高中物理弹簧弹力问题(含答案)
高中阶段弹簧问题大全

权威整理84道关于弹簧的问题很全面,几乎所有有价值的高中阶段弹簧问题大全。
错误!未找到引用源。
1.如图轻质弹簧长为L,竖直固定在地面上,质量为m 的小球,由离地面高度为H 处,由静止开始下落,正好 落在弹簧上,使弹簧的最大压缩量为x,在下落过程中,小球受到的空气阻力恒为f,则弹簧在最短时具 有的弹性势能为 [ A ] A.(mg-f)(H-L+x) B.mg(H-L+x)-f(H-L) C.mgH-f(H-L) D.mg(L-x)+f(H-L+x)2.一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图所示,在A 点,物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回。
下列说法中正确的是( ) A .物体从A 下降到B 的过程中,速率不断变小 B .物体从B 上升到A 的过程中,速率不断变大C .物体从A 下降到B ,以及从B 上升到A 的过程中, 速率都是先增大,后减小D .物体在B 点时,所受合力为零 答案:C3.如图所示,四根相同的轻质弹簧连着相同的物体,在外力作用下做不同的运动:(1)在光滑水平面上做加速度大小为g 的匀加速直线运动; (2)在光滑斜面上沿斜面向上的匀速直线运动; (3)做竖直向下的匀速直线运动;(4)做竖直向上的加速度大小为g 的匀加速直线运动。
设四根弹簧伸长量分别为△l 1、△l 2、△l 3、△l 4,不计空气阻力,g 为重力加速度,则( ) A .△l 1>△l 2 B .△l 3<△l 4 C .△l 1>△l 4 D .△l 2>△l 3 答案:AB4.放在粗糙水平面上的物块A 、B 用轻质弹簧秤相连,如图所示,物块与水平面间的动摩擦因数均为μ,今对物块A 施加一水平向左的恒力F ,使A 、B 一起向左匀加速运动,设A 、B 的质量分别为m 、M ,则弹簧秤的示数( )A .m MFB .m M MF +C .Mm gM m F )(+-μD .MM m gM m F ++-)(μ答案:B5.如图4所示,两个质量分别为m 1错误!未找到引用源。
高中物理 第三章 相互作用 第2节 弹力讲义(含解析)新人教版必修1-新人教版高中必修1物理教案

第2节弹力1.弹力是物体由于发生弹性形变而产生的力。
2.弹力产生的条件:(1)两物体相互接触;(2)接触面之间发生弹性形变。
3.压力和支持力的方向总垂直于物体的接触面指向被压或被支持的物体;绳的拉力沿着绳而指向绳收缩的方向。
4.弹簧发生弹性形变时,弹力的大小F跟弹簧伸长(或缩短)的长度x成正比。
5.弹簧的劲度系数由弹簧本身的因素决定,与所受外力大小无关。
一、弹性形变和弹力1.形变物体在力的作用下形状或体积发生改变,这种变化叫做形变。
2.弹性形变物体在形变后撤去作用力时能够恢复原状,这种形变叫做弹性形变。
3.弹力发生形变的物体,由于要恢复原状,对与它接触的物体会产生力的作用,这种力叫做弹力。
4.弹性限度如果物体的形变过大,超过一定限度,撤去作用力后物体不能完全恢复原状,这个限度叫做弹性限度。
5.弹力产生的两个条件(1)物体间相互接触;(2)在接触面上发生弹性形变。
二、几种弹力1.常见弹力平时所说的压力、支持力和拉力等都是弹力。
2.弹力的方向(1)压力和支持力的方向垂直于物体的接触面,指向受力物体。
(2)绳的拉力沿着绳而指向绳收缩的方向。
三、胡克定律1.内容弹簧发生弹性形变时,弹力的大小F跟弹簧伸长(或缩短)的长度x成正比。
2.公式F=kx,其中k为弹簧的劲度系数,单位:牛顿每米,符号:N/m。
x为弹簧的伸长量或缩短量。
1.自主思考——判一判(1)发生形变的物体才能有弹力,且一定有弹力。
(×)(2)物体的形变越大,弹力也越大。
(×)(3)弹力的方向一定与物体发生形变的方向相反。
(√)(4)弹力的大小与物体大小有关,体积越大的物体产生的弹力也越大。
(×)(5)弹簧的劲度系数k与弹力F有关。
(×)2.合作探究——议一议(1)相互接触的物体间一定有弹力作用吗?提示:不一定,物体如果只是接触而没发生弹性形变,则无弹力作用。
(2)放在水平桌面上的书与桌面相互挤压,书对桌面产生的弹力F1竖直向下,常称做压力。
高中物理弹簧问题----瞬时问题、平衡问题、非平衡问题、功能问题

