高考数学 选择题常考考点专练10
【精品高考数学】2020年高三数学(山东专用)-第10练-计数原理、概率、随机变量及其分布列+答案

第10练-计数原理、概率、随机变量及其分布列一、单选题1.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A .3600种B .1440种C .4820种D .4800种2.从集合{A ,B ,C ,D ,E ,F }和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为( )A .85B .95C .2040D .2280 3.()()4121x x ++的展开式中3x 的系数为( )A .12B .14C .16D .204.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD (边长为2个单位)的顶点A 处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为(1,2,,6)i i =⋅⋅⋅,则棋子就按逆时针方向行走i 个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A 处的所有不同走法共有( )A .22种B .24种C .25种D .27种5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )A .15B .815C .35D .320 6.我国古代有着辉煌的数学研究成果.《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这l0部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为( ).A .1415B .115C .29D .7.已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则( ) A .1E()ξ<2E()ξ,1D()ξ<2D()ξB .1E()ξ<2E()ξ,1D()ξ>2D()ξC .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ8.有甲、乙两个盒子,甲盒子里有1个红球,乙盒子里有3个红球和3个黑球,现从乙盒子里随机取出()*16,n n n N ≤≤∈个球放入甲盒子后,再从甲盒子里随机取一球,记取到的红球个数为ξ个,则随着()*16,n n n N ≤≤∈的增加,下列说法正确的是( )A .E ξ增加,D ξ增加B .E ξ增加,D ξ减小C .E ξ减小,D ξ增加D .E ξ减小,D ξ减小二、多选题9.设集合{2,3,4}M =,{1,2,3,4}N =,分别从集合M 和N 中随机取一个元素m 与n .记“点(,)P m n 落在直线x y k +=上”为事件()*38,k A k k N ≤≤∈,若事件k A 的概率最大,则k 的取值可能是( ) A .4 B .5C .6D .7 10.对于二项式()3*1n x n N x ⎛⎫+∈ ⎪⎝⎭,以下判断正确的有( )A .存在*n N ∈,展开式中有常数项;B .对任意*n N ∈,展开式中没有常数项;C .对任意*n N ∈,展开式中没有x 的一次项;D .存在*n N ∈,展开式中有x 的一次项.11.下列对各事件发生的概率判断正确的是( )A .某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,那么该生在上学路上到第3个路口首次遇到红灯的概率为427 B .三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为25C .甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,从每袋中各任取一个球,则取到同色球的概率为12D .设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率是2912.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数35,若有95%的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人附表:附:()()()()()22n ad bc K a b c d a c b d -=++++ A .25B .45C .60D .75三、填空题13.在2n x ⎫⎪⎭的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____. 14.安排,,,,,A B C D E F 六名义工照顾甲、乙、丙三位老人,每两位义工照顾一位老人.考虑到义工与老人住址距离问题,义工A 不安排照顾老人甲,义工B 不安排照顾老人乙,安排方法共有___________. 15.若有一个不透明的袋子内装有大小、质量相同的6个小球,其中红球有2个,白球有4个,每次取两个,取后放回,连续取三次,设随机变量ξ表示取出后都是白球的次数,则()E ξ=______ .16.设2018220180122018(1)ax x a x a a x a -=++++L ,若12320182320182018a a a a a +++⋯+=()0a ≠,则实数a =________.四、解答题17.武汉又称江城,是湖北省省会城市,被誉为中部地区中心城市,它不仅有着深厚的历史积淀与丰富的民俗文化,更有着众多名胜古迹与旅游景点,每年来武汉参观旅游的人数不胜数,其中黄鹤楼与东湖被称为两张名片为合理配置旅游资源,现对已游览黄鹤楼景点的游客进行随机问卷调查,若不游玩东湖记1分,若继续游玩东湖记2分,每位游客选择是否游览东湖景点的概率均为12,游客之间选择意愿相互独立.(1)从游客中随机抽取3人,记总得分为随机变量X,求X的分布列与数学期望;(2)(i)若从游客中随机抽取m人,记总分恰为m分的概率为m A,求数列{}m A的前10项和;(ⅱ)在对所有游客进行随机问卷调查过程中,记已调查过的累计得分恰为n分的概率为n B,探讨n B与1n B-之间的关系,并求数列{}n B的通项公式.18.某游戏棋盘上标有第0、1、2、L、100站,棋子开始位于第0站,选手抛掷均匀硬币进行游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到跳到第99站或第100站时,游戏结束.设游戏过程中棋子出现在第n 站的概率为n P .(1)当游戏开始时,若抛掷均匀硬币3次后,求棋子所走站数之和X 的分布列与数学期望;(2)证明:()()1111982n n n n P P P P n +--=--≤≤; (3)若最终棋子落在第99站,则记选手落败,若最终棋子落在第100站,则记选手获胜.请分析这个游戏是否公平.第10练-计数原理、概率、随机变量及其分布列一、单选题1.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A.3600种B.1440种C.4820种D.4800种【答案】A【解析】【分析】不相邻问题用插空法,先将除甲乙外的其他5人全排列,再将甲乙2人插入6个空中,即可. 【详解】第一步,先将除甲乙外的其他5人全排列,5554321120A=⨯⨯⨯⨯=种第二步,将甲乙2人插入6个空中,266530A=⨯=种则不同的排法种数是5256120303600A A=⨯=g种故选:A【点睛】本题考查排列问题,插空法是解决本题的关键.属于较易题.2.从集合{A,B,C,D,E,F}和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C和数字4,7至少出现两个的不同排法种数为()A.85 B.95 C.2040 D.2280【答案】C【解析】【分析】根据题意,分2步进行分析:先在两个集合中选出4个元素,要求字母C和数字4,7至少出现两个,再将选出的4个元素全排列,即得解.【详解】根据题意,分2步进行分析:①,先在两个集合中选出4个元素,要求字母C和数字4,7至少出现两个,若字母C和数字4,7都出现,需要在字母A,B,D,E,F中选出1个字母,有5种选法,若字母C和数字4出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若字母C和数字7出现,需要在字母A,B,D,E,F中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若数字4、7出现,需要在字母A ,B ,D ,E ,F 中选出2个字母,有C 52=10种选法,则有5+35+35+10=85种选法,②,将选出的4个元素全排列,有A 44=24种情况,则一共有85×24=2040种不同排法; 故选:C .【点睛】本题考查了排列组合综合,考查了学生综合分析,转化化归,分类讨论的能力,属于中档题.3.()()4121x x ++的展开式中3x 的系数为( )A .12B .14C .16D .20【答案】C【解析】【分析】将代数式变形为()()()()444121121x x x x x ++=+++,求出展开式的通项,利用x 的指数为3,求出参数值,然后代入展开式通项可求得3x 的系数.【详解】 ()()()()444121121x x x x x ++=+++Q ,展开式通项为1,444422r r k k r r k k r k T C x xC x C x C x +=+=+,令13r k =+=,得3r =,2k =,则展开式中3x 的系数为3244242616C C +=+⨯=.故选:C.【点睛】本题考查了二项展开式中指定项的系数问题,考查计算能力,是基础题.4.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD (边长为2个单位)的顶点A 处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为(1,2,,6)i i =⋅⋅⋅,则棋子就按逆时针方向行走i 个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A 处的所有不同走法共有( )A .22种B .24种C .25种D .27种【答案】D【解析】分析:抛掷三次骰子后棋子恰好又回到点A 处的表示三次骰子的点数之和是8,16,列举出在点数中三个数字能够使得和为8,16的125;134;116;224;233;466;556,共有7种组合,利用分类计数原理能得到结果. 详解:由题意知正方形ABCD (边长为2个单位)的周长是8,抛掷三次骰子后棋子恰好又回到点A 处的表示三次骰子的点数之和是8,16,列举出在点数中三个数字能够使得和为8,16的有125;134;116;224;233;466;556,共有7种组合,前2种组合125;134,每种情况可以排列出336A =种结果,共有3322612A =⨯=种结果;116;224;233;466;556各有3种结果,共有5315⨯=种结果,根据分类计数原理知共有121527+=种结果,故选D.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.5.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )A .15B .815C .35D .320【答案】D【解析】【分析】“口香糖吃完时还剩2支香烟”即第四次取到的是口香糖且前三次有两次口香糖一次香烟,根据古典概型计算出其概率即可.【详解】由题:“口香糖吃完时还剩2支香烟”说明:第四次取到的是口香糖,前三次中恰有两次口香糖一次香烟,记香烟为123,,A A A ,口香糖为123,,B B B ,进行四次取物,基本事件总数为:6543360⨯⨯⨯=种事件“口香糖吃完时还剩2支香烟”前四次取物顺序分为以下三种情况:烟、糖、糖、糖:332118⨯⨯⨯=种糖、烟、糖、糖: 332118⨯⨯⨯=种糖、糖、烟、糖:323118⨯⨯⨯=种包含的基本事件个数为:54,所以,其概率为54336020= 故选:D【点睛】此题考查古典概型,解题关键在于弄清基本事件总数,和某一事件包含的基本事件个数,其本质在于计数原理的应用.6.我国古代有着辉煌的数学研究成果.《周牌算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这l0部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的概率为( ).A .1415B .115C .29D . 【答案】A【解析】【分析】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A ,可以求()P A ,运用公式()1()P A P A =-,求出()P A .【详解】设所选2部专著中至少有一部是魏晋南北朝时期专著为事件A , 所以232101()=15C P A C =,因此114()1()=11515P A P A =--=,故本题选A. 【点睛】本题考查了求对立事件的概率问题,考查了运算能力.7.已知随机变量i ξ满足P (i ξ=1)=pi ,P (i ξ=0)=1—pi ,i=1,2.若0<p1<p2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξC .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ【答案】A【解析】∵1122(),()E p E p ξξ==,∴12()()E E ξξ<,∵111222()(1),()(1)D p p D p p ξξ=-=-,∴121212()()()(1)0D D p p p p ξξ-=---<,故选A .【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i ξ服从两点分布,由两点分布数学期望与方差的公式可得A 正确.8.有甲、乙两个盒子,甲盒子里有1个红球,乙盒子里有3个红球和3个黑球,现从乙盒子里随机取出()*16,n n n N ≤≤∈个球放入甲盒子后,再从甲盒子里随机取一球,记取到的红球个数为ξ个,则随着()*16,n n n N ≤≤∈的增加,下列说法正确的是( )A .E ξ增加,D ξ增加B .E ξ增加,D ξ减小C .E ξ减小,D ξ增加D .E ξ减小,D ξ减小 【答案】C【解析】 【分析】由题意可知,从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即()6,3,X H n :,可得出2n EX =,再从甲盒子里随机取一球,则ξ服从两点分布,所以()111222E P n ξξ===++,()1111222D P n ξξ=-==-+,从而可判断出E ξ和D ξ的增减性.【详解】由题意可知,从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即()6,3,X H n :,其中()336k n k nC C P X k C -==,其中k ∈N ,3k ≤且k n ≤,362n nEX ==. 故从甲盒中取球,相当于从含有12n+个红球的1n +个球中取一球,取到红球个数为ξ. 故()111211222n P n n ξ+===+++, 随机变量ξ服从两点分布,所以()111211222n E P n n ξξ+====+++,随着n 的增大,E ξ减小; ()1111222D P n ξξ=-==-+,随着n 的增大,D ξ增大.故选:C. 【点睛】本题考查超几何分布、两点分布,分布列与数学期望,考查推理能力与计算能力,属于难题.二、多选题9.设集合{2,3,4}M =,{1,2,3,4}N =,分别从集合M 和N 中随机取一个元素m 与n .记“点(,)P m n 落在直线x y k +=上”为事件()*38,k A k k N ≤≤∈,若事件k A 的概率最大,则k 的取值可能是( )A .4B .5C .6D .7【答案】BC 【解析】 【分析】先计算出基本事件的总数,再分别求出事件3A 、事件4A 、事件5A 、事件6A 、事件7A 、事件8A 所包含基本事件的个数及相应的概率即可. 【详解】由题意,点(,)P m n 的所有可能情况为(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(4,1)、(4,2)、(4,3)、(4,4),共12个基本事件,则事件3A :点(,)P m n 落在直线3x y +=包含其中(2,1)共1个基本事件,所以()3112P A =;事件4A :点(,)P m n 落在直线4x y +=包含其中(2,2)、(3,1)共2个基本事件,所以()416P A =;事件5A :点(,)P m n 落在直线5x y +=包含其中(2,3)、(3,2)、(4,1)共3个基本事件,所以()514P A =;事件6A :点(,)P m n 落在直线6x y +=包含其中(2,4)、(3,3)、(4,2)共3个基本事件,所以()614P A =;事件7A :点(,)P m n 落在直线7x y +=包含其中(3,4)、(4,3)共2个基本事件,所以()716P A =;事件8A :点(,)P m n 落在直线8x y +=包含其中(4,4)共1个基本事件,所以()8112P A =.综上可得,当5k =或6时,()()()56max 14k P A P A P A ===.故选:BC. 【点睛】本题主要考查古典概型的概率计算问题,关键是要分情况讨论,属中等难度题.10.对于二项式()3*1nx n N x ⎛⎫+∈ ⎪⎝⎭,以下判断正确的有( )A .存在*n N ∈,展开式中有常数项;B .对任意*n N ∈,展开式中没有常数项;C .对任意*n N ∈,展开式中没有x 的一次项;D .存在*n N ∈,展开式中有x 的一次项. 【答案】AD 【解析】 【分析】利用展开式的通项公式依次对选项进行分析,得到答案。
高考数学(全国乙卷(理科)考前抢分必做:“12+4”专项练10 Word版含答案

“12+4”专项练101.设集合A ={x |12<x <3},B ={x |(x +1)(x -2)<0},则A ∩B 等于() A.{x |12<x <2}B.{x |-1<x <3}C.{x |12<x <1}D.{x |1<x <2} 答案A2.(2016·课标全国乙)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|等于() A.1B.2C.3D.2答案B解析由(1+i)x =1+y i ,得x +x i =1+y i ⇒⎩⎪⎨⎪⎧ x =1,x =y ⇒⎩⎪⎨⎪⎧ x =1,y =1.所以|x +y i|=x 2+y 2=2,故选B.3.已知命题p :“∃x 0∈R ,e0x -x 0-1≤0”,则綈p 为() A.∃x 0∈R ,e0x -x 0-1≥0 B.∃x 0∈R ,e 0x -x 0-1>0C.∀x ∈R ,e x -x -1>0D.∀x ∈R ,e x -x -1≥0答案C4.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f (52)等于() A.0B.1C.12D.-1 答案D解析因为f (x )是周期为3的周期函数,所以f (52)=f (-12+3)=f (-12)=4×(-12)2-2=-1,故选D.5.设函数f (x )=A sin(ωx +φ) (A ,ω,φ是常数,A >0,ω>0),且函数f (x )的部分图象如图所示,则有()A.f (-3π4)<f (5π3)<f (7π6) B.f (-3π4)<f (7π6)<f (5π3) C.f (5π3)<f (7π6)<f (-3π4) D.f (5π3)<f (-3π4)<f (7π6) 答案D解析由题意T =43(5π6-π12)=π, ∴ω=2ππ=2, 又∵2×π12+φ=π2,解得φ=π3, ∴f (x )=A sin(2x +π3), 由图象知f (x )的一个减区间是(π12,7π12), 一个增区间是(7π12,1312π), f (-3π4)=f (π4), f (5π3)=f (2π3)=f (2×7π12-2π3)=f (π2), f (7π6)=f (π6),π12<π6<π4<π2<7π12, 所以f (π6)>f (π4)>f (π2),故选D. 6.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x 的值等于()A.0.12B.0.012C.0.18D.0.018答案D解析依题意,0.054×10+10x +0.01×10+0.006×10×3=1,解得x =0.018,故选D.7.(2016·四川)已知a 为函数f (x )=x 3-12x 的极小值点,则a 等于()A.-4B.-2C.4D.2答案D解析∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12,令f ′(x )=0,则x 1=-2,x 2=2.当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增;当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减,∴f (x )的极小值点为a =2.8.如图,长方形的四个顶点为O (0,0),A (4,0),B (4,2),C (0,2),曲线y =x 经过点B .小军同学在学做电子线路板时有一电子元件随机落入长方形OABC 中,则该电子元件落在图中阴影区域的概率是()A.512B.12C.23D.34答案C解析图中阴影部分是事件A 发生的区域,其面积S 阴=⎠⎛04x d x =23x 32⎪⎪⎪40=163, S 长方形=4×2=8,∴所求概率P =S 阴S 长方形=1638=23.故选C. 9.函数y =|log 2x |-(12)x 的零点个数是() A.0B.1C.2D.4答案C解析令y =|log 2x |-(12)x =0, 即|log 2x |=(12)x , 在同一坐标系下作出y =|log 2x |和y =(12)x 的图象(图略), 易知两图象有2个交点,即函数有2个零点.10.(2016·天津)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件答案C解析设数列的首项为a 1,则a 2n -1+a 2n =a 1q 2n -2+a 1q 2n -1=a 1q 2n -2(1+q )<0,即q <-1, 故q <0是q <-1的必要而不充分条件.故选C.11.设椭圆的两个焦点分别为F 1,F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是() A.3+1B.2+1C.3-1D.2-1答案D解析设点P 在x 轴上方,则依题意,P 点的坐标为(c ,b 2a). 因为△F 1PF 2为等腰直角三角形,所以b 2a=2c ,b 2=2ac ,即a 2-c 2=2ac , 两边除以a 2得1-e 2=2e ,解得e =2-1(e =-2-1舍去),故选D.12.已知f (x )=|x 2-1|+x 2+kx ,若关于x 的方程f (x )=0在(0,2)上有两个不相等的实根,则k 的取值范围是()A.(-1,0)B.(-72,+∞)C.(-∞,-72)∪(-1,+∞)D.(-72,-1) 答案D解析本题考查函数零点及函数与方程的关系.当x ∈(0,1]时,f (x )=1-x 2+x 2+kx =kx +1,此时方程f (x )=0有一个零点-1k; 当x ∈(1,2)时,f (x )=g (x )=x 2-1+x 2+kx =2x 2+kx -1.∵g (x )=2x 2+kx -1=0必有一正根、一负根,∴正根一定位于区间(1,2)上,即⎩⎪⎨⎪⎧ g (1)<0,g (2)>0,0<-1k ≤1,解得-72<k <-1,故选D. 13.如果执行下面的程序框图,那么输出的S =________.答案2解析开始i =0,S =2,判断i <4?是,i =1,S =2-12+1=13, 判断i <4?是,i =2,S =13-113+1=-12, 判断i <4?是,i =3,S =-12-1-12+1=-3,判断i <4?是,i =4,S =-3-1-3+1=2, 判断i <4?否,输出2,所以答案为2.14.(2x 2+x -1)5的展开式中,x 3的系数为__________.(用数字填写答案)答案 -30解析因为(2x 2+x -1)5=(2x -1)5(x +1)5,所以x 3的系数为C 2523·1-C 3522·C 45+C 4521·C 35-C 5520·C25=-30. 15.