7、9、10,则四边形DHOG 的面积为( )A .7B .8C .9D .10【答案】B【解析】 分析:连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .详解:连接OC ,OB ,OA ,OD ,∵E、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,∴S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =7,S 四边形BFOE =9,S 四边形CGOF =10,∴7+10=9+S 四边形DHOG ,解得,S 四边形DHOG =8.故选B.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.9.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【答案】C【解析】【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设直线n 与AB 的交点为E 。
度八年级上综合能力测试题

度八年级上综合能力测试题口试局部(85分〕第一卷选择题(60分〕I.词汇测试〔15分〕i.从下面每题的A、B、C三个选项中选出可以交流划线局部的最正确选项。
〔共8小题,每小题1分〕()1. — Do you have trouble finishing this task on your own?—Yes. I require someone to help me.A. funB. timeC. difficulty()2. — Your company is developing a new kind of camera, isn’t it?—Yes, it is. Customers can buy it in March next year.A.producingB. introducingC. reducing()3. —It’s stupid of you to make such a mistake. You should be careful enough.—I was too careless at th at time. I won’t make it a gain.A. awfulB. foolishC. wrong()4. 一In our group, he is the most special because he always has different opinions from others. —That’s true. Almost no one doesn’t know him.A. unusualB. popularC. successful()5. — In order to control the machine well, these workers need to be trained for weeks.—We’ve made a training plan. It w ill be carried out next Monday.A. challengeB. improveC. operate()6. — He is unaware of the problem between his parents and him.—So he cannot get on well with them.A. doesn’t mentionB. doesn’t realizeC. doesn’t memorize()7. —I can’t find out the situation here, so I am not able to give you any advice.—Well... I want you to read these materials.A. know aboutB. think aboutC. worry about()8. — Look out! There is a hole in front of you.—Thank you for reminding me.A. Get downB. Rush outC. Be carefulii.依据句子意思,从下面每题的A、B、C三个选项中选出恰当的词语完成句子。
八年级上册全册全套试卷综合测试(Word版 含答案)

(3)如图(2),分两种情况讨论:
当AC=BP,AP=BQ时,△ACP≌△BPQ,则
,
解得 ,
当AC=BQ,AP=BP时,△ACP≌△BQP,则,
解得
综上所述,存在 或 使得△ACP与△BPQ全等.
【点睛】
本题主要考查了全等三角形的判定与性质的综合应用,能熟练进行全等的分析判断以及运用分类讨论思想是解题关键.
2.如图,在 中, ,点 是 边上的动点,连接 ,以 为斜边在 的下方作等腰直角三角形 .
(1)填空: 的面积等于;
(2)连接 ,求证: 是 的平分线;
(3)点 在 边上,且 ,当 从点 出发运动至点 停止时,求点 相应的运动路程.
【答案】(1) ;(2)证明见解析;(3)
【解பைடு நூலகம்】
【分析】
(1)根据直角三角形的面积计算公式直接计算可得;
(3)将 绕点 逆时针旋转一定的角度,如图3所示,(1)中的“ 为等腰直角三角形”成立吗?请说明理由.
【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.
【解析】
【分析】
根据等腰直角三角形的性质得出 , ,推出 , , ,推出 , ,求出 即可.
延长ED交AC于F,求出 , , ,根据ASA推出 ≌ ,推出 即可.
,
,
,
为EC中点,
,
, ,
,
, ,
,
,
在 和 中
≌ ,
,
,
是等腰直角三角形.
是等腰直角三角形,
理由是:过点C作 ,与DM的延长线交于点F,连接BF,
可证得 ≌ ,
, ,
,
作 于点N,
由已知 , ,
八年级上册全册全套试卷综合测试卷(word含答案)

八年级上册全册全套试卷综合测试卷(word 含答案)一、八年级数学三角形填空题(难)1.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.【答案】105°.【解析】【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD =45°,∠BDC =60°,∴∠COB =∠ECD +∠BDC =45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.2.等腰三角形的三边长分别为:x +1,2x +3,9,则x =________.【答案】3【解析】①当x+1=2x+3时,解得x=−2(不合题意,舍去);②当x+1=9时,解得x=8,则等腰三角形的三边为:9、19、9,因为9+9=18<19,不能构成三角形,故舍去;③当2x+3=9时,解得x=3,则等腰三角形的三边为:4、9、9,能构成三角形。