图14 高中物理弹簧问题----瞬时问题、平衡问题、非平衡问题、功能问题专项突破典型的热点问题专题归纳:1、弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2、弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx 或△f=k •△x 来求解。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4、 弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
它有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起,以考察学生的综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
第一篇:弹簧中的力学问题1.如图,物块质量为M ,与甲、乙两弹簧相连接,乙弹簧下端与地面连接,甲、乙两弹簧质量不计,其劲度系数分别为k 1、k 2。
起初甲弹簧处于自由长度,现用手将甲弹簧的A 端缓慢上提,使乙弹簧产生的弹力大小变为原来的2/3,则A 端上移距离可能是( ) A .(k 1+k 2)Mg/3k 1k 2 B .2(k 1+k 2)Mg/3k 1k 2 C.4(k 1+k 2)Mg/3k 1k 2 D.5(k 1+k 2)Mg/3k 1k 22.(99全国)如右图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为( ) A. m 1g/k 1 B. m 2g/ k 1 C. m 1g/k 2 D. m 2g/ k 23、如图14所示,A 、B 两滑环分别套在间距为1m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1m 的轻弹簧将两环相连,在 A 环上作用一沿杆方向的、大小为20N 的拉力F ,当两环都沿杆以相同的加速度a 运动时,弹簧与杆夹角为53°。
高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
高中物理弹簧问题考点大全及常见典型考题

常见弹簧类问题分析高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).A.S1在上,A在上B.S1在上,B在上C.S2在上,A在上D.S2在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为T l,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,T l sinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线L l改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )A.M>mB.M=mC.M<mD.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是( ) 参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。
人教版高中物理必修一《弹力》例题练习及答案

一、对形变和弹力的理解例1 下列有关物体受外力及形变的说法正确的是( )A.有力作用在物体上,物体一定发生形变,撤去此力后形变完全消失B.有力作用在物体上物体不一定发生形变C.力作用在硬物体上,物体不发生形变;力作用在软物体上,物体才发生形变D.一切物体受到外力作用都要发生形变,外力撤去后形变不一定完全消失解析只要有力作用在物体上,物体就一定会发生形变,故 B 项错误;发生形变后的物体,当撤去外力后,有些能完全恢复原状,有些不能完全恢复原状,A项错误,D项正确;不管是硬物体还是软物体,只要有力作用都会发生形变, C 项错误.答案D(1) 对于弹性形变,当力撤去后可以恢复原状.(2) 若两个物体在直接接触的同时,也存在弹性形变,则两个物体间有弹力的作用.(3) 弹力大小与形变量有关,对于接触面情况一定的前提下,形变越大,弹力也越大.二、弹力有无的判断例2 如图3-2-9所示,细绳下悬挂一小球D,小球与光滑的静止斜面接触,且细绳处于竖直状态,则下列说法中正确的是( )A.