高中物理复习专题之绳子、弹簧和杆产生的弹力特点、绳拉物问题牛顿第二定律分析、整体法与隔离法
高中物理复习弹力专题之绳子、弹簧和杆

隔离法和整体法 决定物体在斜面上运动状态的因素概念规律:1.隔离法和整体法(1).隔离法 将研究系统内某个物体或物体的一部分从系统中隔离出来进行研究的方法 (2).整体法 将系统内多个物体看做一个对象进行研究的方法 2.决定物体在斜面上运动状态的因素:若物体以初速V 。
沿倾角为θ的斜面向下运动,则:当μ=tan θ时,匀速;μ﹤tan θ时,加速;当μ﹥tan θ时,减速。
与m 无关(由重力沿斜面向下的分量mgsin θ跟摩擦力 μmgcos θ大小的关系决定)。
例题:【例1】如图1---39所示,斜面上放一物体A 恰能在斜面上保持静止,如果在物体A 的水平表面上再放一重物,下面说法中正确的是( )A .物体A 将开始加速下滑B .物体A 仍保持静止C .物体A 所受的摩擦力增大D .物体A 所受的合力增大【例3】如图1---41所示,人重G 1,板重G 2,各滑轮摩擦、质量不计,为使系统平衡,人必须用多大的力拉绳?、G 1、 G 2之间应满足什么关系?【例4】如图1---42所示,重为G 的均匀链条,两端用等长的轻绳连接挂在等高的地方,绳与水平方向成θ角,试求:(1).绳子的张力大小。
(2).链条最低点的张力大小.(2).将链条从最底点隔离开,只研究右半条链条,作其受力图如上页右。
练习题:1.如图1—43所示,两只相同的均匀光滑小球,置于半径为R 的圆柱形容器中,且小球的半径r 满足2r >R ,则以下关于A 、B 、C 、D 四点的弹力大小的说法中正确的是( ) A . D 点的弹力可以大于、等于或小于小球的重力 B . D 点的弹力等于A 点的弹力(大小)A θ 图1---39F 1 F 2 θ θG图1—41θ θ 图1--42C . B 点的弹力恒等于一个小球重力的2倍D . C 点弹力可以大于、等于或小于小球的重力2.如图1---44,A 、B 是质量均为M 的两条磁体,C 为木块,水平放置静止时,B 对A 的弹力为F 1,C 对B 的弹力为F 2则( )A . F 1=Mg F 2=2MgB . F 1>Mg F 2=2MgC .F 1<Mg F 2=MgD .F 1>Mg F 2>2Mg3.如图1—45,在两块相同的竖直木板之间有质量均为M 的4块相同的砖,用两个大小均为F 的水平力压木板,使砖静止不动,则2、3两块砖之间的摩擦力大小为____________.如为5块砖呢?4.如图1-46所示,放置在水平面上的直角劈M 上有一质量为m 的物体,若m 在其上匀速下滑,M 仍保持静止,则正确的是:( ) A .M 对地面的压力等于(m+M )g B .M 对地面的压力大于(m+M )g C .地面对M 没有摩擦力 D .地面对M 有向左的摩擦力5.如图1-47所示,要使静止在粗糙斜面上的物体A 下滑,可采用下列哪种办法?( ) A .对物体加一竖直向下的力 B .减少物体的质量 C .增大斜面的倾角D .在物体A 的后面放一个与A 完全相同的物体6.如图1-48所示,半径为R 的光滑球重为G ,光滑木块厚为h ,重为G 1,用至少多大的水平力F 推木块才能使球离开地面?7.(1998年上海)有一个直角支架AOB ,AO 水平放置,表面粗糙,AO 上套有小环P ,OB 上套有小环Q 且光滑,两环质量均为m ,两环间用质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图1—49,现将P 环向左移动一小段距离,两环再次达到平衡,则移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力F N 和细绳的拉力F T的变化情况是( )A 、F N 不变,F T 变大B 、F N 不变,F T 变小C 、F N 变大,F T 变大D 、F N 变大,F T 变小S A N SN B C 图1---44F F 1 2 3 4 图1—45 Aα图1-47F图1-48图1--49 O PQ B A。
2010年经典物理模型--绳子、弹簧和杆产生的弹力特点

绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
8 高中物理复习专题之绳子弹簧和杆产生的弹力特点绳拉物问题牛顿第二定律剖析整体法与隔离法

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