所以x 的值是3.故填3.3.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.【答案】30【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .【详解】1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=. 故答案为:30【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.4.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.【答案】80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数,再根据角平分线的定义,求出∠ABC+∠ACB ,最后利用三角形内角和定理解答即可.【详解】解:在△PBC 中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB 、PC 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB )=2×50°=100°,在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.5.如果一个n 边形的内角和是1440°,那么n=__.【答案】10【解析】∵n 边形的内角和是1440°,∴(n−2)×180°=1440°,解得:n=10.故答案为:10.6.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.二、八年级数学三角形选择题(难)7.如图,在△ABC 中,点D 是BC 边上的一点,E ,F 分别是AD ,BE 的中点,连结CE ,CF ,若S △CEF =5,则△ABC 的面积为( )A.15 B.20 C.25 D.30【答案】B【解析】【分析】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案【详解】解:根据等底同高的三角形面积相等,可得∵F是BE的中点,S△CFE=S△CFB=5,∴S△CEB=S△CEF+S△CBF=10,∵E是AD的中点,∴S△AEB=S△DBE,S△AEC=S△DEC,∵S△CEB=S△BDE+S△CDE∴S△BDE+S△CDE=10∴S△AEB+S△AEC=10∴S△ABC=S△BDE+S△CDE+S△AEB+S△AEC=20故选:B.【点睛】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用.8.已知,如图,AB∥CD,则图中α、β、γ三个角之间的数量关系为()A.α-β+γ=180°B.α+β-γ=180° C.α+β+γ=360° D.α-β-γ=90°【答案】B【解析】【分析】延长CD交AE于点F,利用平行证得β=∠AFD;再利用三角形外角定理及平角定义即可得到答案.【详解】如图,延长CD交AE于点F∵AB∥CD∴β=∠AFD∵∠FDE+α=180°∴∠FDE=180°-α∵γ+∠FDE=∠ADF∴γ+180°-α=β∴α+β-γ=180°故选B【点睛】本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.9.如图,三角形ABC中,AB=AC,D,E分别为边AB,AC上的点,DM平分∠BDE,EN平分∠DEC,若∠DMN=110°,则∠DEA=()A.40°B.50°C.60°D.70°【答案】A【解析】【分析】由等腰三角形的性质得到∠B=∠C,由角平分线的定义得到∠BDM=∠EDM,∠CEN=∠DEN,根据外角的性质得∠B=∠DMN-∠BDM,∠C=∠ENM-∠CEN,整理可得∠DMN+∠DEN=∠EDM+∠ENM,再根据四边形的内角和可得∠DMN+∠DEN=∠EDM+∠ENM=180°,则∠DEN=70°,故∠DEA=40°.【详解】解:∵AB=AC,∴∠B=∠C,又∵DM平分∠BDE,EN平分∠DEC,∴∠BDM=∠EDM,∠CEN=∠DEN,∵∠B=∠DMN-∠BDM=∠DMN-∠EDM,∠C=∠ENM-∠CEN=∠ENM-∠DEN,∴∠DMN-∠EDM=∠ENM-∠DEN,即∠DMN+∠DEN=∠EDM+∠ENM,∵四边形DMNE内角和为360°,∴∠DMN+∠DEN=∠EDM+∠ENM=180°,∴∠DEN=70°,则∠DEA=180°-2∠DEN=40°.故选A.10.一个多边形的内角和是外角和的3倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】C【解析】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故选C.【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.11.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()∠=,则1244α-A.14B.16C.90α-D.44【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.12.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.9【答案】C【解析】【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.三、八年级数学全等三角形填空题(难)13.如图,△ABC中,AC=BC=5,∠ACB=80°,O为△ABC中一点,∠OAB=10°,∠OBA =30°,则线段AO的长是_____.【答案】5【解析】【分析】作∠CAO的平分线AD,交BO的延长线于点D,连接CD,由等边对等角得到∠CAB=∠CBA=50°,再推出∠DAB=∠DBA,得到AD=BD,然后可证△ACD≌△BCD,最后证△ACD≌△AOD,即可得AO=AC=5.【详解】解:如图,作∠CAO的平分线AD,交BO的延长线于点D,连接CD,∵AC =BC =5,∴∠CAB =∠CBA =50°,∵∠OAB =10°,∴∠CAD =∠OAD =1(CAB OAB)2∠-∠=()150102︒︒-=20°, ∵∠DAB =∠OAD+∠OAB =20°+10°=30°,∴∠DAB =30°=∠DBA ,∴AD =BD ,∠ADB =120°,在△ACD 与△BCD 中AC BC AD BD CD CD =⎧⎪=⎨⎪=⎩∴△ACD ≌△BCD (SSS )∴∠CDA =∠CDB ,∴∠CDA =∠CDB =()1360ADB 2︒-∠=()13601202︒︒-=120°, 在△ACD 与△AOD 中CDA ADO 120AD ADCAD OAD ︒⎧∠=∠=⎪=⎨⎪∠=∠⎩∴△ACD ≌△AOD (ASA )∴AO =AC=5,故答案为5.