动点产生的等腰三角形问题

合集下载

《动点问题--“两定一动”中等腰三角形的存在性问题》课件

《动点问题--“两定一动”中等腰三角形的存在性问题》课件
结果在探究二的基础上多了在x轴负半轴上的
那个点.
如图:
y
B
A
C1
O
C2
C4 x
C3 C5
直角坐标系·动点:
2.如图,点A坐标为(1,1), 点B坐标为(4,3),
在坐标轴上取点C,使得△ABC是等腰三角形.
分析:本题与探究二、变式训练一例相比,扩大了点C的
满足范围,坐标轴上取满足条件的点分两类情况讨论,


②当C在y轴上时,设C(0,n),由A(1,1),B(4,3)
解得n=
,故C(0, )


∴AB2=9+4=13,AC2=n2-2n+2, BC2=n2-6n+25
综上所述,存在8个符合条件的点,即
∵△ABC是等腰三角形,故分三种情况讨论.

C(
±


,
)或(2,0)或(6,0)或(
,0)
③当AC=BC时,m2-4m+4=m2+16,解得,m=-3. ∴C(-3,0).
综上所述,C1(2-
,0),C2(2+
O
,0),C3(-2,0),C4(-3,0)符合条件.
A
x
二次函数·动点:
3.如图,己知二次函数y=-x2+2x+3的图象与x轴的一个交点为A(-1,0),
与y轴交于点B.试问∶在抛物线的对称轴上是否存在点P.使得△PAB是
不变,解答问题.
23
综上所述,(2,0)或(6,0)或 ( 6 ,0)
或(1+ 2 3 ,0)
.
方法总结
几何法:
(1)“两圆-线”作出点;
(2)利用勾股、相似、三角函数等求线段长,由线段长得点

等腰三角形的动点问题

等腰三角形的动点问题

等腰三角形的动点问题数学题就像一场找不到终点的旅行。

你从一个点出发,沿着复杂的路径走,最后不知道自己到底走到了哪里。

今天我们就来聊聊等腰三角形的动点问题。

这个题目听上去挺深奥的,实际上它的背后藏着不少有趣的小秘密,只要你敢跟我一起去探索,保准你能一笑而过,轻松搞定。

咱们得弄清楚什么叫“等腰三角形”。

说白了,就是两个边长一样的三角形,像什么呢?就像一把弯弯的弓,或者是你吃过的那种蘋果派,上下两侧都是对称的。

你看着它,觉得它仿佛能站得稳,能做个大跳跃,不管你怎么摆弄它,左右两边始终如一,这就叫做等腰。

是不是感觉有点像朋友之间的默契,心有灵犀一点通,彼此不言而喻?但如果把问题复杂化一点,假设这个等腰三角形的某个点可以自由移动,这个点能左右自如地跑,那么问题就来了。

动点的位置会随着它的运动而变化。

你是不是已经开始脑补自己在画图纸,手握圆规,试图画出那条完美的弧线?嘿,别急,咱们先来一步步搞清楚。

想象一下,你站在等腰三角形的底边上,而底边的两端分别叫做点A和点B。

你就在这条底边上找了个地方,选个地方蹲下来。

你的任务是让你蹲的地方能够移动,往左往右,一下子又到了点C。

那你猜猜,点C移动之后,会发生什么?是不是整个三角形看起来有点“变形”?对,就是这么神奇!你想,底边上某个点的每一次变动,都能影响这个等腰三角形的形状,像是给这个三角形施了魔法一样,它的对称性也会随之发生微妙的变化。

是不是觉得有点复杂了?别急,听我慢慢给你道来。

动点在底边上跑,大家最关心的应该是它的位置对三角形对称性的影响。

你看,如果点C在底边上偏左,那三角形的“腰”就会相应变得不对称;但如果它正好站在底边的正中间呢?哇塞,这时候你会发现,整个三角形变得更加对称了。

嗯,就像有些情侣,你知道他们总是能巧妙地让彼此的步伐同步,简直是天作之合。

再往下想,等腰三角形的动点究竟能跑到哪里?有没有什么规律?是不是动点的每一步都能让你摸到点窍门?嗯,真是的,这问题不简单啊!不过说实话,如果你仔细观察,就会发现它其实有点像一个自我约束的个体。

动点问题(等腰三角形问题)

动点问题(等腰三角形问题)

