概率论与数理统计课程简介

合集下载

《概率论与数理统计》(46学时)课程教学大纲

《概率论与数理统计》(46学时)课程教学大纲

《概率论与数理统计》(46学时)课程教学大纲一、课程的基本情况课程中文名称:概率论与数理统计课程英文名称:Probability Theory and Mathematical Statistics课程编码:0702003课程类别:学科基础课课程性质:必修总学时:46 讲课学时:46 实验学时:0学分:2.5授课对象:本科相关专业前导课程:《高等数学》《线性代数》二、教学目的概率论与数理统计是研究随机现象统计规律性的数学学科,是理工科各专业的一门重要的学科基础课。

通过本课程的学习,使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。

同时,也为一些后续课程的学习提供必要的基础。

三、教学基本要求第一章概率论的基本概念1.1 随机试验1.2 样本空间、随机事件1.3 频率与概率1.4 等可能概型(古典概型)1.5 条件概率1.6 独立性基本要求:1. 理解随机试验、样本空间、随机事件的概念并掌握事件的关系与运算2. 掌握概率的定义与基本性质3. 理解古典概型的概念,掌握古典概率的计算方法4. 理解条件概率的定义,熟练掌握乘法定理、全概率公式与贝叶斯公式并会灵活应用5. 理解事件独立性的概念,熟练掌握相互独立事件的性质及有关概率的计算重点与难点:1. 重点:随机事件;概率的基本性质及其应用;乘法定理、全概率公式与贝叶斯公式事件的独立性2. 难点:概率的公理化定义、条件概率概念的建立、全概率公式与贝叶斯公式的应用第二章随机变量及其分布2.1 随机变量2.2 离散型随机变量及其分布律2.3 随机变量的分布函数2.4 连续型随机变量及其概率密度2.5 随机变量的函数的分布 基本要求:1. 理解随机变量的概念;掌握离散型随机变量和连续型随机变量的描述方法2. 掌握分布律、分布函数、概率密度函数的概念及性质;掌握由概率分布计算相关事件的概率的方法3. 熟练掌握二项分布、泊松(Poisson )分布、正态分布、指数分布和均匀分布,特别是正态分布的性质并能灵活运用;熟练掌握伯努利概型概率的计算方法4. 熟练掌握一些简单的随机变量函数的概率分布的求法 重点与难点:1. 重点:随机变量、分布律、密度函数和分布函数的概念;二项分布、均匀分布的概念和性质2. 难点:二项分布的推导及应用;随机变量函数的概率分布第三章 多维随机变量及其分布 3.1 二维随机变量 3.2 边缘分布 3.3 条件分布3.4 相互独立的随机变量3.5 两个随机变量的函数的分布 基本要求:1. 正确理解二维随机变量的定义,掌握二维随机变量的联合分布律、联合分布函数、联合概率密度函数及条件分布的概念2. 熟练掌握由联合分布求事件的概率,求边缘分布及条件分布的基本方法3. 理解随机变量独立性的概念,掌握随机变量独立性的判别方法4. 了解求二维随机变量函数分布的基本思路,会求,max{,},min{,}X Y X Y X Y 的分布 重点与难点:1. 重点:由联合分布求概率,求边缘分布及条件分布的方法2. 难点:求离散型随机变量联合分布律的方法,条件密度的导出,随机变量函数的分布第四章 随机变量的数字特征 4.1 数学期望 4.2 方差4.3 协方差及相关系数 4.4 矩、协方差矩阵 基本要求:1. 掌握随机变量及随机变量函数的数学期望的计算公式,熟悉数学期望的性质并能灵活运用2. 掌握方差的概念和性质;熟悉二项分布、泊松分布、正态分布、指数分布和均匀分布的数学期望和方差;了解切比雪夫(Chebyshev )不等式3. 掌握协方差和相关系数的定义和性质,并会灵活应用4. 掌握矩、协方差矩阵的定义 重点与难点:1. 重点:数学期望、方差、相关系数与协方差的计算公式及性质2. 难点:随机变量函数的数学期望的计算,利用数学期望的性质计算数学期望,相关系数的含义第五章大数定律及中心极限定理5.1 大数定律5.2 中心极限定理基本要求:1. 掌握依概率收敛的概念及贝努利大数定律和契比雪夫大数定律2. 掌握独立同分布的中心极限定理和德莫佛-拉普拉斯(De Moivre-Laplace)极限定理3. 掌握应用中心极限定理计算有关事件的概率近似值的方法重点与难点:1. 重点:用中心极限定理计算概率的近似值的方法2. 难点:依概率收敛的概念第六章样本及抽样分布6.1 随机样本6.2 抽样分布基本要求:1. 理解总体、个体、样本容量、简单随机样本以及样本观察值的概念2. 理解统计量的概念;熟悉数理统计中最常用的统计量(如样本均值、样本方差)的计算方法及其分布χ-分布,t-分布,F-分布的定义并会查表计算3. 掌握24. 熟悉正态总体的某些常用统计量的分布并能运用这些统计量进行计算重点与难点:χ-分布, t-分布, F-分布的定义与分位点的查表;正态总体常用统计量的分布1. 重点:2χ-分布, t-分布, F-分布的定义与分位点的查表2. 难点:2第七章参数估计7.1 点估计7.3 估计量的评选标准7.4 区间估计7.5 正态总体均值与方差的区间估计7.7 单侧置信区间基本要求:1. 理解参数的点估计(矩估计、最大似然估计)的计算方法2. 掌握参数点估计的评选标准:无偏性,有效性和相合性3. 理解参数的区间估计的概念,熟悉对单个正态总体和两个正态总体的均值与方差进行区间估计的方法及步骤重点与难点:1. 重点:点估计的矩法、最大似然估计法;正态总体参数的区间估计2. 难点:最大似然估计法,两个正态总体的参数的区间估计四、课程内容与学时分配五、教材参考书教材:盛骤谢式千潘承毅《概率论与数理统计》(第三版)高等教育出版社2001. 参考书:[1] 茆诗松《概率论与数理统计教程》(第一版)高教出版社2004.[2] 王展青李寿贵《概率论与数理统计》(第一版)科学出版社2000.六、教学方式和考核方式1.教学方式:以课堂讲授为主,辅以答疑、课后作业。