【点睛】本题考查全等三角形的判定和性质,作辅助线构造全等三角形是解决本题的关键.14.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④CO 平分∠AOE ;⑤∠AOB=60°.恒成立的结论有__.(把你认为正确的序号都填上)【答案】①②③④⑤【解析】【分析】根据等边三角形的性质及SAS即可证明△ACD≌△BCE即可求解.【详解】①△ABC和△DCE均是等边三角形,点A,C,E在同一条直线上,∴AC=BC,EC=DC,∠BCE=∠ACD=120°∴△ACD≌△ECB∴AD=BE,故本选项正确;②∵△ACD≌△ECB∴∠CBQ=∠CAP,又∵∠PCQ=∠ACB=60°,CB=AC,∴△BCQ≌△ACP,∴CQ=CP,又∠PCQ=60°,∴△PCQ为等边三角形,∴∠QPC=60°=∠ACB,∴PQ∥AE,故本选项正确;③∵∠ACB=∠DCE=60°,∴∠BCD=60°,∴∠ACP=∠BCQ,∵AC=BC,∠DAC=∠QBC,∴△ACP≌△BCQ(ASA),∴CP=CQ,AP=BQ,故本选项正确;④∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,同理可得出∠AOE=120°,∵D,O,C,E四点共圆,∴∠OCD=∠OED,∴∠OAC=∠OCD,∴∠DCE=∠AOC=60°,∴OC平分∠AOE,故④正确;⑤∵△ABC、△DCE为正三角形,∴∠ACB=∠DCE=60°,AC=BC,DC=EC,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE,∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB,∵∠ACB=∠CBE+∠CEB=60°,∴∠AOB=60°,故本选项正确.综上所述,正确的结论是①②③④⑤.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,找到不变量,是解题关键.15.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,△ABD的角平分线BE与AC交于点E,连接DE,则∠DEB=_____.【答案】40°【解析】【分析】做辅助线,构建角平分线的距离,根据角平分线的性质和逆定理可得:EF=EG=EH,设∠DEG=y,∠GEB=x,根据三角形内角和定理可得:∠GEA=∠FEA=40°,∠FEB=∠HEB,列方程为2y+x=80-x,y+x=40,可得结论:∠DEB=40°.【详解】如图,过E作EF⊥AB于F,EG⊥AD于G,EH⊥BC于H,∵BE平分∠ABD∴EH=EF∵∠BAC=130°,∠BAD=80°∴∠FAE=∠CAD=50°∴EF=EG∴EG=EH ∴ED 平分∠CDG∴∠HED=∠DEG设∠DEG=y ,∠GEB=x ,∵∠EFA=∠EGA=90°∴∠GEA=∠FEA=40°∵∠EFB=∠EHB=90°,∠EBH=∠EBF∴∠FEB=∠HEB∴2y+x=80-x,2y+2x=80y+x=40即∠DEB =40°.故答案为:40°.【点睛】本题考查三角形内角和定理和角平分线的性质,正确作辅助线是解题的关键.16.如图,在△ABC 中, ∠BAC=90°, AB=AC=22,点D ,E 均在边BC 上,且∠DAE=45°,若BD=1,则DE=__________.【答案】53【解析】 分析:根据等腰直角三角形的性质得45B ACB ∠=∠=,把△ABD 绕点A 逆时针旋转90得到△ACF ,连接,EF 如图,根据旋转的性质得,,AD AF BAD CAF =∠=∠45,ABD ACF ∠=∠=接着证明45,EAF ∠=然后根据“SAS”可判断△ADE ≌△AFE ,得到DE =FE ,由于90ECF ACB ACF ∠=∠+∠=,根据勾股定理得222CE CF EF +=,设,DE EF x == 则3CE x =-,则()22231,x x -+=由此即可解决问题.详解:90BAC AB AC ∠==,,∴45B ACB ∠=∠=,把△ABD 绕点A 逆时针旋转90得到△ACF ,连接,EF 如图,则△ABD ≌△ACF ,,,45,AD AF BAD CAF ABD ACF =∠=∠∠=∠=∵45DAE ∠=,∴45BAD CAE ∠+∠=,∴45,CAF CAE ∠+∠=即45,EAF ∠=∴∠EAD =∠EAF ,在△ADE 和△AFE 中AE AE EAD EAF AD AF =⎧⎪∠=∠⎨⎪=⎩, ∴△ADE ≌△AFE ,∴DE =FE ,∵90ECF ACB ACF ∠=∠+∠=,∴222CE CF EF +=,Rt △ABC 中,∵22AB AC ==, ∴224BC AB AC +=,∵1BD =,设,DE EF x == 则3CE x =-,则有()22231,x x -+=解得:5.3x =∴5.3DE = 故答案为5.3点睛:本题属于全等三角形的综合题,涉及三角形旋转,全等三角形的判定与性质,勾股定理等知识点,综合性较强,难度较大.17.如图,在△ABC 中,∠C =90°,AC =BC ,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为点E .已知AB =12,则△DEB 的周长为_______.【答案】12【解析】根据角平分线的性质,由AD是∠CAB的平分线,DE⊥AB,∠C=90°,可得到CD=ED,然后根据直角三角形的全等判定HL证得Rt△ACD≌Rt△AED,再由全等的性质得到AC=AE,然后根据AC=BC,因此可得△DEB的周长=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB=12.故答案为:12.点睛:此题主要考查了全等三角形的性质和角平分线的性质,解题时根据全等三角形的性质和角平分线的性质得到相等的线段,然后再代还求解即可.18.如图,AD=AB,∠C=∠E,AB=2,AE=8,则DE=_________.【答案】6【解析】根据三角形全等的判定“AAS”可得△ADC≌△ABE,可得AD=AB=2,由AE=8可得DE=AE-AD=6.故答案为:6.点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.四、八年级数学全等三角形选择题(难)19.如图,在△ABC中,AB=AC,高BD,CE交于点O,AO交BC于点F,则图中共有全等三角形()A .8对B .7对C .6对D .5对【答案】B【解析】【分析】 易证△ABC 是关于AF 对称的图形,其中的小三角形也关于AF 对称,共可找出7对三角形.