中考数学专题复习研动点问题探究——等腰三角形分类讨论问题图形中的点、线的运动,构成了数学中的一个新问题——动态问题。

它通常分为三种类型:动点问题、动线问题、动形问题。

题型特点:此类问题常集代数、几何知识于一体,数形结合,有很强的综合性。

是河南中招的必考题,且每年都为压轴题,以函数与三角形和四边形结合的题目为主。

如08年为一次函数与三角形相结合,09年为二次函数与等腰三角形相结合,10年为二次函数与平行四边形相结合。

学情分析:1、这类问题无论教师做了多大的努力,对学生来说都比较困难,所以一部分学生放弃作答。

2、一部分学生对动点问题从根本上不理解,勉强照猫画虎,写了不少但不得分。

3、学生对动点问题有一定认识,对分类能进行简单尝试, 但不完整。

教学方法:1、教师在教学时引导学生把动态问题变为静态问题来解,抓住变化中的“不变量” 。

并从特殊位置点着手确定自变量取值范围, 对基本图形进行充分的分析,画出符合条件的各种草图分散难点、降低难度,将复杂问题简单化。

2、专题化,少而精。

如动点问题有等腰三角形、直角三角形、三角形相似、 四边形存在性等问题,这些都需分类讨论,分小专题复习效果更好。

本节课重点来探究动态几何中的第一类型:动点问题——等腰三角形分类讨论问题(一)自主解决(设计意图:为重点研讨作下铺垫)1、在平面直角坐标系中,已知点P (-2,-1).点T (t ,0)是x 轴上的一个动点。

当t 取何值时,△TOP 是等腰三角形?情况一:OP=OT 情况二:PO=PT T3(-4,0)情况三:TO=TP设计意图:引导学生总结以已知线段为边作等腰三角形时,通常要分三种情况讨论:以已知线段为底或为腰。

且以已知线段为腰时,以该腰不同顶点为顶角顶点有两种情况。

2、如图:已知平行四边形ABCD 中,AB=7,BC=4,∠A=30°)0,5();0,5(21T T -)0,45(4-T(1)点P 从点A 沿AB 边向点B 运动,速度为1cm/s.若设运动时间为t(s),连接PC,当t 为何值时,△PBC 为等腰三角形?若△PBC 为等腰三角形则PB=BC∴t=3(二)师生互动,探究新知如图:已知平行四边形ABCD 中,AB=7,BC=4,∠A=30°(2)若点P 从点A 沿 射线AB 运动,速度仍是1cm/s.当t 为何值时,△PBC 为等腰三角形?(小组合作交流讨论,根据分类的标准易得到下面四种情况)三、∴t=3或11或7+34或 334时 △PBC 为等腰三角形 设计意图:总结探究动点关键“化动为静,分类讨论,画出符合条件的各种草图”,注意一定要分开画.(三) 动脑创新,再探新知:(两个动点问题 ) 如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.(小组合作交流讨论)分析:(1)如图① ,求出BC=10A D CB M N(2)由 MNC GDC △∽△求出5017t = 解决动点问题的好助手:数形结合定相似,比例线段构方程(3)当M 、N 运动到t秒时,若⊿MNC 为等腰三角形,须分三种情况讨论:①当NC MC =时,即102t t =-∴103t = ②当MN N C =时,过N 作NE MC ⊥于E 由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC t c NC t-== 又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ③当MN MC =时,过M 作MF CN ⊥于F 点.1122FC NC t == 132cos 1025t FC C MC t ===-解得6017t = 综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 总结:直角三角形能用相似解决的问题都能用三角函数法,且用三角函数法针对性更强,更省时间。