《概率论与数理统计》课程思政典型案例

《概率论与数理统计》课程思政典型案例

《概率论与数理统计》课程思政典型案例一、课程简介《概率论与数理统计》是高等学校理工科专业的一门重要的基础理论课,它是研究自然界、人类社会及技术过程中大量随机现象统计规律性的一门数学学科。

本课程的任务是使学生掌握概率论与数理统计的基本概念,了解它的基本理论和基本方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析、处理、解决实际问题的基本技能和基本素质。

二、课程思政设计《概率论与数理统计》虽然是一门数学类课程,但是生活中,这门课程的应用实际上早已超越了数学的范畴,在各个行业,领域中均有十分广泛的应用。

在教学实施过程中,结合课程的知识结构特点,挖掘思政元素,使得思想政治教育融入课程,融入课堂,做到入耳、入眼、入心,深入学生血液,成为学生的潜意识、持久稳定的精神需求,进而固化为学生的日常行为习惯,最终变成学生认识武器和行动武器。

(一)思政教育融入物种进化,感受生命之美在上第一次课的时候,会讲到概率的起源、发展及其在哪些领域有应用。

本节课就是从生命起源物种进化讲起,地球从有生命开始出现过亿万种物种,经历了五次大灭绝事件,99.9%的物种都灭绝了,只有人类这一支进化成了人种,进而向学生提问“进化为人类的概率是多少?”,答案是亿万分之一。