「高中物理」瞬时加速度判断中绳与弹簧的力学特征

「高中物理」瞬时加速度判断中绳与弹簧的力学特征
基础知识
瞬时加速度判断
(1)牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果———产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。
(2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性:
①轻,即绳(或线)的质量和重力均可视为零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。
②软,即绳(或线)只能受拉力,不能承受压力(因绳能弯曲)。
由此特点可知,绳与其他物体相互作用力的方向是沿着绳子且背离受力物体的方向。
③不可伸长:即无论绳子所受拉力多大,绳子的长度不变。
由此特点知,绳子中的张力可以突变。
(3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:
①轻:即弹簧(或橡皮绳)的质量和重力均可视为零。
由此特点
可知,同一弹簧的两端及其中间各点的弹力大小相等。
②弹簧既能受拉力,也能受压力(沿弹簧的轴线);橡皮绳只能受拉力,不能承受压力(因橡皮绳能弯曲)。
③由于弹簧和橡皮绳受力时,其形变较大,发生形变需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
但是,当弹簧和橡皮绳被剪断时,它们所受的弹力立即消失。
2010年经典物理模型--绳子、弹簧和杆产生的弹力特点

绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
高中物理轻绳、轻杆、轻弹簧三种模型之比较专题辅导

高中物理轻绳、轻杆、轻弹簧三种模型之比拟在力学中有很多的研究对象是通过“轻绳〞“轻杆〞“轻弹簧〞连接的,在实际解题过程中,发现不少同学对这三种模型的特点、区别还不够清楚,容易混淆,造成解题错误。
下面就这三种模型的特点和不同之处与应用进展归纳,希望对大家有所帮助。
一. 三种模型的主要特点1. 轻绳〔1〕轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
〔2〕轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆〔l〕轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
〔2〕轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧〔1〕轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
〔2〕轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
二. 三种模型的主要区别1. 静止或匀速直线运动时例1. 如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可,方向是沿着绳子向上。
知,绳子对小球的弹力为F mg假设将轻绳换成轻弹簧,其结果是一样的。
例2. 如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
经典物理模型--绳子、弹簧和杆产生的弹力特点

②当杆对小球的作用力为向上的支持力时,如图(3)所示:
mg-F= <mg所以v<
当N=mg时,v可以等于零。
③当弹力恰好为零时,如图(4)所示:
mg= 所以v=
【案例3】如图所示,小车上固定一弯折硬杆ABC,C端固定质量为m的小球,已知α=30°恒定。当小车水平向左以v=0.5m/s的速度匀速运动时,BC杆对小球的作用力的大小是,方向是;当小车水平向左以a=g的加速度作匀加速运动时,BC杆对小球的作用力的大小是,方向是。
③弹簧的弹力不会发生突变。
案例探究:
【案例1】如图所示,一质量为m的物体系于长度分别为L1、L2பைடு நூலகம்两根细绳OA、OB上,0B一端悬挂在天花板上,与竖直方向夹角为θ,OA水平拉直,物体处于平衡状态,现在将OA剪断,求剪断瞬间物体的加速度,若将绳OB换为长度为L2的弹簧,结果又如何?