等腰三角形动点最值问题解题技巧

等腰三角形动点最值问题解题技巧

等腰三角形动点最值问题解题技巧简介等腰三角形是数学中常见的一种三角形形状,其具有许多有趣的几何性质。

在这篇文档中,我们将讨论如何解决等腰三角形动点最值问题。

通过使用解题技巧和公式推导,我们可以轻松找到等腰三角形的各个动点的最值。

基本定义1.等腰三角形等腰三角形是一种具有两条边相等的三角形。

我们可以通过连接底边中点和顶点,形成一个高。

由于等腰三角形具有对称性,底边中点和顶点之间的连线与底边垂直相交,划分出两个等腰直角三角形。

2.动点在几何学中,动点是指在平面上移动的点。

通过改变动点的位置,我们可以观察到某些几何量的变化情况。

在等腰三角形中,我们可以考虑顶点和底边上的某个点作为动点。

动点最值问题解题步骤步骤一:建立坐标系为了简化问题的分析和计算,我们可以将等腰三角形放在坐标系中。

通过选取合适的坐标轴和原点,我们可以方便地描述动点的位置。

步骤二:确定动点位置根据问题描述,确定我们所关注的是等腰三角形的哪个动点。

例如,我们可以考虑探索顶点和底边上的某个点的变化。

步骤三:建立几何关系通过观察等腰三角形的几何性质,我们可以建立动点与其他几何元素之间的相互关系。

这可以通过直线、角度、距离等几何关系来描述。

步骤四:建立动点与几何量的关系式利用步骤三中建立的几何关系,我们可以将动点的位置表示为其他几何量的函数。

这个函数可以是一个方程、一个不等式或一个定义域。

步骤五:求解最值通过求解动点位置的函数,我们可以得到动点所在位置的最值。

这可能是一个最大值、最小值或其他特定值。

步骤六:验证解的合理性最后,我们需要验证我们得到的最值是否合理,并根据实际情况进行解释。

这可以通过对几何性质和约束条件的分析来完成。

例题分析例题:在等腰三角形A BC中,AB=A C=6c m,B C=8c m。

动点P在边B C 上,求B P+PC的最小值。

解题步骤:步骤一:建立坐标系。

选择顶点A为坐标原点,建立x轴和y轴。

步骤二:确定动点位置。

在边BC上选择点P作为动点。

31 动点引起的等腰直角三角形存在性问题-【初中数学】120个题型大招!冲刺满分秘籍!

31 动点引起的等腰直角三角形存在性问题-【初中数学】120个题型大招!冲刺满分秘籍!