斜面对 D 的支持力垂直于斜面向上B.D对斜面的压力竖直向下C.D与斜面间无相互作用力D.因D的质量未知,所以无法判定斜面对 D 支持力的大小和方向解析对 D 进行受力分析可知,D一定受到竖直向上的绳的拉力和竖直向下的重力,其中有无弹力可用假设法.假设去掉斜面, D 仍保持原来的静止状态,可判断出 D 与斜面间无相互作用力.答案C判断弹力是否存在一般有以下两种方法:①假设法;②根据物体的运动状态判断三、弹力方向的分析例 3 作出图3-2-10中物块、球、杆等受到各接触面作用的弹力示意图.图3-2-10解析分析此类问题的关键是确定接触面,对于点—面接触,面—面接触类问题容易确定,这里出现的面即为接触面;对于点—弧面接触,过接触点的弧面的切面即为接触面.各物体所受弹力如下图所示.答案见解析图四、弹力大小的计算图3-2-11例 4 如图3-2-11 所示,A、 B 两物体的重力分别是G A=3 N,G B= 4N.A 用细线悬挂在顶板上, B 放在水平面上,A、 B 间轻弹簧中的弹力F= 2 N,则细线中的张力F T及 B 对地面的压力F N的可能值分别是( )A.5 N和 6 N B.5 N和 2 NC.1 N和6 N D.1 N和2 N解析弹簧如果处于被拉伸的状态,它将有收缩到原状的趋势,会向下拉A,向上提B,则B 正确;如果处于被压缩的状态,将向两边恢复原状,会向上顶A,向下压B,则 C 正确,故选B、 C.答案BC判断弹簧弹力的方向时,要注意弹簧是被拉伸还是被压缩,或两者均有可能,计算弹簧弹力大小的方法一般是根据胡克定律,有时也根据平衡条件来计算.1. 下列说法正确的有( ) A.木块放在桌面上要受到一个向上的弹力,这是由于木块发生微小形变而产生的B.拿一细杆拨动水中的木头,木头受到细杆的弹力,这是由于木头发生形变而产生的C.绳对物体的拉力方向总是沿着绳而指向绳子收缩的方向D.挂在电线下面的电灯受到向上的拉力,是因为电线发生微小形变而产生的答案CD解析由弹力的概念可知,发生形变的桌子,由于要恢复原状,对跟它接触的木块产生了力的作用,即木块受到弹力是由于桌子发生形变而产生的,不是木块自己发生形变引起的,同理,木块受到细杆作用力是由于细杆发生形变而产生的,所以选项A、B 是错误的;用绳悬挂物体时,对物体的拉力是因为绳子发生形变,由于要恢复原状,对物体产生力的作用,故绳对物体的拉力是指向绳子收缩的方向,所以C、D 是正确的,应选C、D.2.关于弹力的方向,以下说法正确的是( )A.压力的方向总是垂直于接触面,并指向被压物体B.支持力的方向总是垂直于支持面,并指向被支持物体C.绳对物体拉力的方向总是沿着绳,并指向绳收缩的方向D.杆对物体的弹力方向总是沿着杆,并指向杆收缩的方向答案ABC解析需要注意的是杆对物体产生的弹力可能沿杆方向,也可能不沿杆方向,这点与绳是不同的.3.如图3-2-12 所示,弹簧的劲度系数为k,小球重为G,平衡时球在A 位置,今用力F 将小球向下拉长x 至B位置,则此时弹簧的弹力为()图3-2-12A.kx B.kx +GC.G-kx D.以上都不对答案B解析此题很容易误解而选A项,但选项A是错误的.其原因是x 不是弹簧变化后的长度与未发生形变时弹簧长度的差值(即不是弹簧的总形变量),球在 A 位置时弹簧已经伸长了(令它为Δ x),这样球在B位置时,F弹=k(Δx +x)=kx +kΔx. 因为球在A位置平衡,有G=kΔx,所以F弹=kx+G.故选项B 是正确的.4.一条轻绳承受的拉力达到 1 000 N 时就会被拉断,若用此绳进行拔河比赛,两边的拉力大小都是600 N 时,则绳子()A.一定会断B.一定不会断C.可能断,也可能不断D.要是绳子两边的拉力相等,不管拉力多大,合力总为零,绳子永远不会断答案B解析因为绳子内的弹力处处相等,假设将绳子分为两部分,其中一部分对另一部分的拉力大小为600 N,小于绳子能承受的最大拉力 1 000 N,所以绳子图 3- 2- 135.如图 3-2-13所示,绳下吊一铁球,则球对绳有弹力, 绳对球也有弹力, 关于两个弹力的产生,下述说法正确的是 ( )A .球对绳的弹力,是球发生形变产生的弹 力作用于绳的B .球对绳的弹力,是绳发生形变产生的弹力作用于绳的C .绳对球的弹力,是绳发生形变产生的弹力作用于球的D .