【详解】全等的三角形有:①△AFB≌△AFC;②△CEB≌△BDC;③△AEO≌△ADO;④△EOB≌△DOC;⑤△OBF≌△OFC;⑥△AOB≌△AOC;⑦△AEC≌△ADB证明①△AFB≌△AFC∵AB=AC,CE⊥AB,BD⊥AC 又∵1122ABC S AB CE AC BD == ∴CE=BD∴在Rt△BCE 和Rt△CBD 中BC BC CE BD=⎧⎨=⎩ ∴△BCE≌△CBD∴BE=CD,∴AE=AD在Rt△AEO 和Rt△ADO 中AE AD AO AO =⎧⎨=⎩∴△AEO≌△ADO∴∠EOD=∠DOA在△BAF 和△CAF 中AB AC BAF CAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△BAF≌△CAF,得证其余全等证明过程类似故选:B【点睛】本题考查全等的证明,解题关键是利用等腰三角形的性质,推导出图形中边的关系,为证全等作准备20.如图,△ABC 是等边三角形,AQ =PQ ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,PR =PS .下列结论:①点P 在∠A 的角平分线上;②AS =AR ;③QP ∥AR ;④△BRP ≌△QSP .其中,正确的有( )A.1个 B.2个 C.3个 D.4个【答案】D【解析】∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.点睛:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.21.如图,点 D 是等腰直角△ABC 腰 BC 上的中点,点B 、B′ 关于 AD 对称,且BB′ 交AD 于 F,交 AC 于 E,连接 FC 、 AB′,下列说法:① ∠BAD=30°; ② ∠BFC=135°;③ AF=2B′ C;正确的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】依据点D是等腰直角△ABC腰BC上的中点,可得tan∠BAD=12,即可得到∠BAD≠30°;连接B'D,即可得到∠BB'C=∠BB'D+∠DB'C=90°,进而得出△ABF≌△BCB',判定△FCB'是等腰直角三角形,即可得到∠CFB'=45°,即∠BFC=135°;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C;依据△AEF与△CEB'不全等,即可得到S△AFE≠S△FCE.【详解】∵点D是等腰直角△ABC腰BC上的中点,∴BD=12BC=12AB,∴tan∠BAD=12,∴∠BAD≠30°,故①错误;如图,连接B'D,∵B、B′关于AD对称,∴AD垂直平分BB',∴∠AFB=90°,BD=B'D=CD,∴∠DBB'=∠BB'D,∠DCB'=∠DB'C,∴∠BB'C=∠BB'D+∠DB'C=90°,∴∠AFB=∠BB'C,又∵∠BAF+∠ABF=90°=∠CBB'+∠ABF,∴∠BAF=∠CBB',∴△ABF≌△BCB',∴BF=CB'=B'F,∴△FCB'是等腰直角三角形,∴∠CFB'=45°,即∠BFC=135°,故②正确;由△ABF≌△BCB',可得AF=BB'=2BF=2B'C,故③正确;∵AF>BF=B'C,∴△AEF与△CEB'不全等,∴AE≠CE,∴S△AFE≠S△FCE,故④错误;故选B.【点睛】本题主要考查了轴对称的性质以及全等三角形的判定与性质的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.22.如图,AD是△ABC的外角平分线,下列一定结论正确的是()A .AD+BC=AB+CD ,B .AB+AC=DB+DC,C .AD+BC <AB+CD ,D .AB+AC <DB+DC【答案】D【解析】【分析】 在BA 的延长线上取点E,使AE=AC,连接ED,证△ACD ≌△AED,推出DE=DC,根据三角形中任意两边之和大于第三边即可得到AB+AC <DB+DC.【详解】解: 在BA 的延长线上取点E, 使AE=AC,连接ED,∵AD 是△ABC 的外角平分线,∴∠EAD=∠CAD,在△ACD 和△AED 中,AD AD EAD CAD AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△AED(SAS)∴DE=DC,在△EBD 中,BE <BD+DE,∴AB+AC <DB+DC故选:D.【点睛】本题主要考查三角形全等的证明,全等三角形的性质,三角形的三边关系,作辅助线构造以AB 、AC 、DB 、DC 的长度为边的三角形是解题的关键,也是解本题的难点.23.如图,已知等腰Rt △ABC 和等腰Rt △ADE ,AB=AC=4,∠BAC=∠EAD=90°,D 是射线BC上任意一点,连接EC .下列结论:①△AEC △ADB ;② EC ⊥BC ; ③以A 、C 、D 、E 为顶点的四边形面积为8;④当BD=时,四边形AECB 的周长为10524++;⑤ 当BD=32B 时,ED=5AB ;其中正确的有( )A .5个B .4个C .3 个D .2个【答案】B【解析】解:∵∠BAC =∠EAD =90°,∴∠BAD =∠CAE ,∵AB =AC ,AD =AE ,∴△AEC ≌△ADB ,故①正确; ∵△AEC ≌△ADB ,∴∠ACE =∠ABD =45°,∵∠ACB =45°,∴J IAO ECB =90°,∴EC ⊥BC ,故②正确;∵四边形ADCE 的面积=△ADC 的面积+△ACE 的面积=△ADC 的面积+△ABD 的面积=△ABC 的面积=4×4÷2=8.故③正确;∵BD =2,∴EC =2,DC =BC -BD =422=32,∴DE 2=DC 2+EC 2,=(2222+=20,∴DE =25,∴AD =AE =252=10.∴AECB 的周长=AB +DC +CE +AE =442210+45210+,故④正确;当BD =32BC 时,CD =12BC ,∴DE 221322BC BC ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭10BC 5.故⑤错误. 故选B .点睛:此题是全等三角形的判定与性质的综合运用,熟练掌握等腰直角三角形的性质是解答此题的关键.24.下列条件中,不能判定两个直角三角形全等的是( )A .两条直角边对应相等B .有两条边对应相等C .斜边和一锐角对应相等D .一条直角边和斜边对应相等 【答案】B【解析】根据全等三角形的判定SAS ,可知两条直角边对应相等的两个直角三角形全等,故A 不正确;根据一条直角边和斜边对应相等的两个直角三角形,符合全等三角形的判定定理HL ,能判定全等;若两条直角边对应相等的两个直角三角形,符合全等三角形的判定定理SAS ,也能判全等,但是有两边对应相等,没说明是什么边对应,故不能判定,故B正确.根据全等三角形的判定AAS,可知斜边和一锐角对应相等的两直角三角形全等,故C不正确;根据直角三角形的判定HL,可知一条直角边和斜边对应相等两直角三角形全等,故D不正确.