分析与解答:
为研究方便,我们两种情况对比分析。
在竖直方向
在水平方向
解之得。
由解答可知,轻杆对小球的作用力大小随着加速度的增大而增大,它的方向不一定沿着杆的方向,而是随着加速度大小的变化而变化。只有时,F才沿着杆的方向。
5.解析:在没有剪断之前对小球进行受力如图所示,由平衡条件可得,。
当剪断水平细线AB时,此时小球由于细线OB的限制,在沿OB方向上,小球不可能运动,故小球只能沿着与OB垂直的方向运动,也就是说小球所受到的重力,此时的作用效果是拉绳和沿垂直绳的方向做加速运动,其受力如图所示。由图可知,则可得方向垂直于OB向下。绳OB的拉力,则可知当剪断水平细线AB时,细线OB的拉力发生了突变。
分析与解答:
对细杆来说,是坚硬的物体,可以产生与杆垂直的横向的力,也可以产生与杆任何夹角的弹力
经典高三物理模型绳子、弹簧和杆产生的弹力特点 知识点分析

绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绳拉物问题【问题综述】此类问题的关键是:1.准确判断谁是合运动,谁是分运动;实际运动是合运动2.根据运动效果寻找分运动;3.一般情况下,分运动表现在:①沿绳方向的伸长或收缩运动;②垂直于绳方向的旋转运动。
4.根据运动效果认真做好运动矢量图,是解题的关键。
5.对多个用绳连接的物体系统,要牢记在绳的方向上各点的速度大小相等。
6.此类问题还经常用到微元法求解。
1 汽车通过绳子拉小船,则()A、汽车匀速则小船一定匀速B、汽车匀速则小船一定加速C、汽车减速则小船一定匀速D、小船匀速则汽车一定减速(1)如图甲,被分解的速度应是实际的速度,即小船上系绳那一点的水平速度,而不应是沿绳子方向的分运动的运动,故甲图是错误的(2)如乙图,v2还有沿绳方向的速度分量,还需再将v2分解,才能符合实际效果。
但此法麻烦复杂。
(2)如丙图,将船在水平方向的运动分解为两个分运动,一个分运动沿绳方向,根据运动的合成与分解的独立性原理,当这个分运动消失,表现为另一个分运动,可见是以滑轮为圆心的圆周运动,故另一个分运动方向与绳方向垂直。
由图可知v1=vcosθ,v1不变,当θ增大时,v增大,故B正确;v不变,当θ增大时,v1减小,故D正确;注意它的逆推断不一定,故C错2:如图,汽车拉着重物G,则(AcD )A、汽车向左匀速,重物向上加速B、汽车向左匀速,重物所受绳拉力小于重物重力C、汽车向左匀速,重物所受绳拉力大于于重物重力D、汽车向右匀速,重物向下减速3:如左图,若已知物体A的速度大小为v A,求重物B的速度大小v B?v A/cosθ4:如右图,若α角大于β角,则汽车A的速度大于汽车B的速度B5 如图所示,A 、B 两物体用细绳相连,在水平面上运动,当α=45度,β=30度时,物体A 的速度为2 m/s ,这时B 的速度为 。
6.质量分别为m 和M 的两个物体跨过定滑轮如图所示,在M 沿光滑水平面运动的过程中,两物体速度的大小关系为( A )A .V 1﹤V 2B .V 1﹥V 2C .V 1=V 27.如图所示,汽车以v 0=5.0m/s 的速度在水平路面上开动,通过绳子牵引重物P 。
若汽车从A 点开到B 点,AB =20m 。
求:(1)此过程中重物P 的平均加速度;(2)若H =4m ,物体P 的平均速度。
(1)A 点沿绳子的速度:V0*cos60=2.5 m/sB 点沿绳子的速度:V0*cos30=2.5√3 m/s所用时间从汽车上算 汽车是匀直运动 t=20/5=4sa=(2.5√3-2.5 )/4 m/s^2 我不化成小数了(2)H=4m 绳子走的距离:长绳子减短绳子S=8-(8/3)*√3平均速度:T=S/t=〈8-(8/3)*√3〉/4 结果我不化了解开绳拉物体问题的“死结”物体与轻绳连接这一种模型是高中物理中的一种常见模型,有关物体在绳子作用下的运动的问题是一种常见问题。
下面主要就这类问题的主要情形及同学们易出错的地方加以分析剖析。