(2016·上海)已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于_____. 答案733解析利用余弦定理可求得最大边7所对应角的余弦值为32+52-722×3×5=-12, 所以此角的正弦值为32, 由正弦定理得2R =732, 所以该三角形的外接圆半径R =733. 16.观察下面等式,则按此规律第n 个等式为____________________________.1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……………………答案n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2解析等式的右边为1,9,25,49,…,即为12,32,52,72,…,即奇数的平方,等式的左边为正整数为首项,每行个数为对应奇数的和,所以第n 个式子的右边为(2n -1)2,左边为n +(n +1)+(n +2)+…+(3n -2),所以第n个式子为n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2.2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x},若M∪N={0,1,2,3},则x的值为()A.3 B.2 C.1 D.02.如图是一个几何体的三视图,则该几何体为()A.球B.圆柱C.圆台D.圆锥3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.55.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣86.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,207.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x <﹣1}9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=1010.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=.12.已知1,x,9成等比数列,则实数x=.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为•15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF 把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x},若M∪N={0,1,2,3},则x的值为()A.3 B.2 C.1 D.0【考点】并集及其运算.【分析】根据M及M与N的并集,求出x的值,确定出N即可.【解答】解:∵集合M={0,1,2},N={x},且M∪N={0,1,2,3},∴x=3,故选:A.2.如图是一个几何体的三视图,则该几何体为()A.球B.圆柱C.圆台D.圆锥【考点】由三视图求面积、体积.【分析】由三视图可知该几何体为圆锥.【解答】解:根据三视图可知,该几何体为圆锥.故选D.3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.【考点】几何概型.【分析】由题意,要使此数大于3,只要在区间(3,5]上取即可,利用区间长度的比求.【解答】解:要使此数大于3,只要在区间(3,5]上取即可,由几何概型的个数得到此数大于3的概率为为;故选B.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出正确的答案.【解答】解:模拟程序框图的运行过程,如下;输入x=1,y=1﹣1+3=3,输出y的值为3.故选:B.5.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣8【考点】平面向量共线(平行)的坐标表示.【分析】根据向量平行的坐标公式建立方程进行求解即可.【解答】解:∵∥,∴4﹣2x=0,得x=2,故选:B6.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,20【考点】分层抽样方法.【分析】根据分层抽样的定义,建立比例关系即可等到结论.【解答】解:∵高一、高二、高三年级的学生人数分别为600,400,800.∴从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别,高二:,高三:45﹣15﹣10=20.故选:D7.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直【考点】空间中直线与直线之间的位置关系.【分析】连接AC,则AC∥A1C1,AC⊥BD,即可得出结论.【解答】解:∵正方体的对面平行,∴直线BD与A1C1异面,连接AC,则AC∥A1C1,AC⊥BD,∴直线BD与A1C1垂直,∴直线BD与A1C1异面且垂直,故选:D.8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x <﹣1}【考点】一元二次不等式的解法.【分析】根据一元二次不等式对应方程的实数根,即可写出不等式的解集.【解答】解:不等式(x+1)(x﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x|﹣1≤x≤2}.故选:A.9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=10【考点】圆的标准方程.【分析】求出圆心坐标和半径,因为圆的直径为线段PQ,所以圆心为P,Q的中点,应用中点坐标公式求出,半径为线段PQ长度的一半,求出线段PQ的长度,除2即可得到半径,再代入圆的标准方程即可.【解答】解:∵圆的直径为线段PQ,∴圆心坐标为(2,1)半径r===∴圆的方程为(x﹣2)2+(y﹣1)2=5.故选:C.10.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km【考点】解三角形的实际应用.【分析】直接利用与余弦定理求出AB的数值.【解答】解:根据余弦定理AB2=a2+b2﹣2abcosC,∴AB===(km).故选:A.二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=2.【考点】对数的运算性质.【分析】直接利用对数的运算法则化简求解即可.【解答】解:log21+log24=0+log222=2.故答案为:2.12.已知1,x,9成等比数列,则实数x=±3.【考点】等比数列.【分析】由等比数列的性质得x2=9,由此能求出实数x.【解答】解:∵1,x,9成等比数列,∴x2=9,解得x=±3.故答案为:±3.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是5.【考点】简单线性规划.【分析】利用目标函数的几何意义求最大值即可.【解答】解:由已知,目标函数变形为y=﹣x+z,当此直线经过图中点(3,2)时,在y轴的截距最大,使得z最大,所以z的最大值为3+2=5;故答案为:5.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为4•【考点】函数的零点.【分析】根据函数零点的定义,得f(a)=0,从而求出a的值.【解答】解:a是函数f(x)=2﹣log2x的零点,∴f(a)=2﹣log2a=0,∴log2a=2,解得a=4.故答案为:4.15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF 把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为45°.【考点】直线与平面所成的角.【分析】由题意,AE⊥平面EFBC,∠AFE是直线AF与平面EBCF所成的角,即可得出结论.【解答】解:由题意,AE⊥平面EFBC,∴∠AFE是直线AF与平面EBCF所成的角,∵AE=EF,∴∠AFE=45°.故答案为45°.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.【考点】三角函数的化简求值.【分析】(1)由,<θ<π结合同角平方关系可求cosθ,利用同角基本关系可求(2)结合(1)可知tanθ的值,故考虑把所求的式子化为含“切”的形式,从而在所求的式子的分子、分母同时除以cos2θ,然后把已知tanθ的值代入可求.【解答】解:(1)∵sin2θ+cos2θ=1,∴cos2θ=.又<θ<π,∴cosθ=∴.(2)=.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?【考点】频率分布直方图.【分析】(1)由频率分布直方图中各小长方形的面积之和等于1,求出a的值,频率分布直方图中最高的小长方体的底面边长的中点即是众数;(2)求出本公司职员平均费用不少于8元的频率就能求出公司有多少职员早餐日平均费用不少于8元.【解答】解:(1)据题意得:(0.05+0.10+a+0.10+0.05+0.05)×2=1,解得a=0.15,众数为:;(2)该公司职员早餐日平均费用不少于8元的有:×2=200,18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.【考点】数列的求和;等比数列的通项公式.【分析】(1)运用等比数列的通项公式和等差数列的中项的性质,解方程可得首项,进而得到所求通项公式;(2)求得b n=2n﹣1+n,再由数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,计算即可得到所求和.【解答】解:(1)由已知得a2=2a1,a3+1=4a1+1,a4=8a1,又a2,a3+1,a4成等差数列,可得:2(a3+1)=a2+a4,所以2(4a1+1)=2a1+8a1,解得a1=1,故a n=a1q n﹣1=2n﹣1;(2)因为b n=2n﹣1+n,所以S5=b1+b2+b3+b4+b5=(1+2+...+16)+(1+2+ (5)=+=31+15=46.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.【考点】二次函数的性质;二次函数在闭区间上的最值.【分析】(1)利用已知条件列出方程组求解即可.(2)利用二次函数的对称轴以及开口方向,通过二次函数的性质求解函数的最值即可.【解答】解:(1)∵;(2)∵f(x)=x2﹣2x+6=(x﹣1)2+5,x∈[﹣2,2],开口向上,对称轴为:x=1,∴x=1时,f(x)的最小值为5,x=﹣2时,f(x)的最大值为14.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.【考点】直线与圆的位置关系.【分析】(1)把圆C的方程化为标准方程,写出圆心和半径;(2)设出直线l的方程,与圆C的方程组成方程组,消去y得关于x的一元二次方程,由根与系数的关系求出的值;(3)解法一:设出直线m的方程,由圆心C到直线m的距离,写出△CDE的面积,利用基本不等式求出最大值,从而求出对应直线方程;解法二:利用几何法得出CD⊥CE时△CDE的面积最大,再利用点到直线的距离求出对应直线m的方程.【解答】解:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.2017年5月5日。
《常考题》数学高考题经典练习题(含答案解析)

一、选择题1.下列函数图像与x 轴均有公共点,其中能用二分法求零点的是( )A .B .C .D .2.一个频率分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[)2060,上的频率为0.8,则估计样本在[)40,50、[)50,60内的数据个数共有( )A .14B .15C .16D .173.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件A 为“三个人去的景点各不相同”,事件B 为“甲独自去一个景点,乙、丙去剩下的景点”,则(A |B)P 等于( )A .49B .29C .12D .134.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A .19B .29C .49D .718 5.函数2||()x x f x e -=的图象是( )A .B .C .D .6.设i 为虚数单位,复数z 满足21i i z =-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i7.若,αβ是一组基底,向量γ=x α+y β (x,y ∈R),则称(x,y)为向量γ在基底α,β下的坐标,现已知向量α在基底p =(1,-1), q =(2,1)下的坐标为(-2,2),则α在另一组基底m =(-1,1), n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)8.命题:三角形的内角至多有一个是钝角,若用反证法证明,则下列假设正确的是( ) A .假设至少有一个钝角B .假设至少有两个钝角C .假设三角形的三个内角中没有一个钝角D .假设没有一个钝角或至少有两个钝角 9.当1a >时, 在同一坐标系中,函数x y a -=与log a y x =-的图像是( ) A . B .C .D .10.设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A .2B .3C .2D .511.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM = A .534 B .532 C .532 D .13212.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A .72B .64C .48D .3213.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C .3D .2 14.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( ) A .12 B .122± C .1102± D .3222± 15.已知复数z 满足()12i z +=,则复数z 的虚部为( )A .1B .1-C .iD .i -二、填空题16.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,4c =,42sin a A =,且C 为锐角,则ABC ∆面积的最大值为________.17.已知圆锥的侧面展开图是一个半径为2cm ,圆心角为23π的扇形,则此圆锥的高为________cm . 18.已知实数x ,y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是__________.19.已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________.20.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.21.若45100a b ==,则122()a b+=_____________.22.已知正三棱锥P ABC -的底面边长为3,外接球的表面积为16π,则正三棱锥P ABC -的体积为________.23.已知四棱锥S ABCD -的三视图如图所示,若该四棱锥的各个顶点都在球O 的球面上,则球O 的表面积等于_________.24.在区间[1,1]-上随机取一个数x ,cos2x π的值介于1[0,]2的概率为 . 25.设α 为第四象限角,且sin3sin αα=135,则 2tan =α ________. 三、解答题26.已知函数()ln f x x x =.(1)若函数2()1()f x g x x x=-,求()g x 的极值; (2)证明:2()1x f x e x +<-.(参考数据:ln20.69≈ ln3 1.10≈ 32 4.48e ≈ 27.39e ≈)27.选修4-5:不等式选讲:设函数()13f x x x a =++-.(1)当1a =时,解不等式()23f x x ≤+;(2)若关于x 的不等式()42f x x a <+-有解,求实数a 的取值范围.28.已知数列{}n a 与{}n b 满足:*1232()n n a a a a b n N ++++=∈,且{}n a 为正项等比数列,12a =,324b b =+.(1)求数列{}n a 与{}n b 的通项公式;(2)若数列{}n c 满足*2211()log log n n n c n N a a +=∈,n T 为数列{}n c 的前n 项和,证明:1n T <.29.如图,在几何体111ABC A B C -中,平面11A ACC ⊥底面ABC ,四边形11A ACC 是正方形,1l //B C BC ,Q 是1A B 的中点,1122,3AC BC B C ACB π==∠=(I )求证:1//QB 平面11A ACC(Ⅱ)求二面角11A BB C --的余弦值.30.已知0,0a b >>.(1)211ab a b≥+ ;(2)若a b >,且2ab =,求证:224a b a b +≥-.【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.C2.B3.C4.C5.A6.B7.D8.B9.D10.A11.C12.B13.B14.A15.B二、填空题16.【解析】【分析】由利用正弦定理求得再由余弦定理可得利用基本不等式可得从而利用三角形面积公式可得结果【详解】因为又所以又为锐角可得因为所以当且仅当时等号成立即即当时面积的最大值为故答案为【点睛】本题主17.【解析】【分析】设此圆的底面半径为高为母线为根据底面圆周长等于展开扇形的弧长建立关系式解出再根据勾股定理得即得此圆锥高的值【详解】设此圆的底面半径为高为母线为因为圆锥的侧面展开图是一个半径为圆心角为18.6【解析】【分析】画出不等式组表示的可行域由可得平移直线结合图形可得最优解于是可得所求最小值【详解】画出不等式组表示的可行域如图中阴影部分所示由可得平移直线结合图形可得当直线经过可行域内的点A时直线19.【解析】【分析】利用通项公式即可得出【详解】解:(1+3x)n的展开式中通项公式:Tr+1(3x)r=3rxr∵含有x2的系数是54∴r=2∴54可得6∴6n∈N*解得n=4故答案为4【点睛】本题考20.8【解析】分析:先判断是否成立若成立再计算若不成立结束循环输出结果详解:由伪代码可得因为所以结束循环输出点睛:本题考查伪代码考查考生的读图能力难度较小21.【解析】【分析】根据所给的指数式化为对数式根据对数的换地公式写出倒数的值再根据对数式的性质得到结果【详解】则故答案为【点睛】本题是一道有关代数式求值的问题解答本题的关键是熟练应用对数的运算性质属于基22.或【解析】【分析】做出简图找到球心根据勾股定理列式求解棱锥的高得到两种情况【详解】正三棱锥的外接球的表面积为根据公式得到根据题意画出图像设三棱锥的高为hP 点在底面的投影为H点则底面三角形的外接圆半径23.【解析】【分析】先还原几何体再从底面外心与侧面三角形的外心分别作相应面的垂线交于O即为球心利用正弦定理求得外接圆的半径利用垂径定理求得球的半径即可求得表面积【详解】由该四棱锥的三视图知该四棱锥直观图24.【解析】试题分析:由题意得因此所求概率为考点:几何概型概率25.-【解析】因为=====4cos2α-1=2(2cos2α-1)+1=2cos2α+1=所以cos2α=又α是第四象限角所以sin2α=-tan2α=-点睛:三角函数求值常用方法:异名三角函数化为同三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据函数图象理解二分法的定义,函数f(x)在区间[a,b]上连续不断,并且有f(a)•f (b)<0.即函数图象连续并且穿过x轴.【详解】解:能用二分法求零点的函数必须在给定区间[a,b]上连续不断,并且有f(a)•f(b)<0A、B中不存在f(x)<0,D中函数不连续.故选C.本题考查了二分法的定义,学生的识图能力,是基础题.2.B解析:B【解析】【分析】计算出样本在[)2060,的数据个数,再减去样本在[)20,40的数据个数即可得出结果.【详解】由题意可知,样本在[)2060,的数据个数为300.824⨯=,样本在[)20,40的数据个数为459+=,因此,样本在[)40,50、[)50,60内的数据个数为24915.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计算能力,属于基础题.3.C解析:C【解析】【分析】这是求甲独自去一个景点的前提下,三个人去的景点不同的概率,求出相应的基本事件的个数,即可得出结果.【详解】甲独自去一个景点,则有3个景点可选,乙、丙只能在剩下的两个景点选择,根据分步乘法计数原理可得,对应的基本事件有32212⨯⨯=种;另外,三个人去不同景点对应的基本事件有3216⨯⨯=种,所以61(/)122P A B ==,故选C. 【点睛】本题主要考查条件概率,确定相应的基本事件个数是解决本题的关键. 4.C解析:C【解析】试题分析:由题为古典概型,两人取数作差的绝对值的情况共有36种,满足|a-b|≤1的有(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)(1,2)(2,1)(3,2)(2,3)(3,4)(4,3)(5,4)(4,5)(5,6)(6,5)共16种情况,则概率为;164369p == 考点:古典概型的计算. 5.A【解析】【分析】通过(0)1f=,和函数f(x)>0恒成立排除法易得答案A.【详解】2||()x xf x e-=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B,故选A【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.6.B解析:B【解析】【分析】利用复数的运算法则解得1iz=-+,结合共轭复数的概念即可得结果.【详解】∵复数z满足21iiz=-,∴()()()2121111i iiz ii i i+===---+,∴复数z的共轭复数等于1i--,故选B.【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.7.D解析:D【解析】【分析】【详解】由已知α=-2p+2q=(-2,2)+(4,2)=(2,4),设α=λm+μn=λ(-1,1)+μ(1,2)=(-λ+μ,λ+2μ),则由224λμλμ-+=⎧⎨+=⎩解得2λμ=⎧⎨=⎩∴α=0m+2n,∴α在基底m, n下的坐标为(0,2).8.B解析:B【解析】用反证法证明数字命题时,应先假设要证的命题的否定成立,而要证命题“三角形的内角至多有一个钝角”的否定为“三角形的内角至少有两个钝角”,所以应假设三角形的内角至少有两个钝角,故选B .9.D解析:D【解析】【分析】根据指数型函数和对数型函数单调性,判断出正确选项.【详解】由于1a >,所以1x x a y a -=⎛⎫= ⎪⎝⎭为R 上的递减函数,且过()0,1;log a y x =-为()0,∞+上的单调递减函数,且过()1,0,故只有D 选项符合.故选:D.【点睛】本小题主要考查指数型函数、对数型函数单调性的判断,考查函数图像的识别,属于基础题.10.A解析:A【解析】【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率.【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2c PA PA ∴=∴为以OF 为直径的圆的半径, A ∴为圆心||2c OA =. ,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上, 22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.11.C解析:C【解析】试题分析:先求得M(2,32,3)点坐标,利用两点间距离公式计算得CM=532,故选C.考点:本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用.点评:简单题,应用公式计算.12.B解析:B【解析】【分析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。
考点10 平面向量(核心考点讲与练)-2023年高考数学核心考点讲与练(新高考专用)(解析版)

①数量积:a·b=|a||b|cosθ=x1x2+y1y2.