故选B.点睛:此题主要考查了直角三角形全等的判定,解题时利用三角形全等的判定SSS,SAS,ASA,AAS,HL,直接判断即可.五、八年级数学轴对称三角形填空题(难)25.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.以OC为一边作等边三角形OCD,连接AC、AD,当△AOD是等腰三角形时,求α的角度为______【答案】110°、125°、140°【解析】【分析】先求出∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,②OA=OD,则∠OAD=∠ADO,③OD=AD,则∠OAD=∠AOD,分别求出α的角度即可.【详解】解:∵设∠CBO=∠CAD=a,∠ABO=b,∠BAO=c,∠CAO=d,则a+b=60°,b+c=180°﹣110°=70°,c+d=60°,∴b﹣d=10°,∴(60°﹣a)﹣d=10°,∴a+d=50°,即∠DAO=50°,分三种情况讨论:①AO=AD,则∠AOD=∠ADO,∴190°﹣α=α﹣60°,∴α=125°;②OA=OD,则∠OAD=∠ADO,∴α﹣60°=50°,∴α=110°;③OD=AD,则∠OAD=∠AOD,∴190°﹣α=50°,∴α=140°;所以当α为110°、125°、140°时,三角形AOD是等腰三角形,故答案为:110°、125°、140°.【点睛】本题是对等边三角形的考查,熟练掌握等边三角形的性质定理及分类讨论是解决本题的关键.26.如图,△ABC中,AB=8,AC=6,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC,分别交AB、AC于点D、E,则△ADE的周长为_____.【答案】14.【解析】【分析】先根据角平分线的定义及平行线的性质得BD=DF,CE=EF,则△ADE的周长=AB+AC=14.【详解】∵BF平分∠ABC,∴∠DBF=∠CBF,∵DE∥BC,∴∠CBF=∠DFB,∴∠DBF=∠DFB,∴BD=DF,同理FE=EC,∴△AED的周长=AD+AE+ED=AB+AC=8+6=14.故答案为:14.【点睛】此题考查角平分线的性质,平行线的性质,等腰三角形的等角对等边的性质.27.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC上一点,DA⊥AC,AD=24 cm,则BC的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC ,∠BAC=120°∴∠B=∠C=30°∵DA ⊥AC ,AD=24 cm∴DC=2AD=48cm ,∵∠BAC=120°,DA ⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.28.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..29.如图,△ABC 中,AC =DC =3,BD 垂直∠BAC 的角平分线于D ,E 为AC 的中点,则图中两个阴影部分面积之差的最大值为________.【答案】92【解析】【分析】 首先证明两个阴影部分面积之差=S △ADC ,当CD ⊥AC 时,△ACD 的面积最大.【详解】延长BD 交AC 于点H .设AD 交BE 于点O .∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=14S△ABH,S△CDH=14S△ABH,∵S△OBD−S△AOE=S△ADB−S△ABE=S△ADH−S△CDH=S△ACD,∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为12×3×3=92.故填:92.【点睛】本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题.30.如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,按此做法继续下去,第2019个等腰三角形的底角度数是______________.【答案】20181802⎛⎫⨯ ⎪⎝⎭【解析】【分析】 根据等腰三角形的性质求出∠BA 1C 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律即可得出第2019个三角形中以A 2019为顶点的内角度数.【详解】解:∵在△CBA 1中,∠B=20°,A 1B=CB ,∴∠BA 1C=°180-2B ∠=80°, ∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C=12×80°; 同理可得∠EA 3A 2=(12)2×80°,∠FA 4A 3=(12)3×80°, ∴第n 个三角形中以A n 为顶点的底角度数是(12) n-1×80°. ∴第2017个三角形中以A 2019为顶点的底角度数是(12)2018×80°, 故答案为:(12) 2018×80°. 【点睛】 本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律是解答此题的关键.六、八年级数学轴对称三角形选择题(难)31.如图,120AOB ∠=︒,OP 平分AOB ∠,且2OP =,若点M N 、分别在OA OB 、上,且PMN ∆为等边三角形,则满足上述条件的PMN ∆有( )A .1个B .2个C .3个D .无数个【答案】D【解析】【分析】根据题意在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON即可反推出△PMN是等边三角形满足条件,以此进行分析即可得出结论.【详解】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,120AOB∠=︒,∴∠EOP=∠POF=60°,∵OE=OF=OP,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,PEM PONPE POEPM OPN∠⎪∠⎧⎩∠⎪∠⎨===∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.【点睛】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是正确添加辅助线并构造全等三角形.32.等边△ABC,在平面内找一点P,使△PBC、△PAB、△PAC均为等腰三角形,具备这样条件的P点有多少个?()A.1个B.4个C.7个D.10个【答案】D【解析】试题分析:根据点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.