亿万分之一的概率发生在我们身上,那么我们每个人生而为人是不是应该感到幸运和自豪呢,是不是应该更加的珍爱生命,努力生活,让每一天都有意义呢。

并进一步用概率知识计算两个人相遇的概率,让学生体会人生中的不确定性以及珍惜老师与学生、学生与学生的相遇。

尤其是在2020年全球疫情背景下,引发学生体会生命的无常和微弱,培养学生热爱生命,敬畏生命的品质。

(二)思政教育融入爱国情怀,树立价值观在讲授统计部分的参数估计和假设检验章节时,要特别介绍我国在这方面研究的先驱者——许宝騄教授。

许教授在加强独立随机变量列强大数定律结论、参数估计理论、假设检验理论、多元分析等方面都取得了卓越成就,并且是世界公认的多元分析的奠基人之一。

概率论与数理统计课程简介

概率论与数理统计课程简介

概率论与数理统计课程简介
概率论与数理统计是一门重要的数学课程,它是研究随机现象的规律性和统计规律的数学分支。

概率论与数理统计的研究对象是随机变量和随机过程,它们是随机现象的数学模型。

概率论与数理统计的研究方法是数学分析和统计学方法,它们是研究随机现象的基本工具。

概率论是研究随机现象的规律性的数学分支。

它是研究随机事件发生的可能性大小的学科。

概率论的基本概念是概率,概率是指某一事件发生的可能性大小。

概率论的研究内容包括概率的基本性质、概率的计算方法、随机变量的概率分布、随机事件的独立性和条件概率等。

数理统计是研究统计规律的数学分支。

它是研究如何从样本中推断总体的性质和规律的学科。

数理统计的基本概念是样本和总体,样本是从总体中抽取的一部分数据,总体是指所有数据的集合。

数理统计的研究内容包括统计量的概念和性质、参数估计、假设检验、方差分析和回归分析等。

概率论与数理统计在现代科学和工程技术中有着广泛的应用。

在自然科学中,概率论与数理统计被广泛应用于物理学、化学、生物学等领域。

在社会科学中,概率论与数理统计被广泛应用于经济学、管理学、心理学等领域。

在工程技术中,概率论与数理统计被广泛应用于电子工程、通信工程、计算机科学等领域。

概率论与数理统计是一门重要的数学课程,它是研究随机现象的规律性和统计规律的数学分支。

概率论与数理统计在现代科学和工程技术中有着广泛的应用,它们是研究随机现象的基本工具。

概率论与数理统计课程思政的探索与思考

概率论与数理统计课程思政的探索与思考

概率论与数理统计课程思政的探索与思考一、内容简介概率论与数理统计是从数量侧面研究随机现象规律性的数学理论,其理论与方法已广泛应用于工业、农业、军事和科学技术中。

主要包括:随机事件和概率,一维和多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,参数估计,假设检验等内容。

二、本课程的目的和任务本课程是工科以及管理各专业的基础课程,课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在各领域中的具体应用。

课程的任务在于使学生初步掌握处理随机现象的基本理论和方法,培养他们解决某些相关实际问题的能力。

三、本课程与其它课程的关系学生在进入本课程学习之前,应学过下列课程:高等数学、线性代数这些课程的学习,为本课程提供了必需的数学基础知识。

本课程学习结束后,学生可具备进一步学习相关课程的理论基础,同时由于概率论与数理统计的理论与方法向各基础学科、工程学科的广泛渗透,与其他学科相结合发展成不少边缘学科,所以它是许多新的重要学科的基础,学生应对本课程予以足够的重视。

四、本课程的基本建议概率论与数理统计是一个有特色的数学分支,有自己独特的概念和方法,内容丰富,结果深刻。

通过对本课程的学习,学生应熟练掌握概率论与数理统计中的基本理论和分析方法,能熟练运用基本原理解决某些实际问题。

具体要求如下:(一)随机事件和概率1、理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系和运算。

2、认知概率的定义,掌控概率的基本性质,并能够应用领域这些性质展开概率排序。

3、理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、贝叶斯公式,并能应用这些公式进行概率计算。

4、认知事件的独立性概念,掌控应用领域事件独立性展开概率排序。

5、掌握伯努利概型及其计算。

(二)随机变量及其概率分布1、理解随机变量的概念2、认知随机变量原产函数的概念及性质,认知线性型随机变量的原产律及其性质,认知连续型随机变量的概率密度及其性质,可以应用领域概率分布排序有关事件的概率。

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲

《概率论与数理统计》(经管类)课程教学大纲一、课程简介课程名称:概率论与数理统计英文名称:Probability Theory and Mathematical Statistics课程代码:0510271 课程类别:公共基础课学分:3 总学时:48课程概要:《概率论与数理统计》是工科高等学校的一门必修基础课,它是从数量方面研究随机现象规律性的学科,为学生今后进一步学习相关课程或在实际应用方面提供一定的理论基础和基本方法。