②模:|a|= = .
③夹角:cosθ= = .
④两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.
⑤|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤ · .
,注意与平面向量平行的坐标表示区分.
3.(2021年全国高考甲卷)若向量 满足 ,则 _________.
【答案】
【分析】根据题目条件,利用 模的平方可以得出答案
【详解】∵
∴
∴ .
故答案为: .
4.(2021年全国新高考Ⅰ卷)已知 为坐标原点,点 , , , ,则()
A. B.
C. D.
【答案】AC
2.三个常用结论
(1)O为△ABC的重心的充要条件是 + + =0;
(2)四边形ABCD中,E为AD的中点,F为BC的中点,则 + =2 ;
(3)对于平面上的任一点O, , 不共线,满足 =x +y (x,y∈R),则P,A,B共线⇔x+y=1.
注意向量共线与三点共线的区别.
3.平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量的坐标表示的基础.
【答案】D
【分析】根据所给图形,由向量的线性运算,逐项计算判断即可得解.
【详解】 + + = + =0,A正确;
+ + = + + =0,B正确;
+ + = + = + = ,C正确;
+ + = +0= = ≠ ,D错误,
故选:D.
2.(2020内蒙古鄂尔多斯市第一中学)下列结论正确的是
A.若向量 , 共线,则向量 , 的方向相同
高考数学复习考点题型专题讲解10 数列的递推关系与通项

高考数学复习考点题型专题讲解专题10 数列的递推关系与通项1.求数列的通项公式是高考的重点内容,等差、等比数列可直接利用其通项公式求解,但有些数列是以递推关系给出的,需要构造新数列转为等差或等比数列,再利用公式求解.2.利用数列的递推关系求数列的通项,常见的方法有:(1)累加法,(2)累乘法,(3)构造法(包括辅助数列法,取倒数法,取对数法等).类型一利用a n与S n的关系求通项1.已知S n求a n的步骤(1)先利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的表达式,若符合,则数列的通项公式合写;若不符合,则应该分n=1与n≥2两段来写.2.S n与a n关系问题的求解思路(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.例1 (1)已知数列{a n}为正项数列,且4S1a1+2+4S2a2+2+…+4S nan+2=S n,求数列{a n}的通项公式;(2)已知数列{a n}的各项均为正数,且S n=12⎝⎛⎭⎪⎫an+1an,求数列{a n}的通项公式.解(1)由题知4S1a1+2+4S2a2+2+…+4S nan+2=S n,①则4S1a1+2+4S2a2+2+…+4S n-1an-1+2=S n-1(n≥2,n∈N*),②由①-②可得4S nan+2=a n,即4S n=a2n+2a n,n≥2,n∈N*,在已知等式中令n=1,得4S1a1+2=S1,则4S1=a1(a1+2),③满足上式,所以4S n=a2n+2a n,④则4S n-1=a2n-1+2a n-1(n≥2),⑤④-⑤可得4a n=a2n+2a n-a2n-1-2a n-1⇔2(a n+a n-1)=a2n-a2n-1. 因为a2n-a2n-1=(a n+a n-1)(a n-a n-1),a n>0,所以a n-a n-1=2,所以{a n}为公差是2的等差数列,由③可解得a1=2,所以a n=2+(n-1)×2=2n(n∈N*).(2)由S n=12⎝⎛⎭⎪⎫an+1an,得当n ≥2时,S n =12⎝ ⎛⎭⎪⎫S n -S n -1+1S n -S n -1,所以2S n =S n -S n -1+1S n -S n -1,即S n +S n -1=1S n -S n -1,所以S 2n -S 2n -1=1,所以{S 2n }为公差是1的等差数列,所以S 2n =S 21+(n -1).在S n =12⎝ ⎛⎭⎪⎫a n +1a n 中,令n =1可得S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,解得a 1=1,所以S 2n =n ,所以S n =n ,所以a n =⎩⎨⎧S n -S n -1,n ≥2,S 1,n =1=⎩⎨⎧n -n -1,n ≥2,1,n =1,所以a n =n -n -1(n ∈N *).训练1 已知正项数列{a n +2n -1}的前n 项和为S n ,且4S n =a 2n +(2n +2)a n +4n -1+2n -3.求数列{a n }的通项公式.解 由题知4S n =a 2n +(2n +2)a n +4n -1+2n -3=(a n +2n -1)2+2(a n +2n -1)-3, 令b n =a n +2n -1, 则4S n =b 2n +2b n -3,①当n ≥2时,4S n -1=b 2n -1+2b n -1-3,②由①-②,得4b n =b 2n -b 2n -1+2b n -2b n -1, 整理得(b n -b n -1-2)(b n +b n -1)=0. 因为b n >0,所以b n -b n -1=2(n ≥2). 又4S 1=b 21+2b 1-3, 即b 21-2b 1-3=0,解得b 1=3或b 1=-1(舍去),所以数列{b n }是以3为首项,2为公差的等差数列, 则b n =2n +1,所以a n =b n -2n -1=2n +1-2n -1(n ∈N *). 类型二 构造辅助数列求通项(1)形如a n =pa n -1+q (p ≠1,q ≠0)的形式,通常可构造出等比数列a n +q p -1=p ⎝⎛⎭⎪⎫a n -1+q p -1,进而求出通项公式. (2)形如a n =pa n -1+q n ,此类问题可先处理q n ,两边同时除以q n ,得a nq n =pa n -1q n+1,进而构造成a n q n =p q ·a n -1q n -1+1,设b n =a n q n ,从而变成b n =pqb n -1+1,从而将问题转化为第(1)个问题.(3)形如qa n -1-pa n =a n a n -1,可以考虑两边同时除以a n a n -1,转化为q a n -pa n -1=1的形式,进而可设b n =1a n,递推公式变为qb n -pb n -1=1,从而转变为上面第(1)个问题.(4)形如a n =ma n -1k (a n -1+b )(其中n ≥2,mkb ≠0)取倒数,得到1a n =k m ·⎝ ⎛⎭⎪⎫1+b a n -1⇔1a n=kb m ·1a n -1+km,转化为(1)中的类型. (5)形如a n =pa r n -1(n ≥2,a n ,p >0)两边取常用对数,得lg a n =r lg a n -1+lg p ,转化为(1)中的类型. 考向1 构造法求通项例2 (1)在数列{a n }中,a 1=12,a n =2a n +1-⎝ ⎛⎭⎪⎫12n(n ∈N *),求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,且a 1=1,S n +1-2S n =1,n ∈N *,求数列{a n }的通项公式. 解 (1)由a n =2a n +1-⎝ ⎛⎭⎪⎫12n,得2n a n =2n +1a n +1-1,所以数列{2n a n }是首项和公差均为1的等差数列, 于是2n a n =1+(n -1)×1=n , 所以a n =n2n (n ∈N *).(2)因为S n +1-2S n =1, 所以S n +1+1=2(S n +1),n ∈N *. 因为a 1=S 1=1, 所以可推出S n +1>0,故S n +1+1S n +1=2, 即{S n +1}为等比数列. 因为S 1+1=2,公比为2, 所以S n +1=2n , 即S n =2n -1.因为S n -1=2n -1-1(n ≥2),所以当n ≥2时,a n =S n -S n -1=2n -1, 又a 1=1也满足此式, 所以a n =2n -1(n ∈N *). 考向2 取倒数法求通项 例3 已知数列{a n }满足a n +1=a n a n +3,a 1=2,求数列{a n }的通项公式.解 对a n +1=a na n +3两边取倒数,可得1a n +1=3a n+1,由1a n +1+12=3⎝ ⎛⎭⎪⎫1a n +12. ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +12是首项为1,公比为3的等比数列,∴1a n +12=3n -1, 则a n =22·3n -1-1(n ∈N *). 考向3 取对数法求通项例4 设正项数列{a n }满足a 1=1,a n =2a 2n -1(n ≥2).求数列{a n }的通项公式. 解 对a n =2a 2n -1两边取对数得log 2a n =1+2log 2a n -1, ∴log 2a n +1=2(log 2a n -1+1), 设b n =log 2a n +1,则{b n }是以2为公比,1为首项的等比数列,所以b n =2n -1, 即log 2a n +1=2n -1, 故a n =22n -1-1(n ∈N *).训练2 (1)若数列{a n }中,a 1=3,且a n +1=a 2n ,则a n =________. (2)已知数列{a n }中,a 1=1,a n =a n -12a n -1+1,则a n =________.答案 (1)32n -1(n ∈N *) (2)12n -1(n ∈N *) 解析 (1)易知a n >0,由a n +1=a 2n 得lg a n +1=2lg a n , 故{lg a n }是以lg 3为首项,以2为公比的等比数列, 则lg a n =lg a 1·2n -1=lg 32n -1, 即a n =32n -1(n ∈N *). (2)由a n =a n -12a n -1+1,取倒数得1a n =2+1a n -1,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以2为公差,1为首项的等差数列,所以1a n=1+2(n -1)=2n -1,即a n =12n -1(n ∈N *).(3)在数列{a n }中,a 1=1,a n +1=12a n +1,求数列{a n }的通项公式.解 因为a n +1=12a n +1,所以a n +1-2=12(a n -2),所以数列{a n -2}是以-1为首项,12为公比的等比数列,所以a n -2=-1×⎝ ⎛⎭⎪⎫12n -1,所以a n =2-⎝ ⎛⎭⎪⎫12n -1,n ∈N *.一、基本技能练1.(2022·湖北新高考协作体联考)已知数列{a n }的首项a 1=2,其前n 项和为S n ,若S n +1=2S n +1,则a 7=________. 答案 96解析 因为S n +1=2S n +1, 所以S n =2S n -1+1(n ≥2), 两式相减得a n +1=2a n (n ≥2),又因为a 1=2,S 2=a 1+a 2=2a 1+1,得a 2=3, 所以数列{a n }从第二项开始成等比数列, 因此其通项公式为a n =⎩⎨⎧2,n =1,3·2n -2,n ≥2, 所以a 7=3×25=96.2.已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为________. 答案a n =2n (n +1)(n ∈N *)解析 由S n =n 2a n 可得, 当n ≥2时,S n -1=(n -1)2a n -1, 则a n =S n -S n -1=n 2a n -(n -1)2a n -1,即(n2-1)a n=(n-1)2a n-1,故anan-1=n-1n+1,所以a n=anan-1·an-1an-2·an-2an-3·…·a3a2·a2a1·a1=n-1n+1·n-2n·n-3n-1·…·24×13×1=2n(n+1).当n=1时,a1=1满足a n=2n(n+1).故数列{a n}的通项公式为a n=2n(n+1),n∈N*.3.已知正项数列{a n}满足a1=2,a n+1=a n,则a n=________.答案221-n(n∈N*)解析将a n+1=a n两边取以2为底的对数得log2a n+1=12log2an,∴数列{log2an}是以1为首项,12为公比的等比数列,故log2an=1×⎝⎛⎭⎪⎫12n-1=21-n,即a n=221-n(n∈N*).4.数列{a n}的首项a1=2,且a n+1=3a n+2(n∈N*),令b n=log3(a n+1),则b n=________. 答案n(n∈N*)解析由a n+1=3a n+2(n∈N*)可知a n+1+1=3(a n+1),又a1=2,知a n+1≠0,所以数列{a n+1}是以3为首项,3为公比的等比数列,因此a n+1=3·3n-1=3n,故b n =log 3(a n +1)=n .5.(2022·南京调研)在数列{b n }中,b 1=-1,b n +1=b n 3b n +2,n ∈N *,则通项公式b n =________.答案 12n -3(n ∈N *)解析 由b n +1=b n 3b n +2,且b 1=-1.易知b n ≠0,得1b n +1=2b n+3.因此1b n +1+3=2⎝ ⎛⎭⎪⎫1b n +3,1b 1+3=2, 故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n +3是以2为首项,2为公比的等比数列,于是1b n+3=2·2n -1,可得b n =12n-3,n ∈N *. 6.在数列{a n }中,a 1=1,a n =2a n -1+ln 3(n ≥2),则数列{a n }的通项a n =________. 答案 (1+ln 3)·2n -1-ln 3(n ∈N *)解析 由a n =2a n -1+ln 3得a n +ln 3=2(a n -1+ln 3), 则{a n +ln 3}是以1+ln 3为首项,2为公比的等比数列, 所以a n +ln 3=(1+ln 3)·2n -1, 因此a n =(1+ln 3)·2n -1-ln 3(n ∈N *).7.已知数列{a n }满足:a 1=1,a 2=3,a n +2=a n +1+2a n .某同学已经证明了数列 {a n +1-2a n }和数列{a n +1+a n }都是等比数列,则数列{a n }的通项公式是a n =________. 答案 2n +1-(-1)n -13(n ∈N *)解析因为a n+2=a n+1+2a n,所以当n=1时,a3=a2+2a1=5.令b n=a n+1-2a n,则{b n}为等比数列. 又b1=a2-2a1=1,b2=a3-2a2=-1,所以等比数列{b n}的公比q=b2b1=-1,所以b n=(-1)n-1,即a n+1-2a n=(-1)n-1.①令c n=a n+1+a n,则{c n}为等比数列,c1=a2+a1=4,c2=a3+a2=8,所以等比数列{c n}的公比q1=c2c1=2,所以c n=4×2n-1=2n+1,即a n+1+a n=2n+1.②联立①②,解得a n=2n+1-(-1)n-13.8.(2022·青岛二模)已知数列{a n},{b n}满足a1=12,a n+b n=1,b n+1=bn1-a2n,则b2 023=________.答案2 023 2 024解析因为a n+b n=1,b n+1=bn1-a2n,所以1-a n+1=1-a n(1-a n)(1+a n),a n +1=1-11+a n =a n1+a n ,所以1a n +1=1a n+1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是等差数列,其公差为1,首项为1a 1=2,所以1a n=2+(n -1)×1=n +1,所以a n =1n +1, 所以b n =n n +1,所以b 2 023=2 0232 024.9.已知数列{a n }的前n 项和S n 满足2S n -na n =3n (n ∈N *),且S 3=15,则S 10=________. 答案 120解析 当n =1时,2S 1-a 1=3, 解得a 1=3. 又2S n -na n =3n ,①当n ≥2时,2S n -1-(n -1)a n -1=3(n -1),② 所以①-②得(n -1)a n -1-(n -2)a n =3,③ 当n ≥3时,(n -2)a n -2-(n -3)a n -1=3,④ 所以④-③得(n -1)·a n -1-(n -2)a n =(n -2)a n -2-(n -3)a n -1, 可得2a n -1=a n +a n -2,所以数列{a n }为等差数列,设其公差为d .因为a 1=3,S 3=3a 1+3d =9+3d =15, 解得d =2, 故S 10=10×3+10×92×2=120. 10.已知数列{a n }满足a n +1=2a n -n +1(n ∈N *),a 1=3,则数列{a n }的通项公式为________.答案a n =2n +n (n ∈N *) 解析∵a n +1=2a n -n +1, ∴a n +1-(n +1)=2(a n -n ), ∴a n +1-(n +1)a n -n=2,∴数列{a n -n }是以a 1-1=2为首项,2为公比的等比数列, ∴a n -n =2·2n -1=2n , ∴a n =2n +n (n ∈N *).11.数列{a n }满足a n +1=3a n +2n +1,a 1=-1,则数列{a n }的前n 项和S n =________. 答案3n +12-2n +2+52(n ∈N *)解析∵a n +1=3a n +2n +1, ∴a n +12n +1=32·a n2n+1, ∴a n +12n +1+2=32⎝ ⎛⎭⎪⎫a n 2n +2, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +2是以a 12+2=32为首项,32为公比的等比数列,∴a n 2n +2=32×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n,∴a n =3n -2n +1,∴S n =(31+32+…+3n )-(22+23+…+2n +1)=3-3n +11-3-4-2n +21-2=3n +12-2n +2+52(n ∈N *).12.已知在数列{a n }中,a 1=1,a 2=2,a n +1=2a n +3a n -1,则{a n }的通项公式为________. 