绳对球的弹力,是球发生形变产生的弹力作用于球的答案 AC解析 绳和球发生了弹性形变, 由于要恢复原状, 从而对跟它接触的物体产 生弹力作用,故 A 、C 正确.6.如图 3-2-14 所示,各接触面光滑且物体 A 静止,画出物体 A 所受弹力的示意图.图 3- 2- 14答案 如图所示.试由图线确定:定不会断裂.7.如图 3-2-15 所示,为一轻质弹簧的长度 l 和弹力 F 大小的关系图象,图 3- 2-15(1) 弹簧的原长;(2) 弹簧的劲度系数;(3) 弹簧长为0.20 m时弹力的大小.答案(1)10 cm (2)200 N/m(3)20 N解析读懂图象是求解本题的关键:(1) 当弹簧的弹力为零时,弹簧处于原长状态,由图可知原长l 0=10 cm.(2) 当弹簧长度为15 cm时,弹力大小为10 N,对应弹簧的伸长量为Δl =-2(15 -10) cm=5×10-2 m由胡克定律F=kx 得:F 10k=ΔF l=5×1100-2 N/m=200 N/m.(3) 当弹簧长为0.20 m时,弹簧伸长量为:Δl ′=(0.20 -0.10) m=0.10 m由胡克定律F=kx 得:F′=kΔl ′=200×0.10 N=20 N.8.下表是某同学为探究弹力和弹簧伸长量的关系所测的几组数据:(1) 请你在图3216 F x图3-2-16(2) 写出曲线所代表的函数(x 用m作单位) .(3) 解释函数表达式中常数的物理意义.答案见解析解析根据已有数据选好坐标轴每格所代表的物理量的多少,是作好图象的关键,作图象的方法:用平滑的曲线(或直线)将坐标纸上的各点连接起若是来,直线,应使各点均匀分布于直线两侧,偏离直线太大的点,应舍弃掉.(1) 将x 轴每一小格取为 1 cm,F 轴每一小格取为0.25 N,将各点点到坐标纸上,并连成直线,如下图所示.(2) 由图象得:F=20x.(3) 函数表达式中的常数:表示使弹簧伸长( 或压缩)1 m所需的拉力为20 N.。
关于高级高中物理弹簧弹力问题归类总结归纳

弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于图图 3-7-1图 3-7-3地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( ) A.0 B.大小为233g ,方向竖直向下C.大小为233g ,方向垂直于木板向下 D. 大小为233g , 方向水平向右 【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ=== 【答案】 C. 四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.图图图【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ== 解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B A F m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d k θ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的图形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大? (2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k=,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg kF +=,解得: 032mgF =.]【答案】022gx 32mg 图图 3-7-8说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
高中物理 专题3.2 弹力(练)(基础版,含解析)新人教版必修1-新人教版高一必修1物理试题

3.2 弹力1.如下列图,球A在斜面上,被竖直挡板挡住而处于静止状态,关于球A所受的弹力,以下说法正确的答案是:〔〕A.球A仅受一个弹力作用,弹力的方向垂直斜面向上B.球A受两个弹力作用,一个水平向左,一个垂直斜面向下C.球A受两个弹力作用,一个水平向右,一个垂直斜面向上D.球A受三个弹力作用,一个水平向右,一个垂直斜面向上,一个竖直向下【答案】C2.如下列图,一根弹簧其自由端B在未悬挂重物时指针正对刻度5,在弹性限度内当挂上80N重物时指针正对刻度45,假设要指针正对刻度20,应挂重物是:〔〕A.40N B.30NC.20N D.35.6N【答案】B【解析】由胡可定律可知,80N能使弹簧伸长40个刻度,伸长一个刻度对应的拉力是2N,假设要指针正对刻度20,需要弹簧伸长15个刻度,此时的弹力应为30N,B正确。