一、有关运动的合成和分解问题绳拉物体问题在运动的合成与分解这一部分非常常见,处理这类问题应牢记两个原则。
①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
【例1】如右图所示,A 、B 两物体通过一条跨过定滑轮的绳子相连接。
A 沿斜面下滑,B 沿水平面滑动。
由于A 、B 的运动方向均沿绳子的方向,所以两物体的速度均和与它们相连接的绳子的速度相同。
因而A 、B 两物体的速度大小相等。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,此类问题应该用运动的合成和分解的知识解答。
α A Bβ【例2】如右图所示,人用绳子通过定滑轮拉物体A ,当人以速度0v 匀速前进时,求物体A 的速度。
首先要分析物体A 的运动与人拉绳的运动之间有什么关系。
物体A 的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短,绳长缩短的速度即等于0v ;二是垂直于绳以定滑轮为圆心的摆动,它不改变绳长。
这样就可以求得物体A 的速度0cos A v v θ=。
当物体A 向左移动,θ将逐渐变大,A v 逐渐变大。
虽然人做匀速运动,但物体A 却在做变速运动。
【例3】光滑水平面上有A 、B 两个物体,通过一根跨过定滑轮的轻绳子相连,如右图所示,它们的质量分别为A m 和B m 。
当水平力F 拉着A 且绳子与水平方向的夹角为45A θ=,30B θ=时,A 、B 两物体的速度之比是多少?【解析】在本题中,由于A 、B 的速度方向均不沿绳子方向,所以两物体的速度均不等于绳子伸长或缩短的速度。
设沿绳子方向的分速度大小为v ,则由速度的合成与分解可得:cos cos 45A A v v v θ==,coscos30B B v v v θ== 可得:32A B v v =∶∶二、有关物体速度的突变问题对于物体的速度方向与绳子不平行的此类问题,由前面的分析可知,物体的速度可分解为沿绳子方向的分速度和垂直于绳子方向的分速度。
那么当绳子突然停止伸长或缩短时,沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度保持不变。
【例4】如右图所示,有一质量为m 的小球P 与穿过光滑水平板中央小孔O 的轻绳相连,用力拉着绳子另一端使P 在水平板内绕O 做半径为a 、角速度为1ω的匀速圆周运动。
求:(1)此时P 的速率多大?(2)若将绳子从这个状态迅速放松后又拉直,使P 绕O 做半径为b 的匀速圆周运动,从放松到拉直这段过程经过了多长时间?(3)P 做半径为b 的圆周运动的角速度2ω?【解析】(1)根据线速度与角速度的关系可知:11v a ω=(2)如右图,绳子放松后,小球保持1v 的速度沿切线做匀速直线运动,从放开到拉紧这段位移为x 。
22x b a =-又因为1x v t = 则可得:2211x b a t v -==。
(3)在拉直过程中,P 的速度1v 可分解为沿绳子方向和垂直于绳子方向的两个分速度。
当绳子突然拉直时,由于绳子弹力的作用,使沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度2v 保持不变,所以小球P 将以速度2v 做半径为b 的匀速圆周运动。
所以有:21cos v v α=,其中22v b ω=,cos a bα=。
则可解得:2212a bωω= 【点评】本题的第(3)问是同学经常出错的地方,错误的原因就在于,没有注意到小球的速度在绳子拉直的瞬间会发生突变,而错误地认为小球的速率仍然为1v 。
解开绳拉物体问题的“死结”物体与轻绳连接这一种模型是高中物理中的一种常见模型,有关物体在绳子作用下的运动的问题是一种常见问题。
下面主要就这类问题的主要情形及同学们易出错的地方加以分析剖析。
一、有关运动的合成和分解问题绳拉物体问题在运动的合成与分解这一部分非常常见,处理这类问题应牢记两个原则。