答案a n =3n -(-1)n4(n ∈N *)解析∵a n +1=2a n +3a n -1, ∴a n +1+a n =3(a n +a n -1),∴{a n +1+a n }是以a 2+a 1=3为首项,3为公比的等比数列, ∴a n +1+a n =3×3n -1=3n .① 又a n +1-3a n =-(a n -3a n -1),∴{a n +1-3a n }是以a 2-3a 1=-1为首项,-1为公比的等比数列, ∴a n +1-3a n =(-1)×(-1)n -1=(-1)n ,② 由①-②得4a n =3n -(-1)n , ∴a n =3n -(-1)n4(n ∈N *).二、创新拓展练13.(2022·金丽衢12校联考)已知数列{a n }满足a 1=1,且T n =a 1a 2…a n ,若T n +1=a n T na 2n +1,n ∈N *,则( )A.a 50∈⎝ ⎛⎭⎪⎫112,111B.a 50∈⎝ ⎛⎭⎪⎫111,110C.a 10∈⎝ ⎛⎭⎪⎫18,17D.a 10∈⎝ ⎛⎭⎪⎫16,15答案 B解析 因为T n =a 1a 2…a n , 所以a n +1=T n +1T n. 因为T n +1=a n T na 2n +1, 所以a n +1=a n a 2n +1,所以1a n +1=a n +1a n.因为a 1=1>0,所以1a n +1>1a n >0,a 2=12, 所以0<a n +1<a n ≤1, 所以1a 2n +1=a 2n +1a 2n+2,所以a 2n +2=1a 2n +1-1a 2n ∈⎝ ⎛⎦⎥⎤2,94,n ≥2.由累加法可得1a 210-1a 22∈(16,18),所以1a 10∈(20,22),所以a 10∈⎝ ⎛⎭⎪⎫2222,510,同理可得a 50∈⎝⎛⎭⎪⎫1121,110=⎝ ⎛⎭⎪⎫111,110,故选B. 14.(多选)(2022·武汉调研)已知数列{a n }满足a 1=1,a n +1=a n 2+3a n(n ∈N *),则下列结论正确的是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3为等比数列 B.{a n }的通项公式为a n =12n +1-3C.{a n }为递增数列D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =2n +2-3n -4答案 ABD 解析 因为1a n +1=2+3a na n =2a n+3, 所以1a n +1+3=2⎝ ⎛⎭⎪⎫1a n +3, 又1a 1+3=4≠0,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +3是以4为首项,2为公比的等比数列,所以1a n+3=4×2n -1,则a n =12n +1-3, 所以{a n }为递减数列,⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 的前n 项和T n =(22-3)+(23-3)+…+(2n +1-3)=22+23+…+2n +1-3n =4(1-2n )1-2-3n =2n +2-3n -4,故ABD 正确.15.(多选)南宋数学家杨辉所著的《详解九章算法·商功》中出现了如图所示的形状,后人称为“三角垛”.“三角垛”的最上层有1个球,第二层有3个球,第三层有6个球,……,设各层球数构成一个数列{a n },则( )A.a 4=12B.a n +1=a n +n +1C.a 100=5 050D.2a n +1=a n ·a n +2答案 BC解析 由题意知,a 1=1,a 2=3,a 3=6,…,a n =a n -1+n , 故a n =n (n +1)2,∴a 4=4×(4+1)2=10,故A 错误;a n +1=a n +n +1,故B 正确; a 100=100×(100+1)2=5 050,故C 正确;2a n +1=(n +1)(n +2),a n ·a n +2=n (n +1)(n +2)(n +3)4,显然2a n +1≠a n ·a n +2,故D 错误.16.(多选)已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依次类推,第n 项记为a n ,数列{a n }的前n 项和为S n ,则( ) A.a 60=16 B.S 18=128 C.a k 2+k 2=2k -1D.S k 2+k 2=2k -k -1答案 AC解析 由题意可将数列分组: 第一组为20, 第二组为20,21, 第三组为20,21,22, ……,则前k 组一共有1+2+…+k =k (1+k )2个数.第k 组第k 个数为2k -1, 故a k 2+k 2=2k -1,所以C 正确.因为10×(10+1)2=55,所以a 55=29,又11×(11+1)2=66,则a 60为第11组第5个数,第11组为20,21,22,23,24,25,26,27,28,29,210, 故a 60=24=16,所以A 正确.每一组数的和为20+21+…+2k -1=2k -12-1=2k -1,故前k 组数之和为21+22+ (2)-k =2(2k -1)2-1-k =2k +1-2-k ,S k 2+k 2=2k +1-k -2,所以D 错误.S 15=26-5-2=57,S 18=S 15+20+21+22 =26-5-2+7=64,所以B 错误.故选AC. 17.已知数列{a n }满足a 1=3,a n +1=7a n -2a n +4,则该数列的通项公式a n =________. 答案4·6n -1-5n -12·6n -1-5n -1(n ∈N *)解析 由a n +1-1a n +1-2=7a n -2a n +4-17a n -2a n +4-2=7a n -2-(a n +4)7a n -2-2(a n +4)=65·a n -1a n -2,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -1a n -2是首项为a 1-1a 1-2=2,公比为65的等比数列,所以a n -1a n -2=2×⎝ ⎛⎭⎪⎫65n -1,解得a n =12×⎝ ⎛⎭⎪⎫65n -1-1+2=4·6n -1-5n -12·6n -1-5n -1,n ∈N *.18.(2022·徐州考前卷)设各项均为正数的数列{a n }的前n 项和为S n ,写出一个满足S n =⎝ ⎛⎭⎪⎫2-12n -1a n 的通项公式:a n =________.答案 2n (答案不唯一)解析 当a n =2n时,S n =2(1-2n )1-2=2n +1-2,⎝ ⎛⎭⎪⎫2-12n -1a n =⎝⎛⎭⎪⎫2-22n 2n=2n +1-2=S n ,∴a n =2n 满足条件.。
高考数学二轮专题复习常考问题10 数列求和及其综合应用

常考问题10 数列求和及其综合应用[真题感悟]1.(2013·新课标全国Ⅰ卷)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则 ( ).A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD . S n =3-2a n解析 S n =a 1(1-q n)1-q =a 1-q ·a n 1-q =1-23a n 13=3-2a n . 故选D.答案 D2.(2013·江西卷)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析 每天植树棵数构成等比数列{a n }, 其中a 1=2,q =2.则S n =a 1(1-q n )1-q=2(2n -1)≥100,即2n +1≥102. ∴n ≥6,∴最少天数n =6.答案 63.(2013·辽宁卷)已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=________.解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1,∴a 1=1,a 3=4,则公比q =2,因此S 6=1×(1-26)1-2=63. 答案 634.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 由已知条件得12q +12q 2=3,即q 2+q -6=0,解得q =2,或q =-3(舍去), a n =a 5q n -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1),a 1a 2…a n =2-52-42-3…2n -6=2n 2-11n 2,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>2n (n -11)2, 由2n -5>2n (n -11)2,可求得n 的最大值为12,而当n =13时,28-2-5<213,所以n 的最大值为12.答案 125.(2013·新课标全国Ⅱ卷)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析 由已知⎩⎪⎨⎪⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,那么nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23,由于函数f (x )=x 33-10x 23在x =203处取得极小值也是最小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49.答案 -49[考题分析]题型 选择题、填空题、解答题难度 中档 ①考查数列与函数、方程、不等式的综合问题;②考查数列的通项以及前n 项和的求解.高档 考查数列与平面几何、解析几何、三角函数交汇问题.。
{高中试卷}高考数学选择题常考考点专练[仅供参考]
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:高考数学选择题常考考点专练161、若{a n }是等比数列,a 4a 7=-512, a 3+a 8=124, 且公比q 是整数,则a 10等于( )。
(A )256 (B )-256 (C )512 (D )-512 2、已知数列{2n -11},那么有最小值的S n 是( )。
(A )S 1 (B )S 5 (C )S 6 (D )S 113、如果x n =(1-21)(1-31)(1-41)……(1-n1),则∞→n lim x n 等于( )。
(A )0 (B )1 (C )21(D )不确定4、数列的通项公式是a n =(1-2x)n ,若∞→n lim a n 存在,则x 的取值范围是( )。
(A )[0,21] (B )[0, -21] (C )[0, 1] (D )[0,- 1] 5、不等式x 2-x +1>0的解集是( )。
(A ){x| x<231i-或x>231i +} (B )R (C )ο/(D )以上都不对6、已知方程x 2+(k +2i)x +2+ki =0至少有一个实根,那么实数k 的取值范围是( )。
(A )k ≥22或k ≤-22(B )-22≤k ≤22 (C )k =±22 (D )k =227、已知集合P ={x| (x -1)(x -4)≥0},Q ={n| (n +1)(n -5)≤0, n ∈N}与集合S ,且S ∩P ={1, 4},S ∩Q =S ,那么集合S 的元素的个数是( )。
(A )2个(B )2个或4个(C )2个或3个或4个(D )无穷多个 8、有四位司机,四位售票员分配到四辆公共汽车上,使每辆车分别有一位司机和一名售票员,则可能的分配方案数是( )。
(A )88A (B )48A (C )4444A A ⋅(D )44A9、有4个学生和3名教师排成一行照相,规定两端不排教师,那么排法的种数是( )。
高考数学《集合》专项练习(选择题含答案)
《集合》专项练习参考答案1.(2019全国Ⅰ卷, 文1, 5分)设集合, , 则A ∩B =( )(A ){1, 3} (B ){3, 5} (C ){5, 7} (D ){1, 7}【解析】集合A 与集合B 的公共元素有3, 5, 故}5,3{=B A I , 故选B .2.(2019全国Ⅱ卷, 文1, 5分)已知集合, 则A ∩B =( )(A ) (B ) (C ) (D ) 【解析】由29x <得33x -<<, 所以{|33}B x x =-<<, 因为{1,2,3}A =, 所以{1,2}A B =I , 故选D .3.(2019全国Ⅲ卷, 文1, 5分)设集合{0,2,4,6,8,10},{4,8}A B ==, 则A B ð=( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,, 【解析】由补集的概念, 得{0,2,6,10}A B =ð, 故选C .4.(2019全国Ⅰ卷, 理1, 5分)设集合, , 则A ∩B =( ) (A ) (B ) (C ) (D )【解析】对于集合A :解方程x 2-4x +3=0得, x 1=1, x 2=3, 所以A ={x |1<x <3}(大于取两边, 小于取中间).对于集合B :2x -3>0, 解得x >23.3{|3}2A B x x ∴=<<I .选D .5.2019全国Ⅱ卷, 理1, 5分)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限, 则实数m 的取值范围是( )(A )(31)-, (B )(13)-,(C )(1,)∞+(D )(3)∞--, 【解析】要使复数z 对应的点在第四象限, 应满足3010m m +>⎧⎨-<⎩, 解得31m -<<,故选A .6.(2019全国Ⅲ卷, 理1, 5分)设集合{}{}(x 2)(x 3)0,T 0S x x x =--≥=>, 则S ∩T =( )(A) [2, 3] (B)(-∞ , 2]U [3, +∞) (C) [3, +∞) (D)(0, 2]U [3, +∞)7.(2019北京, 文1, 5分)已知集合{|24},{|3>5}A x x B x x x =<<=<或, 则A B =I ( )(A ){|2<<5}x x (B ){|<45}x x x >或 (C ){|2<<3}x x (D ){|<25}x x x >或{1,3,5,7}A ={|25}B x x =≤≤{123}A =,,,2{|9}B x x =<{210123}--,,,,,{21012}--,,,,{123},,{12},2{|430}A x x x =-+<{|230}B x x =->3(3,)2--3(3,)2-3(1,)23(,3)2【解析】画数轴得, , 所以, 故选C .8.(2019北京, 理1, 5分)已知集合, , 则( )(A )(B )(C )(D )【解析一】对于集合A :(解绝对值不等的常用方法是两边同时平方)|x |<2, 两边同时平方得x 2<4, 解方程x 2=4得, x 1=-2, x 2=2, 所以A ={x |-2<x <2}(大于取两边, 小于取中间).所以A ∩B ={-1, 0, 1}.故选C .【解析二】对于集合A :(绝对值不等式解法二:|x |<2⇔-2<x <2).A ={x |-2<x <2}.所以A ∩B ={-1, 0, 1}.故选C . 9.(2019上海, 文理1, 5分)设x ∈R , 则不等式31x -<的解集为_______. 【答案】(24),【解析】试题分析:421311|3|<<⇔<-<-⇔<-x x x , 故不等式1|3|<-x 的解集为)4,2(.【解析一】对不等式31x -<:(解绝对值不等的常用方法是两边同时平方)|x -3|<1, 两边同时平方得(x -3)2<1, 解方程(x -3)2=1得, x 1=2, x 2=4, 所以A ={x |2<x <4}. 【解析二】对于集合A :(绝对值不等式解法二:|x -3|<1⇔-1<x -3<1, 解得2<x <4).A ={x |2<x <4}. 10.(2019山东, 文1, 5分)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===, 则()U A B U ð=(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} 【答案】A11.(2019山东, 理2, 5分)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A ∪B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞ 【答案】C【解析】对于集合A :∵y =2x >0, ∴A ={y |y >0}.对于集合B :∵x 2-1=0, 解得x =±1, ∴B ={x |-1<x <1}(大于取两边, 小于取中间).∴A ∪B =(1,)-+∞12.(2019四川, 文2, 5分)设集合A ={x |1≤x ≤5}, Z 为整数集, 则集合A∩Z 中元素的个数是(A)6 (B)5 (C)4 (D)3 【答案】B【解析】{1,2,3,4,5}A =Z I , 由Z 为整数集得Z ={…-3, -2, -1, 0, 1, 2, 3…}.故A Z I 中元素的个数为5, 选B .13.(2019四川, 理1, 5分)设集合{|22}A x x =-≤≤, Z 为整数集, 则A I Z 中元素的个数是( )(A )3(B )4(C )5(D )6(2,3)A B =I {|||2}A x x =<{1,0,1,2,3}B =-A B =I {0,1}{0,1,2}{1,0,1}-{1,0,1,2}-【答案】C【解析】由题意, 知{2,1,0,1,2}A =--Z I , 由Z 为整数集得Z ={…-3, -2, -1, 0, 1, 2, 3…}.故A I Z 中元素的个数为5, 选C .14.(2019天津, 文1, 5分)已知集合}3,2,1{=A , },12|{A x x y y B ∈-==, 则A B I =(A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{ 【答案】A 【解析】∵},12|{A x x y y B ∈-==, ∴当x =1时, y =2×1-1=1;当x =2时, y =2×2-1=3;当x =3时, y =2×3-1=5.∴{1,3,5},{1,3}B A B ==I .选A .15.(2019天津, 理1, 5分)已知集合}{4,3,2,1=A , }{A x x y y B ∈-==,23, 则=B A I(A )}{1 (B )}{4 (C )}{3,1 (D )}{4,1 【答案】D 【解析】∵}{A x x y y B ∈-==,23, ∴当x =1时, y =3×1-2=1;当x =2时, y=3×2-2=4;当x =3时, y =3×3-2=7;当x =4时, y =4×3-2=10. ∴{14710}{14}B =A B =I ,,,,,.