动点引起的等腰直角三角形存在性问题△ABP 为等腰直角三角形,黑色部分为P 点位置.【一题多解·典例剖析】例题1.(2021·湖南衡阳市中考)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如()()1,1,2021,2021……都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标;(2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线2y x 2x 3=-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC △,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)(2,2)、(-2,-2);(2)①0<c<4;②45°;(3)存在,P 点坐标为315,24⎛⎫ ⎪⎝⎭或312⎛⎫⎪⎪⎝⎭或31,2⎛⎫⎪⎝⎭.【解析】解:(1)联立4yxy x⎧=⎪⎨⎪=⎩,解得:22xy=⎧⎨=⎩或22xy=-⎧⎨=-⎩即:函数4yx=上的雁点坐标为(2,2)、(-2,-2).(2)①联立25y xy ax x c=⎧⎨=++⎩得ax2+4x+c=0∵这样的雁点E只有一个,即该一元二次方程有两个相等的实根,∴△=16-4ac=0,即ac=4∵a>1∴a=4c>1,即4c-1>0,4cc->0,解得:0<c<4.②由①知,E点坐标为:x=422a a-=-,即E22,a a⎛⎫--⎪⎝⎭在y=ax2+5x+4a中,当y=0时,得:x=-4a,x=-1a即M点坐标为(-4a,0),N点坐标为(-1a,0)过E点向x轴作垂线,垂足为H点,EH=2a,MH=242()a a a---=∴EH=MH即△EMH为等腰直角三角形,∠EMN=45°.(3)存在,理由如下:①如图所示:过P作直线l垂直于x轴于点k,过C作CH⊥PK于点H方法一设C(m,m),P(x,y)∵△CPB为等腰三角形,∴PC=PB,∠CPB=90°,∴∠KPB+∠HPC=90°,∵∠HPC+∠HCP=90°,∴∠KPB=∠HCP,∵∠H=∠PKB=90°,∴△CHP ≌△PKB ,∴CH =PK ,HP =KB ,即3m x y m y x -=⎧⎨-=-⎩∴3232x y m ⎧=⎪⎪⎨⎪=-⎪⎩即P (32,154).方法二设P (m ,-m 2+2m+3),同理,CH =PK ,HP =KB ,则C (m -m 2+2m+3,-m 2+2m+3+3-m )∵C 为雁点∴m -m 2+2m+3=-m 2+2m+3+3-m ,解得:m=32,即P (32,154).②如图所示,同理可得:△KCP ≌△JPB∴KP =JB ,KC =JP方法一设P (x ,y ),C (m ,m )∴KP =x -m ,KC =y -m ,JB =y ,JP =3-x ,即3x m y y m x-=⎧⎨-=-⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩则P 23(,)22或23(,)22方法二设P (m ,-m 2+2m+3),则C (m -(-m 2+2m+3),-m 2+2m+3-(3-m ))∴m -(-m 2+2m+3)=-m 2+2m+3-(3-m ),解得:③如图所示,此时P 与第②种情况重合综上所述,符合题意P 的坐标为(32,154)或3()22,或23()22,.【一题多解·对标练习】练习1.(2021·湖南省怀化市中考)如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =.(1)求抛物线的解析式;(2)点Q 是抛物线上位于x 轴上方的一点,点R 在x 轴上,是否存在以点Q 为直角顶点的等腰Rt CQR △?若存在,求出点Q 的坐标,若不存在,请说明理由.【答案】(1)y=-x2+2x+8;(2)存在,13313322Q⎫++⎪⎪⎝⎭或34141322Q⎛⎫⎪⎪⎝⎭.【解析】解:(1)∵OA=2,OB=4,OC=8,∴A(-2,0),B(4,0),C(0,8),设二次函数的解析式为y=a(x+2)(x-4),将(0,8)代入得:a=-1即抛物线的解析式为:y=-x2+2x+8;(2)存在以点Q为直角顶点的等腰直角△CQR,理由如下:①当点Q在第二象限时,如图所示过点Q作QL⊥x轴于点L,过点C作CK⊥QL,交其延长线于点K,∴∠CKQ=∠QLR=∠COL=90°,∴四边形COLK是矩形,∴CK=OL,∵CQR为等腰直角三角形,∴CQ=QR,∠CQR=90°,∴∠KCQ=∠LQR∴△KCQ ≌△LQR∴RL=QK ,QL=CK ,设R (m ,0),Q (x ,y )则m -x=8-y-x=y即-x=-x 2+2x+8,解得:x=32-或x=32+(舍)则Q (32-,32)②当点Q 在第一象限时,如图所示同理可得:x=-x 2+2x+8,解得:x=12或x=12-(舍),∴Q ⎫⎪⎝⎭.综上所述,满足题意的Q 点坐标为1122⎛⎫ ⎪⎝⎭或3322⎛⎫- ⎪⎝⎭.【多题一解·典例剖析】例题2.(2021·四川省广安市中考)如图,在平面直角坐标系中,抛物线2y x bx c =-++的图象与坐标轴相交于A 、B 、C 三点,其中A 点坐标为()3,0,B 点坐标为()1,0-,连接AC 、BC .动点P 从点A 出发,在线段AC 个单位长度向点C 做匀速运动;同时,动点Q 从点B 出发,在线段BA 上以每秒1个单位长度向点A 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接PQ ,设运动时间为t 秒.(1)求b 、c 的值;(2)在P 、Q 运动的过程中,当t 为何值时,四边形BCPQ 的面积最小,最小值为多少?(3)在线段AC 上方的抛物线上是否存在点M ,使MPQ 是以点P 为直角顶点的等腰直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)b =2,c =3;(2)t =2,最小值为4;(3)【解析】解:(1)∵抛物线y =-x 2+bx +c 经过点A (3,0),B (-1,0),则09301b c b c =-++⎧⎨=--+⎩,解得:23b c =⎧⎨=⎩;(2)由(1)得:抛物线表达式为y =-x 2+2x +3,C (0,3),A (3,0),∴△OAC 是等腰直角三角形,由点P 的运动可知:AP,过点P 作PE ⊥x 轴,垂足为E ,∴AE =PE t ,即E (3-t ,0),又Q (-1+t ,0),∴S 四边形BCPQ =S △ABC -S △APQ =()11433122t t ⨯⨯-⨯--+⎡⎤⎣⎦=21262t t -+∴当t =2时,四边形BCPQ 的面积最小,最小值为4.(3)如图,过点P 作x 轴的垂线,交x 轴于E ,过M 作y 轴的垂线,与EP 交于F,∵△PMQ 是等腰直角三角形,PM =PQ ,∠MPQ =90°,∴∠MPF +∠QPE =90°,又∠MPF +∠PMF =90°,∴∠PMF =∠QPE ,在△PFM 和△QEP 中,F QEP PMF QPE PM PQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFM ≌△QEP ,∴MF =PE =t ,PF =QE =4-2t ,∴EF =4-2t +t =4-t ,又OE =3-t ,∴点M 的坐标为(3-2t ,4-t ),∴4-t =-(3-2t )2+2(3-2t )+3,解得:t,∴M.【多题一解·对标练习】练习2.(2021·山东枣庄中考)如图,在平面直角坐标系中,直线132y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线213y x bx c =++经过坐标原点和点A ,顶点为点M .(1)求抛物线的关系式及点M 的坐标;(2)将直线AB 向下平移,得到过点M 的直线y mx n =+,且与x 轴负半轴交于点C ,取点()2,0D ,连接DM ,求证:45ADM ACM ∠-∠=︒.【答案】(1)y=13x2-2x,M(3,-3);(2)见解析.【解析】解:(1)∵直线AB:y=-12x+3交坐标轴与A、B∴A(6,0),B(0,3)将(6,0),(0,0)代入y=13x2+bx+cx得:1260b cc++=⎧⎨=⎩,解得:2bc=-⎧⎨=⎩,∴抛物线的关系式为y=13x2-2x,顶点M的坐标为(3,-3);(2)由题意得:m=1 2-,将点(3,-3)代入y=12-x+n得:n=32-,则直线CM的解析式为y=12-x32-,如图,过点D作DH⊥CM于H,设直线DM的解析式为y=2x+k,将点(2,0)代入得:4+k=0,解得k=-4,则直线DH的解析式为:y=2x-4,联立132224y x y x ⎧=--⎪⎨⎪=-⎩,解得12x y =⎧⎨=-⎩,即H (1,-2),∴=,=即DH=MH ,又DH ⊥CM ,即三角形DHM 是等腰直角三角形,∠DMH=45°,∴∠ADM=∠ACM+45°即∠ADM -∠ACM=45°.练习3.(2021·湖北黄石中考)抛物线22y ax bx b =-+(0a ≠)与y 轴相交于点()0,3C -,且抛物线的对称轴为3x =,D 为对称轴与x 轴的交点.(1)求抛物线的解析式;(2)在x 轴上方且平行于x 轴的直线与抛物线从左到右依次交于E 、F 两点,若DEF 是等腰直角三角形,求DEF的面积.【答案】(1)y=-x 2+6x -3;(2)4.【解析】解:(1)由抛物线与y 轴相交于点(0,-3),得b=-3,∵抛物线的对称轴为x=3,即232b a--=,解得:a=-1∴抛物线的解析式为y=-x 2+6x -3.(2)过点E 作EM ⊥AB 于点M ,过点F 作FN ⊥AB 于N ,∵△DEF是等腰直角三角形∴DE=DF,∠FED=∠EFD=45°∵EF∥x轴∴∠EDM=45°∴△EMD为等腰直角三角形∴EM=DM设E(m,-m2+6m-3),则M(m,0),DM=3-m,EM=-m2+6m-3,∴3-m=-m2+6m-3解得:m=1或m=6当m=1时,E(1,2),符合题意,DM=EM=2,MN=4,△DEF的面积为4当m=6时,E(6,-3),舍去,综上所述:△DEF的面积为4.。