解:由点P在等边△ABC内,而且△PBC、△PAB、△PAC均为等腰三角形,可知P点为等边△ABC的垂心;因为△ABC是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选D.点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.33.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN=x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【答案】C【解析】【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题.【详解】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°.∵∠MON=30°,∴∠CBH+∠CBN=∠ABM+∠CBN=30°,∴∠NBM=∠NBH.∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x.∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形.故选C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.34.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】A【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.【详解】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=110°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理可得:∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M,∴∠P1OP2=180°-110°=70°,∴∠AOB=35°,故选A.【点睛】考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.35.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.36.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A【解析】试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+34×42=6+43,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=123293,故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A .七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.下列计算正确的是( )A .224a a a +=B .352()a a =C .527a a a ⋅=D .2222a a -= 【答案】C【解析】【详解】解:A. 222a a 2a +=,故A 错误;B. ()326a a =,故B 错误;C. 527a a a ⋅=,正确;D. 2222a a a -=,故D 错误;故选C38.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x 2+2(m+1)x+25是一个完全平方式,∴△=b 2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m 2+2m-24=0,解得m 1=4,m 2=-6,所以m 的值为4或-6.故选A.39.已知a ,b ,c 是△ABC 的三条边的长度,且满足a 2-b 2=c (a -b ),则△ABC 是( )A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.40.下列各式从左边到右边的变形是因式分解的是( )A .(a +1)(a -1)=a 2-1B .a 2-6a +9=(a -3)2C .x 2+2x +1=x (x +2x )+1D .-18x 4y 3=-6x 2y 2·3x 2y【答案】B【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【详解】A 、是多项式乘法,不是因式分解,错误;B 、是因式分解,正确.C 、右边不是积的形式,错误;D 、左边是单项式,不是因式分解,错误.故选B .【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,然后进行正确的因式分解.41.若2149x kx ++是完全平方式,则实数k 的值为( ) A .43 B .13 C .43± D .13± 【答案】C【解析】【分析】本题是已知平方项求乘积项,根据完全平方式的形式可得出k 的值.【详解】由完全平方式的形式(a±b )2=a 2±2ab+b 2可得: kx=±2•2x•13,解得k=±43. 故选:C 【点睛】本题关键是有平方项求乘积项,掌握完全平方式的形式(a±b )2=a 2±2ab+b 2是关键.42.下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a•3a=6a 2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.八、八年级数学整式的乘法与因式分解填空题压轴题(难)43.分解因式212x 123y xy y -+-=___________【答案】()232x 1y --【解析】根据因式分解的方法,先提公因式-3y ,再根据完全平方公式分解因式为:()()22212x 12334x 41321y xy y y x y x -+-=--+=--. 故答案为()232x 1y --.44.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________. 【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x 2+2(m-3)x+16是关于x 的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为-1或7.。
八年级上级综合测试题