选D .16.(2019浙江, 文1, 5分)已知全集U ={1, 2, 3, 4, 5, 6}, 集合P={1, 3, 5}, Q ={1, 2, 4}, 则U P Q U ()ð=( ) A .{1} B .{3, 5} C .{1, 2, 4, 6} D .{1, 2, 3, 4, 5}【答案】C17.(2019浙江, 理1, 5分)已知集合P ={x ∈R |1≤x ≤3}, Q ={x ∈R |x 2≥4}, 则P ∪(C R Q )=( )A .[2, 3]B .(-2, 3]C .[1, 2)D .(−∞, −2]∪[1, +∞)【答案】B 【解析】对于集合Q :∵x 2=4, 解得x =±2, ∴B ={x |x ≤-2或x ≥2}(大于取两边, 小于取中间). 18.(2019江苏, 文理1, 5分)已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B I _______. 【答案】{}1,2-【解析】{}{}{}1,2,3,6231,2A B x x =--<<=-I I.故答案应填:{}1,2-19.(2015全国Ⅰ卷, 文1, 5分)已知集合A ={x |x =3n +2, n ∈N}, B ={6, 8,10, 12, 14}, 则集合A∩B 中元素的个数为( ) A .5 B .4 C .3 D .2 【答案】D【解析】由已知得A ={2, 5, 8, 11, 14, 17, …}, 又B ={6, 8, 10, 12, 14}, 所以A∩B ={8, 14}.20.(2015全国Ⅱ卷, 文1, 5分)已知集合A ={x |-1<x <2}, B ={x |0<x <3}, 则A ∪B =( )A .(-1, 3)B .(-1, 0)C .(0, 2)D .(2, 3) 【答案】A【解析】因为A =(-1, 2), B =(0, 3), 所以A ∪B =(-1, 3), 故选A . 21.(2014全国Ⅰ卷, 文1, 5分)已知集合M ={x |-1<x <3}, N ={x |-2<x <1},则M∩N =( )A .(-2, 1)B .(-1, 1)C .(1, 3)D .(-2, 3) 【答案】B【解析】M∩N ={x |-1<x <3}∩{x |-2<x <1}={x |-1<x <1}. 22.(2014全国Ⅱ卷, 文1, 5分)已知集合A ={-2, 0, 2}, B ={x |x 2-x -2=0}, 则A∩B =( )A .∅B .{2}C .{0}D .{-2} 【答案】B【解析】∵集合A ={-2, 0, 2}, B ={x |x 2-x -2=0}={2, -1}, ∴A∩B ={2}, 故选B . 23.(2013全国Ⅰ卷, 文1, 5分)已知集合A ={1, 2, 3, 4}, B ={x |x =n 2,n ∈A}, 则A∩B =( ) A .{1, 4} B .{2, 3} C .{9, 16} D .{1, 2} 【答案】A 【解析】∵B ={x |x =n 2, n ∈A}={1, 4, 9, 16}, ∴A∩B ={1, 4}, 故选A . 24.(2013全国Ⅱ卷, 文1, 5分)已知集合M ={x |-3<x <1}, N ={-3, -2, -1, 0, 1}, 则M∩N =( )A .{-2, -1, 0, 1}B .{-3, -2, -1, 0}C .{-2, -1, 0}D .{-3, -2, -1} 【答案】C【解析】由题意得M∩N ={-2, -1, 0}.选C . 25.(2018全国卷, 文1, 5分)已知集合A ={x |x 2-x -2<0}, B ={x |-1<x <1}, 则( )(A )A ⊂≠B (B )B ⊂≠A (C )A =B (D )A∩B =∅【答案】B【解析】A ={x |-1<x <2}, B ={x |-1<x <1}, 则B ⊂≠A, 故选B . 26.(2018全国卷, 文1, 5分)已知集合M ={0, 1, 2, 3, 4}, N ={1, 3,5}, P =M∩N , 则P 的子集共有( ) A .2个 B .4个 C .6个 D .8个 【答案】B 【解析】由题意得P =M∩N ={1, 3}, ∴P 的子集为⌀, {1}, {3}, {1, 3}, 共4个.27.(2018全国卷, 文1, 5分)已知集合, 则(A )(0, 2)(B )[0, 2](C )|0, 2|(D )|0, 1, 2|【解析】, , 选D2,,4,|A x x x R B x x Z =≤∈=∈A B =I {}|22,{0,1,2}A x x B =-≤≤={}0,1,2A B =I30.(2007全国卷, 文1, 5分)设{|210}S x x =+>, {|350}T x x =-<, 则S T ⋂=A .∅B .1{|}2x x < C .5{|}3x x > D .15{|}23x x -<< 【答案】D .28.(2009全国卷, 文2, 5分)设集合A ={4, 5, 7, 9}, B ={3, 4, 7, 8, 9}, 全集, 则集合中的元素共有( )(A)3个 (B )4个 (C )5个 (D )6个【解析】, .故选A . 29.(2008全国卷, 文1, 5分)已知集合M ={x |(x +2)(x -1)<0}, N ={x |x +1<0}, 则M∩N =( )A.(-1, 1)B.(-2, 1)C.(-2, -1)D.(1, 2) 【答案】C【解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-I M N x xU A B =U ()U A B I ð{3,4,5,7,8,9}A B =U {4,7,9}(){3,5,8}U A B A B =∴=I I ð。
高考数学复习考点题型解题技巧专题讲解10 函数零点
高考数学复习考点题型解题技巧专题讲解第10讲函数零点专项突破高考定位函数的零点其实质是相应方程的根,而方程是高考重点考查内容,因而函数的零点亦成为高考命题的热点.其经常与函数的图像、性质等知识交汇命题,以选择、填空题的形式考查可难可易,以大题形式出现,相对较难.考点解析(1)零点个数的确定(2)二次函数的零点分布(3)零点与函数性质交汇(4)嵌套函数零点的确定(5)复杂函数的零点存在性定理(6)隐零点的处理(7)隐零点的极值点偏移处理题型解析类型一、转化为二次函数的零点分布例1-1.(2022·全国·高三专题练习)已知f(x)是奇函数并且是R上的单调函数,若函数y=f(2x2+1)+f(λ-x)只有一个零点,则实数λ的值是()A.14B.18C.78-D.38-【答案】C利用函数零点的意义结合函数f (x )的性质将问题转化为一元二次方程有等根即可. 【详解】依题意,函数y =f (2x 2+1)+f (λ-x )的零点,即方程f (2x 2+1)+f (λ-x )=0的根, 由f (2x 2+1)+f (λ-x )=0得f (2x 2+1)=-f (λ-x ),因f (x )是R 上奇函数, 从而有f (2x 2+1)=f (x -λ),又f (x )是R 上的单调函数,则有2x 2+1=x -λ,而函数y =f (2x 2+1)+f (λ-x )只有一个零点,于是得2x 2-x +1+λ=0有两个相等实数解, 因此得Δ=1-8(1+λ)=0,解得λ=78-,所以实数λ的值是78-.故选:C.练(2021·湖北·黄冈中学模拟预测)若函数2()2a f x x ax =+-在区间(1,1)-上有两个不同的零点,则实数a 的取值范围是( )A .2(2,)3-B .2(0,)3C .(2,)+∞D .(0,2)【答案】B 【详解】因为()f x 为开口向上的抛物线,且对称轴为2a x =-,在区间(-1,1)上有两个不同的所以()()101002112f f a f a ⎧->⎪>⎪⎪⎛⎫⎨-< ⎪⎝⎭⎪⎪⎪-<-<⎩,即22102102022222a a a a a a a a ⎧-->⎪⎪⎪+->⎪⎨⎪⎛⎫---<⎪ ⎪⎝⎭⎪⎪-<<⎩,解得023a <<, 所以实数a 的取值范围是2(0,)3.故选:B例1-2.(2021·湖北恩施·高三其他模拟)设函数()()2x f x x a e =+在R 上存在最小值(其中e 为自然对数的底数,a R ∈),则函数()2g x x x a =++的零点个数为( )A .0B .1C .2D .无法确定 【答案】C解析:()()22x f x x x a e '=++当1a ≥时,220x x a ++≥在R 恒成立,所以()()2'20xf x x x a e =++≥在R 恒成立,所以函数()()2x f x x a e =+在R 上单调递增,没有最小值;当1a <时,令() '0f x =得111x a =---,211x a =--,且12x x <当x →-∞时,所以若有最小值,只需要2∵()()22221022100xf x a e a a =--⇔--≤⇔≤≤,∴20x x a ++=的判别式1410a ∆=->≥,因此()2g x x x a =++有两个零点.故选:C .类型二、区间零点存在性定理例2-1.(2021·天津二中高三期中)已知函数()ln 1f x x x =-,则()f x 的零点所在的区间是( ) A .()0,1B .()1,2 C .()2,3D .()3,4【答案】B 【详解】∵()ln 1f x x x =-,()1ln f x x '=+,由()1ln 0f x x '=+=得,1ex =,∴1,()0ex f x '>>,函数()f x 为增函数,当01x <<时,()ln 10f x x x =-<,又()()410,2ln 21ln 0e12f f =-<=-=>,故()f x 的零点所在的区间是()1,2.练.(2021·天津·大钟庄高中高三月考)函数()2xf x x =+的零点所在的区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,2【答案】B 【详解】因为()2xf x x =+为单调递增函数,当2x =-时,()2722204f --=-=-<,当1x =-时,()1112102f --=-=-<,当0x =时,()002010f =+=>,由于()()010f f ⋅-<,且()f x 的图象在()1,0-上连续, 根据零点存在性定理,()f x 在()1,0-上必有零点,故选:B.类型三、利用两图像交点判断函数零点个数例3-1(一个曲线一个直线)14.(2021·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为( ) A .1个B .2个C .3个D .0个【分析】由已知函数()f x 的解析式作出图象,把函数()1y f x =-的零点转化为函数()f x 与1y =的交点得答案. 【详解】由函数解析式222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩由图可知,函数()1y f x =-的零点的个数为2个.故选:B .练.已知m 、n 为函数()1ln xf x ax x+=-的两个零点,若存在唯一的整数()0,x m n ∈则实数a 的取值范围是( )A .ln 3,92e e ⎡⎫⎪⎢⎣⎭B .ln 20,4e ⎛⎫⎪⎝⎭C .0,2e ⎛⎫ ⎪⎝⎭D .ln 2,14e⎡⎫⎪⎢⎣⎭【分析】()1ln 0x f x ax x +=-=可得21ln xa x +=,作出函数()21ln x g x x +=的图象,可知满足不等式()a g x <的整数解有且只有一个,从而可得出关于实数a 的不等式,由此可解得实数a 的取值范围. 【详解】由()1ln 0x f x ax x +=-=可得21ln xa x +=,令()21ln x g x x +=,其中0x >,则()()243121ln 2ln 1x x x x x g x x x ⋅-+--'==.当120x e -<<时,()0g x '>,此时函数()g x 单调递增,当12x e ->时,()0g x '<,此时函数()g x 单调递减.且当12x e ->时,()21ln 0xg x x +=>,作出函数()g x 的图象如下图所示:由图可知,满足不等式()a g x <的整数解有且只有一个,所以,()1,m n ∈,()2,m n ∉,所以,()()21g a g ≤<,即1ln2ln2144e a +=≤<.因此,实数a 的取值范围是ln 2,14e ⎡⎫⎪⎢⎣⎭.故选:D. 【点睛】关键点点睛:本题考查利用函数不等式的整数解的个数求参数,解题的关键在于利用图象确定整数有哪些,进而可得出关于参数不等式(组)来进行求解.例3-2(一个曲线一个直线)28.(2018·浙江·绍兴市柯桥区教师发展中心高三学业考试)已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩,函数()()2g x b f x =--,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围为_______.【答案】7,24⎛⎫ ⎪⎝⎭ 【分析】求出函数()()y f x g x =-的表达式,构造函数()()(2)h x f x f x =+-,作函数()h x 的图象,利用数形结合进行求解即可. 【详解】∵()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩,∴()222,02,0x x f x x x ⎧--⎪-=⎨<⎪⎩… ,∵函数y =f (x )−g (x )恰好有四个零点,∴方程f (x )−g (x )=0有四个解,即f (x )+f (2−x )−b =0有四个解, 即函数y =f (x )+f (2−x )与y =b 的图象有四个交点,()()222,022,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=⎨⎪-+>⎩剟 , 作函数y =f (x )+f (2−x )与y =b 的图象如下,115572222224f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,结合图象可知,74<b <2, 故答案为:7,24⎛⎫⎪⎝⎭. 例3-3【一个曲线和一个倾斜直线】【2021福建省厦门市高三】已知函数()221,20, ,0,xx x x f x e x ⎧--+-≤<=⎨≥⎩若函数()()g x f x ax a =-+存在零点,则实数a 的取值范围为__________.【答案】13a ≤-或2a e ≥【解析】函数g x f x ax a =-+()()存在零点,即方程0f x ax a -+=() 存在实数根,也就是函数y f x =()与1y a x =-()的图象有交点.如图:直线1y a x =-()恒过定点10(,), 过点21-(,)与10(,)的直线的斜率101213k -=---=; 设直线1y a x =-()与x y e =相切于00x x e (,),则切点处的导数值为0x e ,则过切点的直线方程为()000x x y e e x x --=,由切线过10(,),则()00000012x x x x e e x x e e --∴=,=, 得02x = .此时切线的斜率为2e .由图可知,要使函数g x f x ax a =-+()() 存在零点,则实数a 的取值范围为13a ≤- 或2a e ≥.【点睛】本题考查函数零点的判定,其中数形结合的解题思想方法与数学转化思想方法的灵活应用.例3-4(两个曲线)49.(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________. 【答案】2 【分析】先利用诱导公式、二倍角公式化简,再将函数零点个数问题转化为两个函数图象的交点个数问题,进而画出图象进行判定. 【详解】2π()2sin sin()2f x x x x =+-222sin cos sin 2x x x x x =-=-,函数f (x )的零点个数可转化为函数1sin 2y x =与22y x =图象的交点个数, 在同一坐标系中画出函数1sin 2y x =与22y x =图象的(如图所示):由图可知两函数图象有2个交点, 即f (x )的零点个数为2. 故答案为:2.(两个曲线)8.(2021·四川·高三期中(理))已知定义在R 上的函数()f x 和()1f x +都是奇函数,当(]0,1x ∈时,21()log f x x=,若函数()()sin()F x f x x π=-在区间[1,]m -上有且仅有10个零点,则实数m 的最小值为( ) A .3B .72C .4D .92【答案】B 【分析】根据函数的奇偶性确定函数()f x 的周期,将函数的零点问题转化为两函数的交点,最后通过数形结合求解出参数的值. 【详解】因为()1f x +是奇函数,所以函数()y f x =的图象关于点()1,0成中心对称, 即(2)()0f x f x -+=.又因为函数()f x 为奇函数,所以(2)()()f x f x f x -=-=-,即(2)()f x f x +=,所以函数()y f x =是周期为2的周期函数.由于函数()y f x =为定义在R 上的奇函数,则(0)0f =,得(2)(4)0f f ==. 又因为当(]0,1x ∈时,21()log f x x=,所以21log 212f ⎛⎫== ⎪⎝⎭,11122f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 于是得出7311222f f f ⎛⎫⎛⎫⎛⎫==-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,51122f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.作出函数()y f x =与函数()sin y x π=的图象如下图所示,由图象可知,函数()y f x =与函数()sin y x π=在区间[]1,m -上从左到右10个交点的横坐标分别为1-,12-,0,12,1,32,2,52,3,72,第11个交点的横坐标为4.因此,实数m 的取值范围是7,42⎡⎫⎪⎢⎣⎭,故实数m 的最小值为72.故选:B.f x满足(两个曲线)【2021河北省武邑中学高三】若定义在R上的偶函数() ()()=,则函数()3logf x xy f x x=-的零点个数是+=,且当[]2x∈时,()f x f x0,1()A. 6个 B. 4个 C. 3个 D. 2个【答案】B|x|的图象,【解析】分析:在同一个坐标系中画出函数y=f(x)的图象与函数y=log3这两个函数图象的交点个数即为所求.详解:∵偶函数f(x)满足f(x+2)=f(x),故函数的周期为2.当x∈[0,1]时,f (x)=x,|x|的零点的个数等于函数故当x∈[﹣1,0]时,f(x)=﹣x.