动点等腰三角形的分类讨论

动点等腰三角形的分类讨论

动点等腰三角形的分类讨论等腰三角形是指两边长度相等的三角形,动点等腰三角形则是指在等腰三角形中,其中一个顶点在动态变化的情况下,讨论不同情况下的动点等腰三角形的特点和分类。

一、动点在底边上的情况:当动点在底边上时,等腰三角形的另外两个顶点分别位于底边的两侧。

此时,根据动点的位置不同,可以将动点等腰三角形进一步分类。

1. 动点在底边的中点上:当动点在底边的中点上时,等腰三角形的另外两个顶点将分别位于底边的两侧,且与底边的两个顶点的连线相等。

这种情况下,等腰三角形的两个等边边长相等,且底角为直角。

2. 动点在底边的延长线上:当动点在底边的延长线上时,等腰三角形的另外两个顶点将分别位于底边的两侧的延长线上,且与底边的两个顶点的连线相等。

这种情况下,等腰三角形的两个等边边长相等,且顶角为直角。

3. 动点在底边的延长线上但不与底边相交:当动点在底边的延长线上但不与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧的延长线上,且与底边的两个顶点的连线相等。

这种情况下,等腰三角形的两个等边边长相等,且顶角为锐角。

二、动点在底边外的情况:当动点在底边外时,等腰三角形的另外两个顶点将分别位于底边的两侧。

此时,根据动点的位置不同,可以将动点等腰三角形进一步分类。

1. 动点在底边的延长线上但不与底边相交:当动点在底边的延长线上但不与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧。