二、教学目的及要求通过本课程的学习,使学生掌握概率统计的基本理论,并培养学生运用概率与数理统计的知识解决问题的能力,并为今后学习后继课程打下必要的基础。

三、教学内容及学时分配第一章随机事件及其概率(8学时)理解随机事件和样本空间的概念;熟悉事件之间的关系及运算;理解概率的定义;掌握概率的性质,并能灵活运用这些性质进行概率的计算;理解古典概型和几何概型的定义,并能进行简单的计算;理解条件概率的概念;掌握条件概率、乘法公式、全概率公式及贝叶斯公式,并能进行概率计算;理解事件独立性的概念;掌握用事件独立性进行概率计算。

重点:事件的关系及运算,概率的性质,条件概率、乘法公式、全概率公式和贝叶斯公式的运用,事件的独立性的应用。

难点:古典概型概率的计算,全概率公式和贝叶斯公式的应用。

第二章随机变量及其分布(8学时)理解随机变量、离散型随机变量和连续型随机变量的概念;掌握离散型随机变量的分布律的性质和计算;理解分布函数的概念和性质;掌握连续型随机变量的密度函数的性质以及和分布函数的关系;掌握由概率分布计算有关事件的概率;掌握0-1分布、二项分布、超几何分布、泊松分布、均匀分布、指数分布和正态分布;了解泊松定理;会求随机变量函数的分布。

重点:离散型随机变量的分布律的计算,分布函数和密度函数的概念和性质,概率密度和分布函数的关系,常见随机变量的分布,由概率分布计算有关事件的概率,求随机变量函数的分布。

概率论与数理统计课程介绍

概率论与数理统计课程介绍

概率论与数理统计课程介绍
一、中文简介:
本课程是大学本科生的一门重要的基础课程。

本课程以研究"随机现象"的数量规律为主线,其主要内容有:事件与概率;随机变量及其分布;随机变量的数字特征;大数定律和中心极限定理;统计量及抽样分布;参数的点估计与区间估计;参数的假设检验及概率分布的拟合检验;方差分析与回归分析。

二、英文简介:
This is an important basic course for undergraduate students. The main theme of the subject is the study of the quantitative patterns of "random phenomena", including events and probability, random variables and their distributions, the numeric characters of random variables, the law of large numbers, and the central limit theorem, statistical quantities and sampling distribution, the point estimation and interval estimation of parameters, the hypothesis testing of parameters and the fitting testing of probability distribution, variance analysis and regression analysis.。

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲

《概率论与数理统计》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:概率论与数理统计是研究随机现象客观规律性的数学学科,在高等工科学校教学计划中是一门基础理论课。

通过本课程的学习,使学生掌握概率论与数理统计的基本概念,基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。

(二)课程目标:课程目标1:知识目标通过本课程的学习,学生系统掌握随机变量及其分布、参数估计与假设检验等重要知识。

课程目标2:技能目标通过本课程的基本概念、基本理论和基本方法的讲授及学生的练习,培养学生的数学推理,数理逻辑,演绎归纳,数据分析,假设论证能力。

课程目标3:素质培养(1) 通过本课程的教学,培养和提高学生对所学知识进行整理、概括、消化吸收能力,以及围绕教学内容阅读参考资料,自我扩充知识领域的能力。

(2) 通过作业和课堂讨论,培养学生口头表达能力,做到思路清晰,层次分明。

(3)通过作业,培养学生独立思考,深入钻研问题的习惯以及一题多解,举一反三的能力,应用数学的意识以及运用数学知识分析问题的良好品质。

(4)具有自主学习和终身学习的意识,有不断学习和适应发展的能力。

(三)课程目标与毕业要求、课程内容的对应关系三、教学内容第一章随机事件及其概率1.教学目标理解随机事件和样本空间的概念;熟练掌握事件之间的关系与基本运算。

理解事件频率的概念;了解随机现象的统计规律性。

知道概率的公理化定义;理解古典概率的概念;了解几何概率;掌握概率的基本性质;会应用这些性质进行概率计算。

理解条件概率的概念;掌握乘法定理、全概率公式和贝叶斯公式,并会应用这些公式进行概率计算。

理解事件独立性的概念;会应用事件的独立性进行概率计算。

2.教学重难点本节是基础知识,在高中阶段大部分已经学过,都是重点内容。

教学的重难点在于事件的三种关系:互斥,独立和包含,事件概率的两个公式:加法公式和乘法公式,以及全概率和贝叶斯公式的应用。

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲【课程编码】181****0008【课程类别】专业必修课【学时学分】54学时,3学分【适用专业】物流管理一、课程性质和目标课程性质:《概率论与数理统计》是为国际经济与贸易、市场营销、人力资源管理、财务管理、物流管理、电子商务等专业本科生开设的一门必修课。