因为函数y=f(x)﹣log3|x|的图象的交点个数.在同一个坐标系中画出函数y=f y=f(x)的图象与函数y=log3|x|的图象,如图所示:(x)的图象与函数y=log3显然函数y=f (x )的图象与函数y=log 3|x|的图象有4个交点,故选B .点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,根据函数零点和方程的关系进行转化是解决本题的关键.判断零点个数一般有三种方法:(1)方程法;(2)图像法;(3)方程+图像法.本题利用的就是方法(3).例3-5(直接解出零点)(2021·四川·高三月考(理))函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为( ) A .12B .14C .16D .18 【答案】C 【分析】令()25sin sin 10f x x x =--=可得21sin sin 5x x -=,根据()2sin sin g x x x =-为偶函数,只需求()21sin sin 5g x x x =-=在5π0,2x ⎡⎤∈⎢⎥⎣⎦上的解的个数,等价于21sin sin 5x x -=或21sin sin 5x x -=-的解的个数,结合正弦函数的性质以及对称性即可求解.【详解】令()0f x =可得21sin sin 5x x -=,设()2sin sin g x x x =-,则()()22sin sin sin sin g x x x x x g x -=--=-=,所以()2sin sin g x x x =-是偶函数,故只需要讨论21sin sin 5x x -=在5π0,2x ⎡⎤∈⎢⎥⎣⎦上的解得个数, 当0x ≥时,由21sin sin 5x x -=可得21sin sin 5x x -=或21sin sin 5x x -=-,解方程21sin sin 5x x -=可得sin x =sin x =,此时在5π0,2x ⎡⎤∈⎢⎥⎣⎦上,sin x =解方程21sin sin 5x x -=-可得sin x =或sin x =,此时在5π0,2x ⎡⎤∈⎢⎥⎣⎦上,sin x =有三解,sin x =有三解, 所以在5π0,2x ⎡⎤∈⎢⎥⎣⎦上,()21sin sin 5g x x x =-=有8解, 根据对称性可得()21sin sin 5g x x x =-=在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上有16解,所以函数()25sin sin 1f x x x =--在5π5π,22x ⎡⎤∈-⎢⎥⎣⎦上的零点个数为16, 故选:C.类型三、利用周期性判断零点个数例3-1.(2021·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为( )A .404B .804C .806D .402 【答案】A 【分析】根据两个偶函数得()f x 的对称轴,由此得函数的周期,10是其一个周期,由周期性可得零点个数. 【详解】因为(2)y f x =+与(7)y f x =+都为偶函数,所以(2)(2)f x f x +=-+,(7)(7)f x f x +=-+,所以()f x 图象关于2x =,7x =轴对称,所以()f x 为周期函数,且2(72)10T =⋅-=,所以将[0,2013]划分为[0,10)[10,20)[2000,2010][2010,2013]⋅⋅⋅.而[0,10)[10,20)[2000,2010]⋅⋅⋅共201组,所以2012402N =⨯=,在[2010,2013]中,含有零点(2011)(1)0f f ==,(2013)(3)0f f ==共2个,所以一共有404个零点.故选:A.例3-2.偶函数()f x 满足()()44f x f x +=-,当(]0,4x ∈时,()()ln 2x f x x=,不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,则实数a 的取值范围是( )A .1ln6,ln23⎛⎤- ⎥⎝⎦B .1ln2,ln63⎡⎫--⎪⎢⎣⎭C .1ln2,ln63⎛⎤-- ⎥⎝⎦D .1ln6,ln23⎛⎫- ⎪⎝⎭【答案】C【解析】因为()f x 为偶函数,所以()()()444f x f x f x +=-=-, 所以()()8f x f x +=所以()f x 是周期函数,且周期为8,且()f x 关于4x =对称,又当(]0,4x ∈时,()()ln 2x f x x=, 则()()()221ln 21ln 2(0)x x xx f x x x x ⋅--'==>, 令()0f x '=,解得e2x =,所以当e0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 为增函数,当e ,42x ⎛⎤∈ ⎥⎝⎦时,()0f x '<,()f x 为减函数,作出()f x 一个周期内图象,如图所示:因为()f x 为偶函数,且不等式()()20f x af x +>在[]200,200-上有且只有200个整数解,所以不等式在()0,200内有100个整数解,因为()f x 周期为8,所以在()0,200内有25个周期, 所以()f x 在一个周期内有4个整数解,(1)若0a >,由()()20f x af x +>,可得()0f x >或()f x a <-,由图象可得()0f x >有7个整数解,()f x a <-无整数解,不符合题意; (2)若0a =,则()0f x ≠,由图象可得,不满足题意;(3)若0a <,由()()20f x af x +>,可得 ()f x a >-或()0f x <,由图象可得()0f x <在一个周期内无整数解,不符合题意, 所以()f x a >-在一个周期()0,8内有4个整数解,因为()f x 在()0,8内关于4x =对称, 所以()f x 在()0,4内有2个整数解,因为()1ln 2f =,()ln 42ln 22f ==,()ln 633f =, 所以()f x a >-在()0,4的整数解为1x =和2x =,所以ln 6ln 23a ≤-<,解得ln 6ln 23a -<≤-. 故选:C类型四、零点之和例4-1.(2022·全国·高三专题练习(文))已知函数()1sin sin f x x x=+,定义域为R 的函数()g x 满足()()0g x g x -+=,若函数()y f x =与()y g x =图象的交点为()()()112266,,,,,,x y x y x y ⋯,则()61i j i x y =+=∑( )A .0B .6C .12D .24 【答案】A 【分析】首先判断()f x 的奇偶性,再根据奇偶函数的对称性计算可得;【详解】由()()0g x g x -+=得()y g x =的图象关于()0,0对称,因为()1sin sin f x x x=+,定义域为{}|,x x k k Z π≠∈,且()()()()11sin sin sin sin f x x x f x x x -=+-=--=--,所以()1sin sin f x x x=+为奇函数,即()1sin sin f x x x=+也关于()0,0对称, 则函数()1sin sin f x x x=+与()y g x =图象的交点关于()0,0对称,则不妨设关于点()0,0对称的坐标为()()1166,,,,x y x y ⋯,则16160,022x x y y ++==, 252534340,0,0,02222x x y y x x y y ++++==== 则1616252534340,0,0,0,0,0x x y y x x y y x x y y +=+=+=+=+=+=,即()61i i i x y =+=∑()3000⨯+=,故选:A .例4-2(2021·新疆·克拉玛依市教育研究所模拟预测(理))已知定义在R 上的奇函数()f x 满足()()2f x f x =-,当[]1,1x ∈-时,()3f x x =,若函数()()()4g x f x k x =--的所有零点为()1,2,3,,i x i n =,当1335k <<时,1nii x==∑( )A .20B .24C .28D .36 【答案】C 【分析】根据题意可得函数()f x是周期为4,关于点(4,0)中心对称的函数,再将函数()()()4y k x=与()4=-的交点的横坐标,又函数=--的所有零点转化为()y f xg x f x k x()4=-经过定点(4,0),且关于(4,0)中心对称,在坐标系中作出草图,根据数形结合y k x即可求出结果.【详解】∵定义在R上的奇函数()=-,故图象关于1f x f x2f x满足()()x=对称,∴()()2+=-,f x f x--=-,故()()2f x f x∴()()()f x f x f x+=-+=,即周期为4,42又()f x一个对称中心,f x定义在R上的奇函数,所以(4,0)是函数()又因为当[]=,作出函数()f x的草图,如下:f x xx∈-时,()31,1函数()()()4=与()4y k x=-的交点的横坐标,y f xg x f x k x=--的所有零点即为()易知函数()4=-经过定点(4,0),且关于(4,0)中心对称,y k x又1335k <<,分别作出函数()143y x =-和()345y x =-的图象,则函数()4y k x =-的图象在函数()143y x =-和()345y x =-的图象之间,如下图所示:则()y f x =与()4y k x =-交点关于(4,0)中心对称,由图像可知关于(4,0)对称的点共有3对,同时还经过点(4,0),所以1324428ni i x ==⨯⨯+=∑.故选:C.类型五、等高线的使用例5-1.(2021·福建宁德·高三期中)已知函数()()8sin ,02log 1,2x x f x x x π≤≤⎧=⎨->⎩,若a 、b 、c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围是___________. 【答案】[)3,10/310a b c ≤++<【分析】根据题意,作出函数()y f x =图象,数形结合即可求解.根据题意,作出函数()y f x =图象,令()()()f a f b f c t ===,可知函数()y f x =图象与y t =的图象有三个不同交点,由图可知01t ≤<.因a 、b 、c 互不相等,故不妨设a b c <<,由图可知1212a b +=⨯=.当01t <<,时()8log 1c t -=,因01t <<,所以118c <-<,即29c <<,故310a b c <++<; 当0t =时,2c =,故3a b c ++=. 综上所述,310a b c ≤++<. 故答案为:[)3,10.例5-2(2021·山西太原·高三期中)设函数22log (1),13()(4),3x x f x x x ⎧-<≤⎪=⎨->⎪⎩,()f x a =有四个实数根1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3412114x x x x ++的取值范围是( ) A .109,32⎛⎫⎪⎝⎭B .(0,1)C .510,23⎛⎫ ⎪⎝⎭D .3,22⎛⎫⎪⎝⎭【答案】A根据分段函数解析式研究()f x 的性质,并画出函数图象草图,应用数形结合及题设条件可得123412345x x x x <<<<<<<<、348x x +=、12(1)(1)1x x --=,进而将目标式转化并令11121t x x =-+,构造1()21g x x x =-+,则只需研究()g x 在3(,2)2上的范围即可. 【详解】由分段函数知:12x <≤时()(,0]f x ∈-∞且递减;23x <≤时()[0,1]f x ∈且递增;34x <<时,()(0,1)f x ∈且递减;4x ≥时,()[0,)f x ∈+∞且递增;∴()f x 的图象如下:()f x a =有四个实数根1x ,2x ,3x ,4x 且1234x x x x <<<,由图知:01a <<时()f x a =有四个实数根,且123412345x x x x <<<<<<<<,又348x x +=, 由对数函数的性质:121212(1)(1)()11x x x x x x --=-++=,可得21111x x =-, ∴令()3411122111112214x x x x x t x x x ++=+=-+=,且1322x <<, 由1()21g x x x=-+在3(,2)2上单增,可知31()21(2)2g x g x<-+<,所以10932t <<故选:A.例5-3(2021·吉林吉林·高三月考(理))()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩,若存在互不相等的实数a ,b ,c ,d 使得()()()()f f b f d m a c f ====,则下列结论中正确的为( ) ①()0,1m ∈;②()122e 2,e 1a b c d --+++∈--,其中e 为自然对数的底数; ③函数()y f x x m =--恰有三个零点.A .①②B.①③C.②③D.①②③ 【答案】D 【分析】①将问题转化为直线y m =与函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩图像有4个交点,观察图像可得答案;②设a b c d <<<,则可得2a b +=-, ()1ln 1ln c d -+=+,根据关系代入a b c d +++求值域即可;③函数()y f x x m =--的零点个数,即为函数()y f x =与y x m =+的图像交点个数,关注1m =和0m =时的交点个数即可得答案根据图像可得答案. 【详解】解:函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩的图像如图:()()()()f f b f d a c f m ====,即直线y m =与函数()22,01ln ,0x x x f x x x ⎧--≤⎪=⎨+>⎪⎩图像有4个交点,故()0,1m ∈,①正确;()()()()f f b f d a c f m ====,不妨设a b c d <<<,则必有2a b +=-, ()1ln 1ln c d -+=+,ln ln 2d c ∴+=-,则2e c d-=,且11e d << 2e c d d d-∴++=,由对勾函数的性质可得函数2e y x x -=+在1,1e ⎛⎫ ⎪⎝⎭上单调递增,()2122e ,e 1e dc d d ---∴+=∈++,()1222,1a b c d e e --∴+++∈--,②正确;函数()y f x x m =--的零点个数,即为函数()y f x =与y x m =+的图像交点个数,如图当1m =时,函数()y f x =与y x m =+的图像有3个交点, 当0m =时,研究y x =与1ln y x =+是否相切即可,1y x'=,令1y '=,则1x =,则切点为()1,1,此时切线方程为11y x -=-,即y x =, 所以y x =与1ln y x =+图像相切,此时函数()y f x =与y x m =+的图像有3个交点, 因为()0,1m ∈,故函数()y f x =与y x m =+的图像恒有3个交点, 即函数()y f x x m =--恰有三个零点,③正确.故选:D. 【点睛】关键点点睛:将函数的零点问题转化为图像的交点问题,可以使问题更加直观,并方便解答.例5-4.(2021·辽宁实验中学高三期中)已知函数()266,1ln 1,1x x x f x x x ⎧---≤⎪=⎨+>⎪⎩,若关于x 的方程()f x m =恰有三个不同实数解123x x x <<,则关于n 的方程()()121222356516n x x x x x -+=++-的正整数解取值可能是( ) A .1B .2C .3D .4 【答案】ABC 【分析】在同一平面直角坐标系中作出(),y f x y m ==的函数图象,根据图象有3个交点确定出123,,x x x 的关系,所以可将方程转化为()3315(ln 21)n x x -+=-,然后构造函数()()()ln 21g x x x =+-并分析()g x 的单调性确定出其值域,由此可求解出n 的取值范围,则n 的值可确定.【详解】在同一平面直角坐标系中作出(),y f x y m ==的函数图象如下图所示:当1x ≤时,()2333y x =-++≤,当1x >时,ln 11y x =+>,所以由图象可知:()1,3m ∈时关于x 的方程()f x m =恰有三个不同实数解,又()221223236,ln 625x x x x x ++=⨯-=+-=--,所以()()()121223323ln 2)5651(16n x x x x x x x -+=+++-=-, 又因为()1,3m ∈,所以()3ln 11,3x +∈,所以()231,e x ∈ , 设()()()()()2ln 211,e g x x x x =+-∈,所以()1ln 3g x x x'=-+,显然()g x '在()21,e 上单调递增,所以()()120g x g ''>=>,所以()g x 在()21,e 上单调递增,所以()()()()21,e g x g g ∈,即()()20,4e 4g x ∈-, 所以()1250,4e 4n -∈-,所以n 可取1,2,3 故选:ABC.类型六、嵌套函数零点例6-1.(2021·黑龙江·哈尔滨三中高三期中(理))设函数()32,0lg ,0x x f x x x +≤⎧=⎨>⎩,则函数()()12y f f x =-的零点个数为( )A .1个B .2个C .3个D .4个 【答案】C 【详解】函数()32,0lg ,0x x f x x x +≤⎧=⎨>⎩的图象如图所示,由()()102y f f x =-=,得()()12f f x =,令()f x t =,则1()2f t =,当0t ≤时,1322t +=,得12t =-,当0t >时,1lg 2t =,则t所以当12t =-时,1()2f x =-,由图象可知方程有两个实根,当 =t ()f x =,由图象可知,方程有1个实根,综上,方程()()12f f x =有3个实根,所以函数()()12y f f x =-的零点个数为3,故选:C例6-2.(2021·天津市第四十七中学高三月考)已知函数()2e ,0,0x x f x x x ⎧≤⎪=⎨>⎪⎩,2()2g x x x=-+(其中e 是自然对数的底数),若关于x 的方程(())g f x m =恰有三个不等实根123,,x x x ,且123x x x <<,则12322x x x -+的最大值为___________. 