这种情况下,等腰三角形的两个等边边长不相等,且顶角为锐角。

2. 动点在底边的延长线上且与底边相交:当动点在底边的延长线上且与底边相交时,等腰三角形的另外两个顶点将分别位于底边的两侧。

这种情况下,等腰三角形的两个等边边长不相等,且顶角为钝角。

动点等腰三角形可以根据动点在底边上或底边外以及动点位置的具体情况进行分类。

不同情况下,等腰三角形的两个等边边长和顶角的大小都会有所不同。

通过对动点等腰三角形的分类讨论,可以更加全面地了解等腰三角形的特点和性质。

中考压轴专题,2.因动点产生的等腰三角形问题-教师

中考压轴专题,2.因动点产生的等腰三角形问题-教师

因动点产生的等腰三角形问题例1 如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图思路点拨1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.满分解答(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544ED CD C=⋅∠=⨯=,254EC=.(2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3.由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN.因此△PDM∽△QDN.所以43PM DMQN DN==.所以34QN PM=,43PM QN=.图2 图3 图4①如图3,当BP=2,P在BM上时,PM=1.此时3344QN PM==.所以319444CQ CN QN=+=+=.②如图4,当BP=2,P在MB的延长线上时,PM=5.此时31544QN PM==.所以1531444CQ CN QN=+=+=.(3)如图5,如图2,在Rt△PDQ中,3 tan4QD DNQPDPD DM∠===.在Rt△ABC中,3tan4BACCA∠==.所以∠QPD=∠C.由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ . 因此△PDF ∽△CDQ .当△PDF 是等腰三角形时,△CDQ 也是等腰三角形.①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时4433PM QN ==.所以45333BP BM PM =-=-=. ②如图6,当QC =QD 时,由cos CHC CQ=,可得5425258CQ =÷=.所以QN =CN -CQ =257488-=(如图2所示). 此时4736PM QN ==.所以725366BP BM PM =+=+=. ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示).图5 图6考点伸展如图6,当△CDQ 是等腰三角形时,根据等角的余角相等,可以得到△BDP 也是等腰三角形,PB =PD .在△BDP 中可以直接求解256BP =.例2 如图1,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.图1思路点拨1.第(2)题是典型的“牛喝水”问题,点P 在线段BC 上时△P AC 的周长最小. 2.第(3)题分三种情况列方程讨论等腰三角形的存在性.满分解答(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3), 代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x 2+2x +3. (2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,P A +PC 最小,△P AC 的周长最小. 设抛物线的对称轴与x 轴的交点为H . 由BH PH BO CO =,BO =CO ,得PH =BH =2. 图2 所以点P 的坐标为(1, 2).(3)点M 的坐标为(1, 1)、(1,6)、(1,6-)或(1,0).考点伸展第(3)题的解题过程是这样的: 设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1. 此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得6m =±. 此时点M 的坐标为(1,6)或(1,6-).③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图5例3 如图1,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.图1思路点拨1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.2.本题中等腰三角形的角度特殊,三种情况的点P 重合在一起.满分解答(1)如图2,过点B 作BC ⊥y 轴,垂足为C .在Rt △OBC 中,∠BOC =30°,OB =4,所以BC =2,23OC =. 所以点B 的坐标为(2,23)--.(2)因为抛物线与x 轴交于O 、A (4, 0),设抛物线的解析式为y =ax (x -4), 代入点B (2,23)--,232(6)a -=-⨯-.解得36a =-. 所以抛物线的解析式为23323(4)663y x x x x =--=-+.(3)抛物线的对称轴是直线x =2,设点P 的坐标为(2, y ).①当OP =OB =4时,OP 2=16.所以4+y 2=16.解得23y =±. 当P 在(2,23)时,B 、O 、P 三点共线(如图2).②当BP =BO =4时,BP 2=16.所以224(23)16y ++=.解得1223y y ==-. ③当PB =PO 时,PB 2=PO 2.所以22224(23)2y y ++=+.解得23y =-. 综合①、②、③,点P 的坐标为(2,23)-,如图2所示.图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D ,那么△DOA 与△OAB 是两个相似的等腰三角形.由23323(4)(2)663y x x x =--=--+,得抛物线的顶点为23(2,)3D .因此23tan 3DOA ∠=.所以∠DOA =30°,∠ODA =120°.例4 如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4). 令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O RC O R AS S S S=--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠P AQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-.如图5,当AP=AQ时,解方程520733t t-=-,得418t=.如图6,当QP=QA时,点Q在P A的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]t t t-=---,得5t=.如7,当P A=PQ时,那么12cosAQAAP∠=.因此2cosAQ AP A=⋅∠.解方程52032(7)335t t-=-⨯,得22643t=.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cosAP AQ A=⋅∠来求解.例5 如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式. 2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m xx y-=.整理,得y 关于x 的函数关系为218y x x m m =-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2. (3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m=,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.例 6 如图1,在等腰梯形ABCD 中,AD //BC ,E 是AB 的中点,过点E 作EF //BC 交CD 于点F ,AB =4,BC =6,∠B =60°.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过点P 作PM ⊥EF 交BC 于M ,过M 作MN //AB 交折线ADC 于N ,连结PN ,设EP =x .①当点N 在线段AD 上时(如图2),△PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足条件的x 的值;若不存在,请说明理由.图1 图2 图3思路点拨1.先解读这个题目的背景图,等腰梯形ABCD 的中位线EF =4,这是x 的变化范围.平行线间的距离处处相等,AD 与EF 、EF 与BC 间的距离相等.2.当点N 在线段AD 上时,△PMN 中PM 和MN 的长保持不变是显然的,求证PN 的长是关键.图形中包含了许多的对边平行且相等,理顺线条的关系很重要.3.分三种情况讨论等腰三角形PMN ,三种情况各具特殊性,灵活运用几何性质解题.满分解答(1)如图4,过点E 作EG ⊥BC 于G .在Rt △BEG 中,221==AB BE ,∠B =60°, 所以160cos =︒⋅=BE BG ,360sin =︒⋅=BE EG .所以点E 到BC 的距离为3.(2)因为AD //EF //BC ,E 是AB 的中点,所以F 是D C 的中点.因此EF 是梯形ABCD 的中位线,EF =4.①如图4,当点N 在线段AD 上时,△PMN 的形状不是否发生改变.过点N 作NH ⊥EF 于H ,设PH 与NM 交于点Q .在矩形EGMP 中,EP =GM =x ,PM =EG =3.在平行四边形BMQE 中,BM =EQ =1+x .所以BG =PQ =1.因为PM 与NH 平行且相等,所以PH 与NM 互相平分,PH =2PQ =2.在Rt △PNH 中,NH =3,PH =2,所以PN =7.在平行四边形ABMN 中,MN =AB =4.因此△PMN 的周长为3+7+4.图4 图5②当点N 在线段DC 上时,△CMN 恒为等边三角形.如图5,当PM =PN 时,△PMC 与△PNC 关于直线PC 对称,点P 在∠DCB 的平分线上.在Rt △PCM 中,PM =3,∠PCM =30°,所以MC =3.此时M 、P 分别为BC 、EF 的中点,x =2.如图6,当MP =MN 时,MP =MN =MC =3,x =GM =GC -MC =5-3.如图7,当NP =NM 时,∠NMP =∠NPM =30°,所以∠PNM =120°.又因为∠FNM =120°,所以P 与F 重合.此时x =4.综上所述,当x =2或4或5-3时,△PMN 为等腰三角形.图6 图7 图8 考点伸展第(2)②题求等腰三角形PMN 可以这样解:如图8,以B 为原点,直线BC 为x 轴建立坐标系,设点M 的坐标为(m ,0),那么点P 的坐标为(m ,3),MN =MC =6-m ,点N 的坐标为(26+m ,2)6(3m -). 由两点间的距离公式,得21922+-=m m PN .当PM =PN 时,92192=+-m m ,解得3=m 或6=m .此时2=x .当MP =MN 时,36=-m ,解得36-=m ,此时35-=x .当NP =NM 时,22)6(219m m m -=+-,解得5=m ,此时4=x .。