3.两小球均处于静止状态,所有接触面均光滑,A、B之间一定有弹力作用的是:〔〕【答案】B【解析】弹力的产生必须满足两个条件:相互接触且发生弹性形变;由图可知,A、D中两个小球都相互接触,但它们之间并没有相互挤压的作用,也就不能发生弹性形变,从而不能产生弹力.AD错误;B图中的两个小球由于绳子的作用,而相互挤压,从而产生了相互作用的弹力;B正确;C图中的小球与斜面间无挤压,无弹力作用,应当选B。
【名师点睛】弹力的产生必须满足两个条件:相互接触且发生弹性形变;对于微小形变的物体,不易看出形变情况,可以用假设法,即假设这个弹力存在,看其所处状态是否与题给情况一致,假设产生矛盾,如此说明这个弹力不存在。
如此题的C答案,如果斜面对小球存在弹力,如此方向为垂直斜面向上,悬挂小球的细绳不能竖直,说明斜面对小球无弹力。
4.关于物体对水平支持面的压力F,如下说法正确的答案是:〔〕A.F就是物体的重力B.F是由于支持面发生微小形变而产生的C.F的作用点在物体上D.F的作用点在支持面上【答案】D【名师点睛】此题考查了学生对弹力的理解,要知道弹力是由于物体的形变而产生的对抗形变的力,方向与形变的方向相反,注意要搞清弹力而产生形变的物体;当物体静止与水平面上时物体对水平面的压力大小等于重力大小,而不能说就是重力.5.如下列图,细绳下悬挂一小球D,小球与光滑的静止斜面接触,且细绳处于竖直状态,如此如下说法中正确的答案是:〔〕A.斜面对D的支持力垂直于斜面向上B.D对斜面的压力竖直向下C.D与斜面间无相互作用力D .因D 的质量未知,所以无法判定斜面对D 支持力的大小和方向【答案】C【解析】小球和光滑斜面接触,根据平衡条件,由于细绳处于竖直状态,故小球受到重力和绳的拉力,斜面对小球没有弹力.应当选C.【名师点睛】此题采用假设法分析斜面的弹力是否存在,这是判断弹力和摩擦力是否存在常用的方法,也就是说假设斜面对小球有弹力,小球将受到三个力作用,重力和绳的拉力在竖直方向上,弹力垂直于斜面向上,三个力的合力不可能为零,小球将向左上方运动,与题设条件矛盾。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧问题归类之阳早格格创做一、“沉弹簧”类问题正在中教阶段,凡是波及的弹簧皆不思量其品量,称之为“沉弹簧”“沉弹簧”品量不计,采用任性小段弹簧,其二端所受弛力一定仄稳,可则,那小段弹簧的加速度会无限大.F ,另一端受力一定也为F ,假如弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤搁正在光润的火仄里上,中壳品量m 不克不迭忽略,弹簧及接洽品量不计,施加弹簧上火仄目标的力1F 战称中壳上的力2F ,且12F F >,则弹簧秤沿火仄目标的加速度为,弹簧秤的读数为 .【剖析】 以所有弹簧秤为钻研对于象,利用牛顿疏通定律得: 12F F ma -=,即12FF a m -=,仅以沉量弹簧为钻研对于象,则弹簧二端的受力皆1F ,所以弹簧秤的读数为1F .证明:2F 效率正在弹簧秤中壳上,并不效率正在弹簧左端,弹簧左端的受力是由中壳内侧提供的.【问案】12FF a m -=1F 二、品量不可忽略的弹簧 【例2】如图3-7-2所示,一品量为M 、少为L 的均量弹簧仄搁正在光润的火仄里,正在弹簧左端施加一火仄力F 使弹簧背左干加速疏通.试分解弹簧上各部分的受力情况.【剖析】 弹簧正在火仄力效率下背左加速疏通,据牛顿第二定律得其加速度F a M =,与弹簧左部任性少度x 为钻研对于象,设其品量为m 得弹簧上的弹力为:,x x F x T ma M F L M L ===【问案】x x T F L= 三、弹簧的弹力不克不迭突变(弹簧弹力瞬时)问题弹簧(更加是硬量弹簧)弹力与弹簧的形变量有闭,由于弹簧二端普遍与物体连交,果弹簧形变历程需要一段时间,其少度变更不克不迭正在瞬间完毕,果此弹簧的弹力不克不迭正在瞬间爆收突变. 即不妨认为弹力大小战目标稳定,与弹簧相比较,沉绳战沉杆的弹力不妨突变.