【答案】3ln3- 【分析】设()f x t =,则根据题意得2()20g t m t t m -=-+-=必有两个不相等的实根12,t t ,不妨设12t t <,故122t t +=,212t t =-,再结合()f x 的图象可得1221x x e t ==,3212x t t ==-,101t <<,进而1231122ln 34x x x t t -+=-+,再构造函数()()ln 34,01h t t t t =-+<<,分析函数的单调性,求得最大值. 【详解】由题意设()f x t =,根据方程(())0g f x m -=恰有三个不等实根,即2()20g t m t t m -=-+-=必有两个不相等的实根12,t t ,不妨设12t t <122t t ∴+=,则212t t =-,方程1()f x t =或2()f x t =有三个不等实根123,,x x x ,且123x x x <<, 作出图象如图所示:那么1221x x e t ==,可得3212x t t ==-,101t <<, 所以1231122ln 34x x x t t -+=-+,构造新函数()()ln 34,01h t t t t =-+<<,则13()t h t t-'=,所以()h t 在10,3⎛⎫ ⎪⎝⎭上单调递增,在1,13⎛⎫⎪⎝⎭上单调递减,所以max 1()3ln 33h t h ⎛⎫==- ⎪⎝⎭,所以12322x x x -+的最大值为3ln3-. 故答案为:3ln3-.例6-3(2021·全国·高三专题练习)设函数()210log 0x x f x x x +≤⎧=⎨>⎩,,,,若函数()()()g x f f x a=-有三个零点,则实数a 的范围为________. 【答案】(]01,.【分析】令()t f x =,则原方程的解变为方程组()()t f x f t a =⎧⎪⎨=⎪⎩,①②的解,作出函数()y f x =,采用数形结合法即求. 【详解】函数()g x 的零点即为方程()0g x =的解,令()t f x =,则原方程的解变为方程组()()t f x f t a =⎧⎪⎨=⎪⎩,①②的解,作出函数()y f x =的图象,由图象可知,当1t>时,有唯一的x与之对应;当1t≤时,有两个不同的x与之对应.由方程组()()t f xf t a=⎧⎪⎨=⎪⎩,①②有三个不同的x知,需要方程②有两个不同的t,且一个1t>,一个1t≤,结合图象可知,当(]01a∈,时,满足一个(]10t∈-,,一个(]12t∈,,符合要求,综上,实数a的取值范围为(]01,.故答案为:(]01,.例6-4. 已知函数,若关于的方程有8个不等的实数根,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】由题意结合函数的图形将原问题转化为二次方程根的分布的问题,据此得到关于a的不等式组,求解不等式组即可.【详解】绘制函数的图象如图所示,令,由题意可知,方程在区间上有两个不同的实数根,令,由题意可知:,据此可得: .即 的取值范围是.类型七、隐零点处理例7-1.(1)已知函数f(x)=x 2+πcos x ,求函数f(x)的最小值;(2)已知函数()()32213210f x xax a x a a ⎛⎫=++++> ⎪⎝⎭,若()f x 有极值,且()f x 与()f x '(()f x '为()f x 的导函数)的所有极值之和不小于263-,则实数a 的取值范围是( ) A .(]0,3B .(]1,3C .[]1,3D .[)3,+∞【解析】(1)易知函数f(x)为偶函数,故只需求x∈[0,+∞)时f(x)的最小值.f′(x)=2x -πsin x ,令2x -πsin x=0,得2,0π==x x ,即x∈⎝ ⎛⎭⎪⎫0,π2,f′(x)<0,f(x)单调递减,又当x∈⎝ ⎛⎭⎪⎫π2,+∞时,2x >π>πsin x ,f′(x)>0,f(x)单调递增,所以f(x)min =f ⎝ ⎛⎭⎪⎫π2=π24.(2)【答案】B 【解析】由题意得()221362f x x ax a a'=+++()0a >, 因为()f x 有极值,所以()2213620f x x ax a a'=+++=有2个不等实根,即()222116432120a a a a a ⎛⎫⎛⎫∆=-⨯⨯+=-> ⎪ ⎪⎝⎭⎝⎭,即310a a->, 因为0a >,解得1a >.令()()()2213620h x f x x ax a a a '==+++>,由()660h x x a '=+=得x a =-,设()f x 的极值点为1x ,2x ,则1x ,2x 为方程()2213620f x x ax a a'=+++=的根,则122x x a +=-,2122133a x x a=+, 因为()()3223221211122211321321f x f x x ax a x x ax a x a a ⎛⎫⎛⎫+=+++++++++ ⎪ ⎪⎝⎭⎝⎭()()()()3221212121212121336220x x x x x x a x x ax x a x x a ⎛⎫=+-+++-++++= ⎪⎝⎭,所以()()()2121263f x f x f a a a '++-=-+≥-, 令()()211g a a a a =-+>,易得()g a 在()1,+∞上单调递减,且()2633g =-,所以31≤<a . 故选:B.例7-2已知函数()ln()(0)x a f x e x a a -=-+>. (1)证明:函数()'f x 在(0,)+∞上存在唯一的零点;(2)若函数()f x 在区间(0,)+∞上的最小值为1,求a 的值.【答案】(1)证明见解析;(2)12(1)求解出导函数,分析导函数的单调性,再结合零点的存在性定理说明()'f x 在(0,)+∞上存在唯一的零点即可;(2)根据导函数零点0x ,判断出()f x 的单调性,从而()min f x 可确定,利用()min 1f x =以及1ln y x x=-的单调性,可确定出0,x a 之间的关系,从而a 的值可求. 【详解】(1)证明:∵()ln()(0)x a f x e x a a -=-+>,∴1()x af x e x a-'=-+. ∵x a e -在区间(0,)+∞上单调递增,1x a+在区间(0,)+∞上单调递减, ∴函数()'f x 在(0,)+∞上单调递增.又1(0)a aaa e f e a ae--'=-=,令()(0)a g a a e a =->,()10ag a e '=-<, 则()g a 在(0,)+∞上单调递减,()(0)1g a g <=-,故(0)0f '<.令1m a =+,则1()(1)021f m f a e a ''=+=->+ 所以函数()'f x 在(0,)+∞上存在唯一的零点.(2)解:由(1)可知存在唯一的0(0,)x ∈+∞,使得()00010x af x ex a-'=-=+,即001x a e x a-=+(*). 函数1()x af x e x a-'=-+在(0,)+∞上单调递增. ∴当()00,x x ∈时,()0f x '<,()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,()f x 单调递增.∴()()0min 00()ln x af x f x e x a -==-+.由(*)式得()()min 0001()ln f x f x x a x a==-++. ∴()001ln 1x a x a-+=+,显然01x a +=是方程的解. 又∵1ln y x x =-是单调递减函数,方程()001ln 1x a x a -+=+有且仅有唯一的解01x a +=, 把01x a =-代入(*)式,得121a e -=,∴12a =,即所求实数a 的值为12.【方法总结】类型一:化为一元二次函数得零点问题 类型二:复杂函数得零点思想:①先设后求、设而不求②与零点存在性定理结合使用步骤:(1)用零点存在性定理判定导函数零点的存在性,列出零点方程f(x 0)=0,并结合f(x)的单调性得到零点的取值范围.(2)将零点方程适当变形,整体代入最值式子进行化简证明,有时(1)中的零点范围还可以适当缩小.例7-3已知函数()xf x xe =,()lng x x x =+.若()()()21f x g x b x -≥-+恒成立,求b 的取值范围. 【答案】(],2-∞.解:原不等式等价于()()ln 21xxe x x b x -+≥-+,即ln 1x xe x x bx +--≥,在()0,x ∈+∞上恒成立,等价于ln 1x xe x x b x +--≥,在()0,x ∈+∞上恒成立,令()ln 1x xe x x t x x +--=,()0,x ∈+∞,∴()22ln x x e xt x x+'=, 令()2ln xx x e x ϕ=+,则()x ϕ为()0,∞+上的增函数,又当0x →时,()x ϕ→-∞,()10e ϕ=>,∴()x ϕ在()0,1存在唯一的零点0x ,即0020e n 0l xx x +=,由0001ln 2000000ln 1ln 0ln x x x x x e x x e e x x ⎛⎫+=⇔=-= ⎪⎝⎭,又有x y xe =在()0,∞+上单调递增, ∴0001ln ln x x x ==-,001x e x =,∴()()00000min 0ln 12x x e x x t x t x x +--===⎡⎤⎣⎦, ∴2b ≤,∴b 的取值范围是(],2-∞.例7-4已知函数()()22e xx x f a x =-+.(1)讨论函数()f x 的单调性;(2)当1a =时,判断函数()()21ln 2g x f x x x -+=零点的个数,并说明理由.【答案】(1)答案见解析;(2)()g x 只有一个零点,理由见解析.(1)求出导数()'f x ,按a 分类讨论确定()'f x 的正负,得函数的单调性;(2)求出导函数()'g x ,对其中一部分,设()1e xh x x=-(0x >),用导数确定它的零点0(0,1)x ∈,这样可确定()g x 的单调性与极值,然后结合零点存在定理确定结论. 【详解】(1)()f x 的定义域为R ,()()()()2222e 2e 2e x x xx x x a f x a x =-+-+=+-',当2a ≥时,()0f x '≥,则()f x 在R 上是增函数;当2a <时,()(2(2)e e xx x a x x f x ⎡⎤=--=⎣⎦',所以()0x f x =⇔='()0x f x >⇔<'或x > ()0f x x ⇔<'<所以()f x 在(上是减函数,在(,-∞和)+∞上是增函数.(2)当1a =时,()()2211e ln 2xg x x x x =--+,其定义域为()0,∞+,则()()()1e 11x g x x x x '=+--⎛⎫⎪⎝⎭.设()1e xh x x =-(0x >),则()21e 0xh x x'=+>,从而()h x 在()0,∞+上是增函数,又1202h ⎛⎫=< ⎪⎝⎭,()1e 10h =->, 所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()0001e 0x h x x =-=,即001e x x =,00ln x x =-. 列表如下:由表格,可得()g x 的极小值为()12g =-;()g x 的极大值为()()022222000000000002111111e ln 2222x x x g x x x x x x x x x -+=--+=--=-+-因为()0g x 是关于0x 的减函数,且01,12x ⎛⎫∈ ⎪⎝⎭,所以()03128g x -<<-,所以()g x 在(]0,1内没有零点.又()1102g =-<,()22e 2ln 20g =-+>,所以()g x 在()1,+∞内有一个零点. 综上,()g x 只有一个零点.类型八、隐零点之极值点偏离类型一、目标与极值点相关 思想:偏离−−→−转化对称步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域 (4)构造对称函数 类型二、目标与极值点不相关步骤:(1)利用单调性与零点存在定理判定零点个数 (2)确定极值点(3)确定零点所在区域(4)寻找零点之间的关系,消元换元来解决例8-1.(2021·江苏高三开学考试)已知函数()ln a f x x x=+(a ∈R )有两个零点.(1)证明:10ea <<.(2)若()f x 的两个零点为1x ,2x ,且12x x <,证明:a x x 221>+.(3)若()f x 的两个零点为1x ,2x ,且12x x <,证明:.121<+x x 【答案】(1)证明见解析;(2)证明见解析. 【分析】(1)首先求出导函数,当0a ≤时显然不成立,当0a >时求出函数的单调区间,即可得到函数的极小值()f a ,依题意()0f a <,即可求出参数a 的取值范围;(2)由(1)可得120x a x <<<,设()()()2g x f a x f x =--,求出函数的导函数,即可得到122x x a +>,(3)由(1)可得120x a x <<<,再设21x tx =,1t >,则1221ln ln x x t x x ==,则()()12ln 1ln ln 1t t x x t t t +⎛⎫+=- ⎪-⎝⎭,再利用导数说明()ln 1th t t =-的单调性,即可得到121x x +<,从而得证; 【详解】(1)证明:由()ln af x x x=+,0x >,可得()21af x x x '=-,0x >.当0a ≤时,()0f x '>,所以()f x 在()0,∞+上单调递增,与题意不符.当0a >时,令()210af x xx '=-=,得x a =. 当()0,x a ∈时,()0f x '<,()f x 单调递减;当(),x a ∈+∞时,()0f x '>,()f x 单调递增.可得当x a =时,()f x 取得极小值()ln 1f a a =+.又因为函数()ln a f x x x=+有两个零点,所以()n 10l a f a =+<,可得1e a <.综上,10ea <<.(2)解:由上可得()f x 的极小值点为x a =,则120x a x <<<.设()()()()l 2ln 22n a ag x f a x f x a x a x xx =--=-+---,()0,x a ∈, 可得()()()()222224110222a x a a ag x a x x x a x x a x ---'=--+=>---,()0,x a ∈,所以()g x 在()0,a 上单调递增,所以()()0g x g a <=,即()()20f a x f x --<,则()()2f a x f x -<,()0,x a ∈,所以当120x a x <<<时,12a x a ->,且()()()1122f a x f x f x -<=.因为当(),x a ∈+∞时,()f x 单调递增,所以122a x x -<,即122x x a +>.(3)由(1)可得120x a x <<<,设21x tx =,1t >,则1122ln 0,ln 0,a x x a x x ⎧+=⎪⎪⎨⎪+=⎪⎩则1221ln ln x x t x x ==,即()1211ln ln ln ln ln x t x t tx t x t ===+.所以1ln ln 1t tx t =--, 所以()()()()()1211ln 1ln ln ln ln 1ln ln 1ln 111t t tt x x x t x t t t t t t ⎛⎫++=+=++=-++=- ⎪--⎝⎭.又因为()ln 1th t t =-,则()()211l n 01t t h t t --'=<-,所以()h t 在()1,+∞上单调递减,所以()ln 1ln 1t t t t +<-,所以()12ln 0x x +<,即12 1.x x +<综上,1221a x x <+<.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 练、已知函数f(x)=x 2+πcos x. (1)求函数f(x)的最小值;(2)若函数g(x)=f(x)-a 在(0,+∞)上有两个零点x 1,x 2,且x 1<x 2,求证:x 1+x 2<π. 【解析】 (1)易知函数f(x)为偶函数,故只需求x∈[0,+∞)时f(x)的最小值.f′(x)=2x -πsin x ,当x∈⎝ ⎛⎭⎪⎫0,π2时,设h(x)=2x -πsin x ,h′(x)=2-πcos x ,显然h′(x)单调递增,而h′(0)<0,h′⎝ ⎛⎭⎪⎫π2>0,由零点存在性定理知,存在唯一的x 0∈⎝ ⎛⎭⎪⎫0,π2,使得h′(x 0)=0.当x∈(0,x 0)时,h′(x)<0,h(x)单调递减,当x∈⎝ ⎛⎭⎪⎫x 0,π2时,h′(x)>0,h(x)单调递增,而 h(0)=0,h ⎝ ⎛⎭⎪⎫π2=0,故x∈⎝ ⎛⎭⎪⎫0,π2,h(x)<0,即x∈⎝ ⎛⎭⎪⎫0,π2,f′(x)<0,f(x)单调递减,又当x∈⎝ ⎛⎭⎪⎫π2,+∞时,2x >π>πsin x ,f′(x)>0,f(x)单调递增,所以f(x)min =f ⎝ ⎛⎭⎪⎫π2=π24.(2)证明:依题意得x 1∈⎝ ⎛⎭⎪⎫0,π2,x 2∈⎝ ⎛⎭⎪⎫π2,+∞,f(x 1)=f(x 2), 构造函数F(x)=f(x)-f(π-x),x∈⎝⎛⎭⎪⎫0,π2,F′(x)=f′(x)+f′(π-x)=2π-2πsin x >0,即函数F(x)单调递增,所以F(x)<F ⎝ ⎛⎭⎪⎫π2=0,即当x∈⎝⎛⎭⎪⎫0,π2时,f(x)<f(π-x),而x 1∈⎝ ⎛⎭⎪⎫0,π2,所以f(x 1)<f(π-x 1),又f(x 1)=f(x 2),即f(x 2)<f(π-x 1),此时x 2,π-x 1∈⎝ ⎛⎭⎪⎫π2,+∞. 由(1)可知,f(x)在⎝ ⎛⎭⎪⎫π2,+∞上单调递增,所以x 2<π-x 1,即x 1+x 2<π.练、已知函数21()1xx f x e x-=+. (Ⅰ)求()f x 的单调区间;(Ⅱ)证明:当12()()f x f x =12()x x ≠时,120x x +<【解析】解: (Ⅰ) .)123)12)1()1)11()('222222x x x xe x x e x x e x x f x x x ++--⋅=+⋅--+⋅-+-=((( ;)(,0)(']0-02422单调递增时,,(当x f y x f x =>∞∈∴<⋅-=∆单调递减)时,,当)(,0)('0[x f y x f x =≤∞+∈.所以,()y f x =在0]-∞在(,上单调递增;在[0x ∈+∞,)上单调递减. (Ⅱ)由(Ⅰ)知,只需要证明:当x>0时f(x) < f(-x)即可。
高考数学考点专练选择题(基础)