动点问题中的等腰三角形问题

动点问题中的等腰三角形问题

N M QP D C B A F E N M Q P D CB A 4.如图1,梯形ABCD 中,AD ∥BC ,5AB AD DC ===,11BC =.一个动点P 从点B 出发,以每秒1个单位长度的速度沿线段BC 方向运动,过点P 作PQ BC ⊥,交折线段BA AD -于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当Q 点到达D 点时,运动结束.设点P 的运动时间为t 秒(0t >).如图2,当点Q 在线段AD 上运动时,线段PQ 与对角线BD 交于点E ,将△DEQ 沿BD 翻折,得到△DEF ,连接PF .是否存在这样的t ,使△PEF 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.5.如图,矩形ABCD 中,AB=6,BC= 23,点O 是AB 的中点,点P 在AB 的延长线上,且BP=3。

一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速运动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E 、F 同时出发,当两点相遇时停止运动,在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线PA 的同侧。

设运动的时间为t 秒(t ≥0)。

(1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存大,求出对应的t 的值;若不存在,请说明理由。

动点问题中的等腰三角形问题1.公共汽车每隔x 分钟发车一次,小宏在大街上行走,发现从背后每隔6分钟开过来一辆公共汽车,而第26题图1 第26题图2每隔724分钟迎面开来一辆公共汽车。