八年级上级综合测试题一、选择题(每题2分,共12分)1、下列几种估测最符合实际情况的是( B )A.人步行的速度约为5m/s B.全新的2B铅笔长约18cmC.人体感觉最舒适的温度约为37℃D.一张试卷厚度的大约1mm2、下列现象不能说明光的直线传播的是( D )3、魔术师把手伸进一锅沸腾的“油”,1分钟、2分钟……再把手拿出来——没事!对这个现象的分析准确的是( B)A、魔术师有特异功能B、是因为“油”的沸点低C、“油”在沸腾时的温度持续升高D、是因为手上沾有水吸收了“油”中的热4、下列关于声音的说法中准确的是( B )A.只要物体振动,我们就能听到声音B.一切正在发声的物体都在振动C.物体的振动停止后还会发出很弱的声音D.没有听到发出声音的物体一定没振动5、小明同学用放大镜看自己的指纹时,觉得指纹的像太小。
为了使指纹的像能大一些,以下做法,准确的是( A )A.眼睛和手指不动,让放大镜离手指稍远些B.眼睛和手指不动,让放大镜离手指稍近些C.放大镜和手指不动,让眼睛离放大镜稍远些D.放大镜和手指不动,让眼睛离放大镜稍近些6、、用质量相等铜、铁、铝制成等体积的三个空心球,比较它们空心部分的体积,则( C )A.铜的最大B.铁的最大C.铝的最大D.无法判定二、填空题(每空1分,共18分)1.根据图示,写出被测物体的长度是_____厘米。
2. 远处传来美妙动听的钢琴声,小刚同学寻声而去,其_____不变,但______ 越来越大,琴声是通过____________传入人耳的.3.2011年11月3日1时23分,“神舟八号”到达“天宫一号”30米停泊点,开始以0.2米/秒的相对速度向“天宫一号”缓缓靠拢对接。
从30米的停泊点到相互接触共耗时________秒。
对接完成后,若以“天宫一号”为参照物,“神舟八号”是________的。
4、在电冰箱的冷凝器内,从压缩机送来的氟利昂的蒸气变成了液态,这是用______________的方法使气体液化并__________(吸收/放出)热量;在电冰箱的蒸发器内,液态氟利昂迅速汽化,__________(吸收/放出)热量,使冷冻室内的温度降低。
八年级上综合测试卷 学生版

八年级上综合测试卷时间:45分钟满分:100分一、选择题(以下每题各只有一个正确答案,每题3分,共45分)1.随着经济实力的增强,我国的国防事业得到了飞速的发展。
如图所示为我国空军战机空中加油时的情景,以下说法正确的是()A.以地面为参照物,加油机是静止的B.以加油机为参照物,受油机是运动的C.以地面为参照物,加油机和受油机都是静止的D.以受油机为参照物,加油机是静止的2.以下是同学们的一些估测数据,你认为数据符合实际的是()A.人体感到舒适的温度是37℃B.人步行的速度约是1.2m/sC.教室地面到天花板的高度大约为300mm D.一节课的时间大约27000s3.下列现象中,是由光的直线传播形成的是()A.水中的荷花B.“折断”的筷子C.镜中的人D.墙上的手影4.下列事例中,物体的质量发生变化的是()A.被太阳晒热的砖块B.烧杯中正在沸腾的水C.铁球被压成铁饼D.从地球带到太空的食品5.在“用托盘天平测物体质量时”,某同学用已调好的天平在测物体质量过程中,通过增、减砝码后,发现指针指在分度盘的中央刻度线左边一点,这时他应该()A.把横梁右端螺母向右旋出一些B.把横梁右端螺母向左旋出一些C.把天平右盘的砝码减少一些D.向右移动游码6.如图所示是我国自行研制即将首飞的C919大型喷气客机,它的机身和机翼均采用了极轻的碳纤维材料。
这种材料的优点是()A.密度小B.弹性小C.体积小D.硬度小7.如图所示是某物质熔化时温度随时间变化的图象,根据图象中的信息,判断下列说法,正确的是()A.该物质为非晶体,熔点为80℃B.在第10min时物质处于液态C.物质从开始熔化到安全熔化完,持续了6minD.该物质在熔化过程中温度一直升高8.如图所示,有经验的渔民都知道,只有瞄准鱼的下方才能叉到鱼,产生这一结论的原因是()A.光的折射B.光的反射C.光的直线传播D.光的色散9.如图,一束光在空气和玻璃的分界面上发生了反射和折射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.学校体检,小明参加了一些项目测量,其中记录错误的是()A.质量50kg B.身高160m C.体温37℃D.1min心跳75次2.关于天平的使用,说法正确的是()A.称量过程中可以调节平衡螺母 B.潮湿的物体可以直接放在天平上称量C.被测物体的质量不能超过天平的最大称量 D.称量粉末状药品时只在左盘垫一张纸即可3.下列数据中,符合实际的是()A.物理课本的长度约为50cm B.适合人洗澡的水温约为80℃C.一个鸡蛋的质量约为50g D.短跑运动员比赛时的速度可达30m/s4.分别由甲、乙两种物质组成的不同物体,其质量与体积的关系如图所示.分析图象可知,两种物质的密度之比ρ甲:ρ乙为()A. 1:2 B. 2:1 C. 4:1 D. 8:15.某医院急诊室的氧气瓶中,氧气的密度为5 kg/m 3,给急救病人供氧用去了氧气质量的一半,则瓶内剩余氧气的密度是 kg/m3;病人需要冰块进行物理降温,取450g水凝固成冰后使用,其体积增大了 cm3。
(ρ冰=0.9×103kg/m 3)6.物体从距凸透镜12cm移到距凸透镜18cm的过程中,调整光屏的位置,总能在光屏上得到倒立放大的像,由此可知,此凸透镜的焦距可能是( )A.6cmB.10cmC.16cmD.20cm7.某凸透镜焦距是10cm,将物体放在离焦点5cm的地方,所成的像()A. 一定是实像B. 一定是虚像C. 一定是放大的像D. 一定是缩小的像8.有关眼睛病变的解释中正确的是()A.“近视”是由于眼球晶状体变扁,使焦距变长,近处景物成像于视网膜前造成的B.“远视”是由于眼球晶状体变凸,使焦距变短,近处景物成像于视网膜后造成的C.“近视”可以通过配带合适的凹透镜矫正,“远视”可通过配带合适的凸透镜矫正D.“近视”可以通过配带合适的凸透镜矫正,“远视”可通过配带合适的凹透镜矫正9.下面列举的语句都蕴含着深刻的哲理,如果从物理学角度来解读,也别有生趣,其中分析不正确的是A.“只要功夫深,铁棒磨成针”,此过程中铁棒的质量减小B.“蜡炬成灰泪始干”,蜡烛燃烧时的体积减小C.“锲而不舍,金石可镂”,镂后金石的密度不变D.“人往高处走,水往低处流”,水流的过程中密度减小10.位于北京人民大会堂旁,高新科学技术和时代美感完美结合的国家大剧院。
该建筑的穹顶表面积达3万平方米,为使如此大面积的建筑外壳不至过重而又坚固,设计者选择了钛金属板作主材,这主要是因为钛的密度_______,硬度_______。
(两空均选填:“大”或“小”)11.关于物质的密度,以下说法正确的是()A.由公式ρ=m/v可知,物质的密度跟质量成正比,跟体积成反比B.平时我们所说的“铁比木头重”,是说铁的密度比木头的密度大C.不同种类物质单位体积的质量一般不同,密度也不同D.密度是物质的特性,其大小不随温度、形状、状态的变化而变化12.1 m3的冰和1 m3的水相比较()A.冰和水的体积相同,水比冰的质量大B.冰的体积跟它全部溶化成水后的体积相同C.水全部结成冰后,与1 m3冰的质量相同D.冰的密度比水小,冰的质量比水大13.实验室所用的托盘天平是测量_______的工具;挂点滴时液体的密度为ρ =1.03×103 kg /m 3,则输完一半液体以后,剩余液体的密度为_______kg/m 3;元宵佳节,黄州城许多人燃放孔明灯祈福,孔明灯上升时,灯罩内的气体密度__________(选填“大于”、“小于”或“等于”)灯罩外的空气密度;冬天自来水管冻裂是由于__________________________引起的。