【例3】如图3-7-3所示,木块A 与B 用沉弹簧贯串,横曲搁正在木块C 上,三者静置于大天,A B C 、、的品量之比是1:2:3.设所有交触里皆光润,当沿火仄目标赶快抽出木块C 的瞬时,木块A 战B 的加速度分别是A a =与B a =图 3-7-2图 3-7-1 图 3-7-3【剖析】由题意可设A B C 、、的品量分别为23m m m 、、,以木块A 为钻研对于象,抽出木块C 前,木块A 受到沉力战弹力一对于仄稳力,抽出木块C 的瞬时,木块A 受到沉力战弹力的大小战目标均稳定,故木块A A B 、为钻研对于象,由仄稳条件可知,木块C 对于木块B 的效率力3CB F mg =.以木块B 为钻研对于象,木块B 受到沉力、弹力战CB F 三力仄稳,抽出木块C 的瞬时,木块B 受到沉力战弹力的大小战目标均稳定,CB F 瞬时形成0,故木块C 的瞬时合中力为3mg ,横曲背下,瞬时加速度为1.5g .【问案】0 证明:辨别于不可伸少的沉量绳中弛力瞬间不妨突变.【例4】如图3-7-4所示,品量为m 的小球用火仄弹簧连交,并用倾角为030的光润木板AB AB 突然背下撤离的瞬间,小球的加速度为 ( )A.0233g ,目标横曲背下 233g ,目标笔曲于木板背下 D. 大小为233g , 目标火仄背左【剖析】 终撤离木板前,小球受沉力G 、弹簧推力F 、木板收援力N F 效率而仄稳,如图3-7-5所示,有cos N mg F θ=.撤离木板的瞬间,沉力G 战弹力F 脆持稳定(弹簧弹力不克不迭突变),而木板收援力N F 坐时消得,小球所受G 战F 的合力大小等于撤之前的NF (三力仄稳),目标与NF 差异,故加速度目标为笔曲木板背下,大小为23cos 3N F g a g m θ=== 【问案】 C.四、弹簧少度的变更问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的推力为2F 时伸少量为2x ,此时的“-”1F -形成推力2F ,弹簧少度将由压缩量1x -形成伸少量2x ,少度减少量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆证明:弹簧受力的变更与弹簧少度的变更也共样按照胡克定律,此时x ∆表示的物理意思是弹簧少度的改变量,本去不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的沉量弹簧二端分别与品量为1m 、2m 的物块1、2拴交,劲度系数为2k 的沉量弹簧上端与物块2拴交,下端压正在桌里上(不拴交),所有系统处于仄稳状态.现将物块1缓缓天横曲上提,曲到底下那个弹簧的下端刚刚摆脱桌里.正在此历程中,物块2的沉力势能减少了,物块1的沉力势能减少了. 图 3-7-4 图 3-7-5 图 3-7-6【剖析】由题意可知,弹簧2k 少度的减少量便是物块2的下度减少量,弹簧2k 少度的减少量与弹簧1k 少度的减少量之战便是物块1的下度减少量.由物体的受力仄稳可知,弹簧2k 的弹力将由本去的压力12()m m g +形成0,弹簧1k 的弹力将由本去的压力1m g 形成推力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸少量分别为:1211()m m g k +战1221()m m g k + 故物块2的沉力势能减少了221221()m m m g k +,物块1的沉力势能减少了21121211()()m m m g k k ++ 五、弹簧形变量不妨代表物体的位移弹簧弹力谦脚胡克定律F kx =-,其中x 为弹簧的形变量,二端与物体贯串时x 亦即物体的位移,果此弹簧不妨与疏通教知识分散起去编成习题.【例6】如图3-7-7所示,正在倾角为θ的光润斜里上有二个用沉量弹簧贯串交的物块A B 、,其品量分别为A B m m 、,弹簧的劲度系数为k ,C 为一牢固挡板,系统处于停止状态,现启初用一恒力F 沿斜里目标推A 使之进与疏通,供B 刚刚要离启C 时A 的加速度a 战从启初到此时A 的位移d (沉力加速度为g ).