①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
【例1】如右图所示,A 、B 两物体通过一条跨过定滑轮的绳子相连接。
A 沿斜面下滑,B 沿水平面滑动。
由于A 、B 的运动方向均沿绳子的方向,所以两物体的速度均和与它们相连接的绳子的速度相同。
因而A 、B 两物体的速度大小相等。
②当物体的运动方向不沿绳子方向(与绳子不平行)时,物体的速度与绳子的速度不相同,此类问题应该用运动的合成和分解的知识解答。
【例2】如右图所示,人用绳子通过定滑轮拉物体A ,当人以速度0v 匀速前进时,求物体A 的速度。
首先要分析物体A 的运动与人拉绳的运动之间有什么关系。
物体A 的运动(即绳的末端的运动)可看作两个分运动的合成:一是沿绳的方向被牵引,绳长缩短,绳长缩短的速度即等于0v ;二是垂直于绳以定滑轮为圆心的摆动,它不改变绳长。
这样就可以求得物体A 的速度0cos A v v θ=。
当物体A 向左移动,θ将逐渐变大,A v 逐渐变大。
虽然人做匀速运动,但物体A 却在做变速运动。
【例3】光滑水平面上有A 、B 两个物体,通过一根跨过定滑轮的轻绳子相连,如右图所示,它们的质量分别为A m 和B m 。
当水平力F 拉着A 且绳子与水平方向的夹角为45A θ=,30B θ=时,A 、B 两物体的速度之比是多少?【解析】在本题中,由于A 、B 的速度方向均不沿绳子方向,所以两物体的速度均不等于绳子伸长或缩短的速度。
设沿绳子方向的分速度大小为v ,则由速度的合成与分解可得:cos cos 45A A v v v θ==,coscos30B B v v v θ== 可得:32A B v v =∶∶二、有关物体速度的突变问题对于物体的速度方向与绳子不平行的此类问题,由前面的分析可知,物体的速度可分解为沿绳子方向的分速度和垂直于绳子方向的分速度。
那么当绳子突然停止伸长或缩短时,沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度保持不变。
【例4】如右图所示,有一质量为m 的小球P 与穿过光滑水平板中央小孔O 的轻绳相连,用力拉着绳子另一端使P 在水平板内绕O 做半径为a 、角速度为1ω的匀速圆周运动。
求:(1)此时P 的速率多大?(2)若将绳子从这个状态迅速放松后又拉直,使P 绕O 做半径为b 的匀速圆周运动,从放松到拉直这段过程经过了多长时间?(3)P 做半径为b 的圆周运动的角速度2ω?【解析】(1)根据线速度与角速度的关系可知:11v a ω=(2)如右图,绳子放松后,小球保持1v 的速度沿切线做匀速直线运动,从放开到拉紧这段位移为x 。
22x b a =-又因为1x v t =则可得:2211x b a t v -==。
(3)在拉直过程中,P 的速度1v 可分解为沿绳子方向和垂直于绳子方向的两个分速度。
当绳子突然拉直时,由于绳子弹力的作用,使沿绳子方向的分速度突变为零,而垂直于绳子方向的分速度2v 保持不变,所以小球P 将以速度2v 做半径为b 的匀速圆周运动。
所以有:21cos v v α=,其中22v b ω=,cos a bα=。
则可解得:2212a bωω= 【点评】本题的第(3)问是同学经常出错的地方,错误的原因就在于,没有注意到小球的速度在绳子拉直的瞬间会发生突变,而错误地认为小球的速率仍然为1v 。
解开绳拉物体问题的“死结”物体与轻绳连接这一种模型是高中物理中的一种常见模型,有关物体在绳子作用下的运动的问题是一种常见问题。
下面主要就这类问题的主要情形及同学们易出错的地方加以分析剖析。
一、有关运动的合成和分解问题绳拉物体问题在运动的合成与分解这一部分非常常见,处理这类问题应牢记两个原则。
①当物体的运动方向沿绳子方向(与绳子平行)时,物体的速度与绳子的速度相同。
【例1】如右图所示,A 、B 两物体通过一条跨过定滑轮的绳子相连接。