如果公共汽车与小宏行进的速度都是均匀的,则x 等于 分钟。

2.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.教学目标
1. 消除学生对“动点问题即难点问题,我不 会”这样的思想模式,帮助学生树立中考 并 不难的观念 2. 通过本节课的学习,学生对动点问题的学 习有了一个大概的方向 3.会解决一些因动点产生的等腰三角形问题
4.教学的重、难点
教学重点:因动点产生的等腰三角形问题
教学难点: 已知点的坐标求线段的长度
二、学情分析
我所教授的是一精品小班,学生人数仅仅6人,他们 分别来自兵一、兵二、十三中以及七十六中。这几个孩 子现已经进行过一轮复习,也适当的做了一些往年的中 考试卷,对于基础的知识他们掌握的还是不错的,但是 对于综合行的题目却感觉困难,尤其是最后一道题,他 们现阶段往往采取直接放弃的方法。 针对以上情况,我希望通过本节课的学习,一方面 帮助学生树立自信,让他们明白,所谓的综合性题、难 题她是由诸多小知识点组成,解决它,我们要学会做减 法,一点一点的把他啃下来。另一方面也让他们找到一 些解决动点问题的方法。
4.反馈练习:2012年临沂市中考第26题
如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转 120°至OB的位置.
(1)求点B的坐标;
(2)求经过A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P 、O、B为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若丌存在,请说明理由.
三、教法、学法
1.教学方法
新课程理念强调我们的课程不仅是文本课程,更是体验 课程,它不再是知识的载体,而是教师和学生共同探究 新知的过程;使教学成为一种对话、交往,一种沟通, 合作与共建。教师不仅要传授知识,更要与学生一起分 享对课程的理解。因此,本节课我主要采用两种教法: 1、引导探索法: 在数学教学中,作为教师应善于引导学生去观察、 去分析、去归纳、去总结,从而培养学生主动求知的探 索精神。 2、情景教学法: 数学课程的特点之一是内容抽象,而多媒体在数学 教学中的应用可以较好的解决这个难题。
1. 梳理酒质,引出新课
问题一:已知一△ABC,当它满足什么条件时, 我们可以说△ABC是等腰三角形 问题二:将△ABC放入直角坐标系中,告诉你
每个点的坐标,怎么用点的坐标表示
三角形的边长。 问题三:已知两点A(X1,Y1),B(X2,Y2)
如何求线段AB的长度
2. 增强自信
2012年扬州市中考第27题 如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、 C(0 ,3)三点,直线l是抛物线的对称轴. (1)求抛物线的函数关系式;
2.学法
本节课按照质疑、猜想、验证的学习过程,遵 循学生的认知规律让学生感受由实践到理论 再到实践的学习过程,也体现了数学源于生活 ,而又服务于生活的基本理念。本节课将着力 培养学生的实践探究能力、合作交流和抽象概 括能力。
四、教学过程
1. 2. 3. 4. 5. 复习提升 增强自信 范例讲解 反馈练习 总结作业
中考总复习之函数图像中点的存在性问题
因动点产生的 等腰三角形问题
一、教材分析
1.教学内容 本节课的教学内容是因动点产生的等腰 三角形问题。它是在函数的基础上,以函数 作为载体,讨论动点的存在性。是中考复习 中函数图象中点的存在性问题的重要组成部 分,它的学习也为以后学习因动点产生的相 似三角形、直角三角形、平行四边等问题提 供了一种很好的数学思想以及解题模式。
5.总结作业
1. 最后一道题,真的很难吗? 2. 动点问题,首先干什么?
3. 引动点产生的等腰三角形问题从何下手?
4. 引动点产生的等腰三角形问题要注意什么?
作业:2011年盐城市中考28题 2011年湖州市中考24题
(2)设点P是直线l上的一个动点,当△PAC的周长最小时 ,求点P的坐标;
3. 范例讲解---方案一
(3)在直线l上是否存在点M,使△MAC为等腰三角形,若 存在,直接写出所有符合条件的点M的坐标;若丌存在 ,请说明理由. 分析: ① 设M(1,m) ② 若△MAC为等腰三角形 ,则 a. b. c. AC=AM AC=CM AM=CM
2.教材的地位和作用
纵观近几年乌鲁木齐中考数学的考题,可以非常容 易的发一个共同点,几乎所有的压轴题都是以函数作为 载体,求解动点的存在性问题。例如: 2008年最后一题:动点产生的线段平分问题 2009年最后一题:动点产生的直角三角形问题 2010年最后一题: 动点产生的平行四边形问题 2011年最后一题:动点产生的平行四边形以及距离问题 2012年最后一题:动点产生的菱形问题 所以,可以毫不夸张地说,动点问题的学习是学生 突破高分的必经途径。
4. 范例讲解---方案二
(3)在直线l上是否存在点M,使△MAC为等腰三角形, 若存在,直接写出所有符合条件的点M的坐标;
若丌存在,请说明理由.
分析: ① 设M(1,m) ② 若△MAC为等腰三角形 ,则 a. 以A为圆心,AC为半径画圆交L于M1点; AC=AM b. 以C为圆心,AC为半径画圆交L于M2、M3; AC=CM c. 作AC的垂直平分线,交L于M4, AM=CM
相关文档
最新文档