14.一个实心金属球放在盛满水的杯子里,从杯中溢出10g 的水,若把这个金属球放入满煤油(ρ水=1.0×103kg/m 3,ρ煤油=0.8×103kg/m 3)的杯子里,溢出煤油的质量为( )A .12.5gB .10gC .8gD .6.4g15.平放在地面上的一块砖,切去一半后,则剩下的半块砖( )(A )质量减少一半,密度减少一半 (B )质量减少一半,密度不变(C )体积减少一半,密度减少一半 (D )体积不变,质量减少一半16.如图9所示,盒装纯牛奶的体积为 m 3.若该牛奶的密度是1.2×103kg/m 3,则该盒牛奶的质量为kg.喝掉一半后,牛奶的密度将 (选填“变大”、“不变”或“变小”)。
17.用打气筒向自行车胎打气的过程中,胎内气体的质量 ,胎内气体的密度 。
18.一个瓶子最多能盛5㎏水,相当于 毫升水,用它装茶油能装 g。
(茶油的密度为0.8×103㎏/m 3)19.夏天,空调吹冷风,出风口的叶片尽量向 ______拨(填“上”或“下”),室温均匀的向下降温。
因为冷风的密度大,会往下沉;冬天,为了尽快提高室温且均匀,应向_______(填“上”或“下”) 拨动出风口的叶片。
因 为热风的密度小,会往上浮。
20.一只氧气钢瓶,容积为V ,刚启用时,瓶内气体密度为ρ,用去一半氧气后,瓶内剩下的气体密度为______,质量为________. (用字母表示) 21.如图是三种不同物质的质量和体积关系的图线,则由图线 可知:A. ρ1>ρ2>ρ 3B. ρ1<ρ2<ρ3C. ρ1=ρ2=ρ 3 D. 无法判断22.小明把一个冲了气的气球密封后放到阳光下暴晒,过了一段时间,他发现气球的体积变大了,此时气球内的气体的质量 ,密度 。
(填“变大” “变小”或“不变”)23.在餐具放进冷水直至加热到水沸腾的过程中,关于餐具的下列相关物理量肯定没有变化的是 A .温度 B .体积 C .质量 D .密度24.分别由不同物质a 、b 、c 组成的三个实心体,它们的质量和体积的关系如图1所示,由图可知A.a 物质的密度最大B.c 物质的密度最大C.b 物质的密度是2×103kg/m 3D.条件不足,无法判断25.如右图所示,两支完全相同的试管分别装有质量相等的不同液体,甲竖直放置,乙倾斜放置,此时液面恰好相平,比较两种液体密度的大小,下列正确的是( )A.ρ甲>ρ乙B. ρ甲<ρ乙C. ρ甲=ρ乙D. 无法判断26.美术课上同学们用橡皮泥捏动物模型时,想知道橡皮泥的密度有多大。
课后,他们在实验室选择了天平、量筒、水和细线进行了实验操作。
(1)合理的操作顺序是(填序号): 。
(2)由图可知:橡皮泥的质量m = g ; 橡皮泥的体积V= cm 3;橡皮泥的密度ρ= 。
27.小华测量一个实心玻璃球的密度,所用实验 A32题图器材和操作步骤是:第一步:如图T6-1甲所示,先将两个完全相同的烧杯分别放置在已调好的天平左右两个托盘中,再将玻璃球放入左盘烧杯中,同时向右盘烧杯中倒入一定量的水,并用滴管小心增减,直至天平平衡。
第二步,将右盘烧杯中的水倒入量筒,量筒示数如图乙所示,则水的体积为________mL 。
第三步,用细线拴好玻璃球,轻放入量筒中,此时玻璃球和水的总体积如图丙所示。
由实验中测得的数据,小华得出实心玻璃球的质量为________g ,密度为________g/cm3。
28.用天平和水测固体密度实验步骤:(1)用天平测量金属块的质量为m 1;(2)烧杯内装满水,测量烧杯和水的质量为m 2,(3)用细线系住金属块,将金属块浸没在水中(部分水排出),称得此时质量为m 3,则金属块的密度为 。
29.一架天平称量是200g ,则它不能称量200mL 的(ρ酱油>ρ水>ρ酒>ρ煤油>ρ汽油):A.酱油B.白酒C.煤油D.汽油 ( )30.一个小药瓶质量为5g ,装满药液时总质量为21g ,装满水的总质量为25g ,则药液的密度为 ( )A. 1.2×lo 3kg /m 3 B .0. 92×103kg /m 3C. 0.84×l03kg /m 3 D .0.8×103kg /m 331.如图,是探究甲、乙两种物质质量跟体积关系的图像。
以下分析正确的是 ( )A.甲物质的质量跟体积的比值比乙物质大 B .甲物质的质量跟体积的比值比乙物质小C .同种物质的质量跟体积的比值是不同的D .不同物质的质量跟体积的比值是相同的32.小明利用天平和量杯测量某种液体的密度,得到的数据如下表,根据数据绘出的图象如图所示.则量杯的质量与液体的密度是 ( )A.20g ,1.0×103kg /m 3B.60g ,0.8×103kg /m 3C.60g ,1.0×103kg /m 3D.20g ,0.8×103kg /m 333.水具有反常膨胀的特性。
图为水的体积在随温度变化的曲线。
根据图象可知,温度等于 ______ ℃时,水的密度最大;在0℃~4℃范围内,水具有______(填“热胀冷缩”或“热缩冷胀”)的性质。
34.如图所示,将凸透镜看作是眼睛的晶状体,光屏看作是眼睛的视网膜,烛焰看作是被眼睛观察的物体。
拿一个近视眼镜给“眼睛”戴上,光屏上出现烛焰清晰的像,而拿走近视眼镜则烛焰的像变得模糊。
在拿走近视眼镜后,为了能在光屏上重新得到清晰的像,可以将蜡烛适当 凸透镜(填“靠近”或“远离”)或者将光屏适当 凸透镜(填“靠近”或“远离”);如果将题中的近视镜换成远视镜,其它条件都不变,可以将蜡烛适当 凸透镜(填“靠近”或“远离”)或者将光屏适当凸透镜(填“靠近”或“远离”)。
35.如图所示,在研究凸透镜成像规律的实验中,光屏上呈现了烛焰倒立清晰的像。
如果去掉光屏,眼睛在A 处⎽⎽⎽⎽⎽⎽⎽⎽(选填“能”或“不能”) 看到这个像,原因是⎽⎽⎽⎽⎽⎽⎽⎽36.有关天平的使用,下列说法正确的是( )27题2题图A.把已调节好的天平移到另一处使用,不需要重新调节B.判断天平横梁是否平衡时,不一定要等到指针完全静止下来C.测量已放入左盘的物体的质量时,如果指针偏左应把平衡螺母向右调D.天平横梁平衡后,托盘可以互换37.三个完全相同的杯子,里面装有质量相等的水.若把质量相等的实心铝球、铁球和铜球(已知ρ铜>ρ铁>ρ铝).分别放入三个杯子里,则杯子里水面升高的最少的是()A.放铝球的B.放铁球的C.放铜球的D.条件不足,无法判断38.在“探究同种物质的质量和体积关系”的实验中,小明对甲、乙两种物质进行了探究,对实验数据进行处理,得到了图所示的图像. 以下分析正确的是()A. 若m甲= m乙,则V甲>V乙B. 甲物质的质量跟体积的比值比乙物质小C. 若V甲= V乙, 则m甲<m乙D. 不同物质的质量跟体积的比值是不同的39.小明在实验室利用天平、量筒、烧杯测量盐水的密度,其方法和操作过程完全正确。