专练01选择题(基础)一、单选题1.【2021届广州一模】复数21iz i-=-在复平面内对应的点在()A .第一象限B .第二象限C .第三象限D .第四象限2.【2021届深圳一模】已知复数1iz i=+,则||z =()A .22B C .12D .13.【2021届深圳一模】已知集合{|2}A x x =>,{0,1,2,3,4}B =,则()R A B = ð()A .{3,4}B .{2,3,4}C .{0,1}D .{0,1,2}4.【2021届广州一模】已知集合{(1)(2)0}A x x x =-+<∣,则R A =ð()A .{21}xx -<<∣B .{12}xx -<<∣C .{2xx -∣ 或1}x D .{1x x -∣ 或2}x 5.【2021届肇庆二模】图中阴影部分所对应的集合是()A .()()U A B BðB .()U A B ðC .()()()U A B A B ðD .()()()U A B A B ð6.【2021届湛江一模】已知()R A B =∅ ð,则下面选项中一定成立的是()A .AB A= B .A B B= C .A B B⋃=D .A B R= 7.【2021届汕头一模】若135a⎛⎫= ⎪⎝⎭,则15log 15a -=()A .1-B .1C .15D .38.【2021届肇庆二模】已知函数()()()sin 1xx f x a x =+-为奇函数,则a =()A .1-B .12C .12-D .19.【2021届梅州一模】若向量,a b满足()()1,,2a a b a a b b =+⊥+⊥ ,则b = ()A .2B C .1D .2210.【2021届湛江调研】已知向量(1,2)a = ,向量(2,2)b =- ,a kb + 与a b -垂直,则k =()A .2B .107C .12D .71011.【2021届高州一模】如图所示的ABC 中,点D 是线段AC 上靠近A 的三等分点,点E 是线段AB 的中点,则DE →=()A .1136BA BC→→--B .1163BA BC→→--C .5163BA BC →→--D .5163BA BC →→-+12.【2021届韶关一模】ABC ∆中,点M 为AC 上的点,且12AM MC = ,若BM BA BC λμ=+,则λμ-的值是()A .1B .12C .13D .2313.【2020届珠海三模】已知在ABC ∆中,4AB =,3BC =,5AC =,14AD DC = ,则BD BC ⋅=()A .95B .94C .165D .36514.【2021届肇庆二模】曲线()1ln f x x x=-在()()1,1f 处的切线方程为()A .230x y --=B .210x y --=C .230x y +-=D .210x y +-=15.【2021届湛江调研】命题“0x ∀>,lg|2x -1|>0”的否定是()A .0x ∀≤,lg 210x -≤B .0x ∃≤,lg 210x -≤C .0x ∃>,lg 210x -≤D .0x ∀>,lg 210x -<16.【2021届韶关一模】命题p :220x x --<是命题q :01x <<的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件17.【2021届广州一模】1a b >+是22a b >的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件18.【2021届广州天河区二模】设R θ∈,则“sin 2θ<”是“04πθ<<”的()A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件19.【2021届深圳一模】设,,αβγ为三个不同的平面,若αβ⊥,则“//γβ是“αγ⊥”的()A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件20.【2021届湛江一模】已知圆锥的轴截面是边长为8的等边三角形,则该圆锥的侧面积是()A .64πB .48πC .32πD .16π21.【2021届肇庆二模】牙雕套球又称“鬼工球”,取鬼斧神工的意思,制作相当繁复,工艺要求极高.明代曹昭在《格古要论·珍奇·鬼工毬》中写道:“尝有象牙圆毬儿一箇,中直通一窍,内车数重,皆可转动,故谓之鬼工毬”.现有某“鬼工球”,由外及里是两层表面积分别为2100cm π和264cm π的同心球(球壁的厚度忽略不计),在外球表面上有一点A ,在内球表面上有一点B ,连接线段AB .若线段AB 不穿过小球内部,则线段AB 长度的最大值是()A .cmB .9cmC .3cmD .2cm22.【2021届梅州一模】若干年前,某老师刚退休的月退休金为4000元,月退休金各种用途占比统计图如下面的条形图.该老师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该老师的月退休金为()A .5000元B .5500元C .6000元D .6500元23.【2020届深圳二模】记等差数列{}n a 的前n 项和为n S ,若24S =,42S =,则6S =()A .6-B .4-C .2-D .024.【2020届广州二模】首项为﹣21的等差数列从第8项起开始为正数,则公差d 的取值范围是()A .d >3B .d 72<C .3≤d 72<D .3<d 72≤25.【2021届汕头一模】在正项等比数列{}n a 中,2416a a =,4524a a +=,则数列{}n a 的通项公式为()A .12n n a -=B .2nn a =C .3nn a =D .13-=n n a 26.【2021届揭阳一模】科赫曲线因形似雪花,又被称为雪花曲线.其构成方式如下:如图1将线段AB 等分为AC ,CD ,DB ,如图2以CD 为底向外作等边三角形CMD ,并去掉线段CD .在图2的各条线段上重复上述操作,当进行三次操作后形成图3的曲线.设线段AB 的长度为1,则图3曲线的长度为()A .2B .83C .6427D .327.【2021届汕头一模】已知sin 3cos 36ππαα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭,则sin 2α的值是()A .B .437C .-D .7-28.【2020届珠海三模】将函数()cos sin f x x x =+的图象向右平移34π个单位长度,得到函数g()x 的图象,则函数g()x 的解析式为A .()g x x =B .()g x x =C .()g x x=D .()g x x=29.【2021届湛江一模】将函数f (x )=sin x 的图象上所有点的横坐标变为原来的1ω(ω>0),纵坐标不变,得到函数g (x )的图象,若函数g (x )的最小正周期为6π,则()A .ω=13B .ω=6C .ω=16D .ω=330.【2021届梅州一模】已知直线6x π=是函数()()sin 2()2f x x πϕϕ=+<与的图象的一条对称轴,为了得到函数()y f x =的图象,可把函数sin2y x =的图象A .向左平行移动6π个单位长度B .向右平行移动6π个单位长度C .向左平行移动12π个单位长度D .向右平行移动12π个单位长度31.【2021届韶关一模】人的心脏跳动时,血压在增加或减少.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80mmHg 为标准值.设某人的血压满足函数式()()10125sin 16p t πt =+,其中()p t 为血压(单位:mmHg ),t 为时间(单位:min ),则下列说法正确的是()A .收缩压和舒张压均高于相应的标准值B .收缩压和舒张压均低于相应的标准值C .收缩压高于标准值,舒张压低于标准值D .收缩压低于标准值,舒张压高于标准值32.【2021届深圳一模】2020年12月31日,国务院联防联控机制发布,国药集团中国生物的新冠病毒灭活疫苗已获药监局批准附条件上市,其保护效力达到世界卫生组织及药监局相关标准要求,现已对18至59岁的人提供.根据某地接种年龄样本的频率分布直方图(如图)估计该地接种年龄的中位数为()A .40B .39C .38D .3733.【2021届深圳一模】小明跟父母、爷爷和奶奶一同参加《中国诗词大会》的现场录制,5人坐一排.若小明的父母都与他相邻,则不同坐法的种数为()A .6B .12C .24D .4834.【2021届揭阳一模】某学校有东、南、西、北四个校门,受新冠肺炎疫情的影响,学校对进入四个校门做出如下规定:学生只能从东门或西门进入校园,教师只能从南门或北门进入校园.现有2名教师和3名学生要进入校园(不分先后顺序),请问进入校园的方式共有()A .6种B .12种C .24种D .32种35.【2021届肇庆二模】二项式621ax x ⎛⎫- ⎪⎝⎭的展开式的常数项为60,则a 的值为()A .2B .2-C .2±D .3±36.【2021届韶关一模】假设某射手每次射击命中率相同,且每次射击之间相互没有影响.若在两次射击中至多命中一次的概率是1625,则该射手每次射击的命中率为()A .925B .25C .35D .3437.【2020届深圳二模】若1x ,2x ,…,n x 的平均数为a ,方差为b ,则123x +,223x +,…,23n x +的平均数和方差分别为()A .2a ,2bB .2a ,4bC .23a +,2bD .23a +,4b38.【2021届深圳一模】已知随机变量()2~,N ξμσ,有下列四个命题:甲:(1)(2)P a P a ξξ<->>+乙:()0.5P a ξ>=;丙:()0.5a ξ≤=丁:(1)(12)P a a P a a ξξ<<+<+<<+;如果只有一个假命题,则该命题为()A .甲B .乙C .丙D .丁39.【2020届珠海三模】甲、乙、丙三位同学在一项集训中的40次测试分数都在[50,100]内,将他们的测试分数分别绘制成频率分布直方图,如图所示,记甲、乙、丙的分数标准差分别为s 1,s 2,s 3,则它们的大小关系为A .s 1>s 2>s 3B .s 1>s 3>s 2C .s 3>s 1>s 2D .s 3>s 2>s 140.【2021届广州天河区二模】在某次数学测试中,学生成绩ξ服从正态分布()2100,(0)σσ>,若ξ在(80,120)内的概率为0.6,则任意选取两名学生的成绩,恰有一名学生成绩不高于80的概率为()A .0.16B .0.24C .0.32D .0.4841.【2021届揭阳一模】中医是中国传统文化的瑰宝.中医方剂不是药物的任意组合,而是根据中药配伍原则,总结临床经验,用若干药物配制组成的药方,以达到取长补短、辨证论治的目的.中医传统名方“八珍汤”是由补气名方“四君子汤”(由人参、白术、茯苓、炙甘草四味药组成)和补血名方“四物汤”(由熟地黄、白芍、当归、川芎四味药组成)两个方共八味药组合而成的主治气血两虚证方剂.现从“八珍汤”的八味药中任取四味,取到的四味药刚好组成“四君子汤”或“四物汤”的概率是()A .135B .170C .1840D .1168042.【2020届广州二模】《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为()A .()221a p r -B .()221a p r +C .()1a p r-D .()1a p r+【点睛】本题主要考查几何概型的概率求法及应用,还考查了运算求解的能力,属于基础题.43.【2021届广州天河区二模】生物学指出:生态系统中,在输入一个营养级的能量中,大约10%的能量能够流到下一个营养级.在123H H H →→这个生物链中,若能使3H 获得10kJ 的能量,则需1H 提供的能量为()A .510kJB .410kJC .310kJD .210kJ 44.【2021届广州天河区二模】已知4log 3a =,5log 3b =,34c =,则()A .a c b <<B .a b c <<C .c b a<<D .b c a<<45.【2020届珠海三模】已知函数()f x 是定义域为R 的奇函数,当0x >时,()22xf x x a =+-,则()1f -=()A .3B .3-C .2-D .1-46.【2020届深圳二模】已知定义在R 上的函数()f x 满足()()2f x f x +=,当01x ≤≤时,()13f x x =,则17(8f =()A .12B .2C .18D .847.【2020届广州二模】函数()12f x x x=-+的图像大致是()A .B .C .D .48.【2021届高州一模】函数()||2sin x e xf x x⋅=的部分图象大致为()A .B .C .D .49.【2021届湛江调研】若双曲线2221x y a-=(a >0)的一条渐近线方程为12y x =-,则其离心率为()A .2B .2C .2D50.【2020届深圳二模】已知双曲线C :22221y x a b-=(0a >,0b >)的两条渐近线互相垂直,则C 的离心率为()A .B .2C D .3二、多选题1.【2021届湛江一模】若复数z i =-,则()A .|z |=2B .|z |=4C .z 的共轭复数z iD .24z =-2.【2021届广州天河区二模】设向量(1,1)a =-,(0,2)b = ,则()A .||||a b =B .()a b a- ∥C .()a b a-⊥ D .a 与b 的夹角为4π3.【2021届揭阳一模】已知一组直线为20x y ±=,则以该组直线为渐近线的双曲线有()A .2241x y -=B .2241y x -=C .2214y x -=D .2214x y -=4.【2021届湛江调研】因防疫的需要,多数大学开学后启用封闭式管理.某大学开学后也启用封闭式管理,该校有在校学生9000人,其中男生4000人,女生5000人,为了解学生在封闭式管理期间对学校的管理和服务的满意度,随机调查了40名男生和50名女生,每位被调查的学生都对学校的管理和服务给出了满意或不满意的评价,经统计得到如下列联表:满意不满意男2020女4010附表:P (K 2≥k )0.1000.050.0250.0100.001k 2.7063.8415.0246.63510.828附:22()()()()()n ad bc K a b c d a c b d -=++++以下说法正确的有()A .满意度的调查过程采用了分层抽样的抽样方法B .该学校学生对学校的管理和服务满意的概率的估计值为0.6C .有99%的把握认为学生对学校的管理和服务满意与否与性别有关系D .没有99%的把握认为学生对学校的管理和服务满意与否与性别有关系5.【2021届肇庆二模】某大学生暑假到工厂参加生产劳动,生产了100件产品,质检人员测量其长度(单位:厘米),将所得数据分成6组:[)90,91,[)91,92,[)92,93,[)93,94,[)94,95,[]95,96,得到如右所示的频率分布直方图,则对这100件产品,下列说法中正确的是()A .0.25b =B .长度落在区间[)93,94内的个数为35C .长度的众数一定落在区间[)93,94内D .长度的中位数一定落在区间[)93,94内6.【2021届湛江一模】已知(1-2x )2021=a o +a 1x +a 2x 2+a 3x 3+…+a 2021x 2021.()A .展开式中所有项的二项式系数和为22021B .展开式中所有奇次项系数和为2021312-C .展开式中所有偶次项系数和为2021312-D .320211223202112222a a a a +++⋅⋅⋅=-7.【2021届肇庆二模】函数()()sin A f x x ωϕ+(0A >)的部分图象如图所示,则()f x =()A .22sin 23x π⎛⎫+ ⎪⎝⎭B .52sin 23x π⎛⎫- ⎪⎝⎭C .2cos 26x π⎛⎫- ⎪⎝⎭D .72cos 6x π⎛⎫- ⎪⎝⎭8.【2021届湛江一模】已知函数f (x )=x 3-3ln x -1,则()A .f (x )的极大值为0B .曲线y =f (x )在(1,f (1))处的切线为x 轴C .f (x )的最小值为0D .f (x )在定义域内单调。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学选择题常考考点专练10
1、已知函数f (x )在定义域R 内是减函数且f (x )<0,则函数
g (x)=x 2
f (x )的单调情况一定是( )。
(A )在R 上递减 (B )在R 上递增
(C )在(0,+∞)上递减 (D )在(0,+∞)上递增
2、α,β是两个不重合的平面,在α上取4个点,在β上取3个点,则由这些点最多可以
确定平面( )。
(A )35个 (B )30个 (C )32个 (D )40个
3、已知定点P 1(3,5),P 2(-1,1),Q (4,0),点P 分有向线段2
1P P 所成的比为3,则直线PQ 的方程是( )。
(A )x +2y -4=0 (B )2x +y -8=0 (C )x -2y -4=0 (D )2x -y -8=0 4、函数y=x 5
3
在[-1, 1]上是( )。
(A )增函数且是奇函数 (B )增函数且是偶函数 (C )减函数且是奇函数 (D )减函数且是偶函数 5、方程cosx=lgx 的实根的个数是( )。
(A )1个 (B )2个 (C )3个 (D )4个
6、一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差是( )。
(A )-2 (B )-3 (C )-4 (D )-5
7、已知椭圆122
22=+b
y a x (a>b>0)的离心率等于53,若将这个椭圆绕着它的右焦点按逆时针
方向旋转
2π后,所得的新椭圆的一条准线的方程y=3
16
,则原来的椭圆方程是( )。
(A )14812922=+y x (B )16410022=+y x (C )1162522=+y x (D )19
162
2=+y x
8、直线x -y -1=0与实轴在y 轴上的双曲线x 2
-y 2
=m (m ≠0)的交点在以原点为中心,边长为2且各边分别平行于坐标轴的正方形内部,则m 的取值范围是( )。
(A )0<m<1 (B )m<0 (C )-1<m<0 (D )m<-1 9、已知直线l 1与l 2的夹角的平分线为y=x ,如果l 1的方程是
ax +by +c=0(ab>0),那么l2的方程是( )。
(A )bx +ay +c=0 (B )a x -by +c=0 (C )bx +ay -c=0 (D )bx -ay +c=0 10、函数F(x)=(1+
1
22
-x
)f (x) (x ≠0)是偶函数,且f (x)不恒等于零,则f (x)( )。
(A )是奇函数 (B )可能是奇函数,也可能是偶函数 (C )是偶函数 (D )非奇、非偶函数 11、若log a 2<log b 2<0,则( )。
(A )0<a<b<1 (B )0<b<a<1 (C )a>b>1 (D )b>a>1
12、已知等差数列{a n }的公差d ≠0,且a 1, a 3, a9成等比数列,则10
429
31a a a a a a ++++的值是( )。
(A )1415 (B )1312 (C )1613 (D )16
15 A。