本课程由概率论与数理统计两部分组成。

概率论部分侧重于理论探讨,介绍概率论的基本概念,建立一系列定理和公式,寻求解决统计和随机过程问题的方法。

其中包括随机事件和概率、随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理等内容;数理统计部分则是以概率论作为理论基础,研究如何对试验结果进行统计推断。

包括数理统计的基本概念、参数统计、假设检验等。

通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。

课程目标:通过本课程的学习,要求学生能够理解随机事件、样本空间与随机变量的基本概念,掌握概率的运算公式,常见的各种随机变量(如0-1分布、二项分布、泊松(POiSSon)分布、均匀分布、正态分布、指数分布等)的表述、性质、数字特征及其应用,一维随机变量函数的分布。

理解数学期望、方差、协方差与相关系数的本质涵义,掌握数学期望、方差、协方差与相关系数的性质,熟练运用各种计算公式。

了解大数定律和中心极限定量的内容及应用,熟悉数据处理、参数估计、假设检验的一些基本方法,能用所掌握的方法具体解决所遇到的经济与管理问题,为建设社会主义现代化国家贡献力量。

二、教学内容、要求和学时分配(一)概率论的基本概念学时(6学时)教学内容:1随机试验、随机事件与样本空间;2.事件的关系与运算、完全事件组;3.概率的概念、概率的基本性质、概率的基本公式;4.等可能概型(古典概型)、几何型概率;5.条件概率、全概率公式、贝叶斯公式;6.事件的独立性、独立重复试验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管理学院
《概率论与数理统计》课程简介
《概率论与数理统计》是一门研究和探索客观世界随机现象规律的数学学科。

它以随机现象为研究对象,是数学的分支学科,在金融、保险、经济与企业管理、工农业生产、医学、地质学、气象与自然灾害预报等等方面都起到非常重要的作用。

随着计算机科学的发展,以及功能强大的统计软件和数学软件的开发,这门学科得到了蓬勃的发展,它不仅形成了结构宏大的理论,而且在自然科学和社会科学的各个领域应用越来越广泛。

因此,教育管理部门将《概率论与数理统计》这门课程列为经济管理类各专业的必修基础课。

我院信息管理与信息系统、工商管理、市场营销、物流管理5个本科专业均在学生入学后第三个学期开设《概率论与数理统计》课程,以培养学生处理随机现象的能力,适应社会的发展和需求。

本门课学习之前学生应先学习《微积分》和《线性代数》的知识。

通过本课程的学习,使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法。

从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。

为学习后续课程如《统计学》、《计量经济学》打下坚实的数学基础。

《概率论与数理统计》包括两部分:概率论部分与数理统计部分。

概率论:是根据大量同类的随机现象的统计规律,对随机现象的出现某一结果的可能性作出一种客观的科学判断,并对这种出现的可能性大小做出数量上的描述,比较这些可能性的大小,研究它们之间的联系,从而形成一套数学理论和方法。

本内容以具有不确定性的随机现象为研究对象,以探讨和研究随机现象的统计规律性为任务,主要研究随机事件及其概率,随机变量及其概率分布,随机变量的数字特征,大数定律和中心极限定理。

数理统计:是应用概率的理论来研究大量随机现象的规律性,对通过科学安排一定数量的实验所得到的统计方法给出严格的理论证明,并判定各种方法应用的条件及方法,公式、结论的可靠程度的局限性,使我们能从一组样本来判定是否能以相当大的概率来保证某一判断是正确的。

并可以控制发生错误的概率,通过对点估计、区间估计、假设检验、回归分析的研究,介绍了怎样去有效地收集、整理和分析带有随机性的数据,并对所考察的问题作出推断或预测,直至为采取一定的决断和行动提供可靠依据和建议。

选用教材:盛骤, 谢式千, 潘承毅. 概率论与数理统计(第4版). 高等教育出版社, 2008.。

相关文档
最新文档