【剖析】 系统停止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分解A 受力可知:11sin AF kx m g θ==解得:1sin Am g x kθ=正在恒力F 效率下物体A B 刚刚要离启挡板C 时弹簧的伸少量为2x ,分解物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B A F m m g a m θ-+=果物体A 与弹簧连正在所有,弹簧少度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d k θ+=【问案】()sin A Bm m g d kθ+= 六、弹力变更的疏通历程分解弹簧的弹力是一种由形变决断大小战目标的力,注意弹力的大小与目标时刻要与当时的形变相对于应.普遍应从弹簧的形变分解进脚,先决定弹簧本少位子、现少位子及临界位子,找出形变量x 与物体空间位子变更的几许闭系,分解形变所对于应的弹力大小、目标,弹性势能也是与本少位子对于应的形变量相闭.以此去分解估计物体疏通状态的大概变更.图 3-7-分散弹簧振子的简谐疏通,分解波及弹簧物体的变加速度疏通,.此时要先决定物体疏通的仄稳位子,辨别物体的本少位子,进一步决定物体疏通为简谐疏通.分散与仄稳位子对于应的恢复力、加速度、速度的变更顺序,很简单分解物体的疏通历程.【例7】如图3-7-8所示,品量为m 的物体A 用一沉弹簧与下圆大天上品量也为m 的物体B 贯串,启初时A 战B 均处于停止状态,此时弹簧压缩量为0x ,一条不可伸少的沉绳绕过沉滑轮,一端连交物体A 、另一端C 握正在脚中,各段绳均刚刚佳处于伸曲状态,物体A C 端施加火仄恒力F 使物体A 从停止启初进与疏通.(所有历程弹簧终究处正在弹性极限以内).(1)如果正在C 端所施加的恒力大小为3mg ,则正在物体B 刚刚要离启大天时物体A 的速度为多大?(2)若将物体B 的品量减少到2m ,为了包管疏通中物体B 终究不离启大天,则F 最大不超出几?【剖析】 由题意可知,弹簧启初的压缩量0mg x k=,物体B 刚刚要离启大天时弹簧的伸少量也是0mg x k=. (1)若3F mg =,正在弹簧伸少到0x 时,物体B 离启大天,此时弹簧弹性势能与施力前相等,F 所干的功等于物体A 减少的动能及沉力势能的战.即:201222F x mg x mv ⋅=⋅+得: 022v gx = (2)所施加的力为恒力0F 时,物体B 不离启大天,类比横曲弹簧振子,物体A A 干简谐疏通.正在最矮面有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为正在最矮面物体A 的加速度.正在最下面,物体B 恰佳不离启大天,此时弹簧被推伸,伸少量为02x ,则: 002(2)k x mg F ma +-=而0kx mg =,简谐疏通正在上、下振幅处12a a =,解得:032mg F =[也不妨利用简谐疏通的仄稳位子供恒定推力0F .物体A 干简谐疏通的最矮面压缩量为0x ,最下面伸少量为02x 002x mg k F +=,解得: 032mgF =.]【问案】022gx 32mg 证明: 辨别本少位子与仄稳位子.战本少位子对于应的形变量与弹力大小、目标、弹性势能相闭,战仄稳位子对于应的位移量与恢复大小、目标、速度、加速度相闭.七.与弹簧相闭的临界问题图 3-7-8通过弹簧相通联的物体,正在疏通历程中时常波及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时二个物体速度相共;使物体恰佳要离启大天;相互交触的物体恰佳要摆脱等.此类问题的解题闭键是利用佳临界条件,得到解题有用的物理量战论断.【例8】如图3-7-9所示,A B 、二木块叠搁正在横曲沉弹簧上,已知木块A B 、的品量分别为0.42kg 战0.40kg ,弹簧的劲度系数100/k N m =,若正在A 上效率一个横曲进与的力F ,使A 由停止启初以20.5/m s 的加速度横曲进与干匀加速疏通(210/g m s =)供: (1) 使木块A 横曲干匀加速疏通的历程中,力F 的最大值;(2)若木块由停止启初干匀加速疏通,曲到A B 、分散的历程中,弹簧的弹性势能缩小了0.248J ,供那一历程中F 0F =(即不加横曲进与F 力)时,设木块A B 、叠搁正在弹簧上处于仄稳时弹簧的压缩量为x ,有: ()A B kx m m g =+,即()A Bm m g x k+=①对于木块A 施加力F ,A 、B 受力如图3-7-10所示,对于木块A 有: A A F N m g m a +-=②对于木块B 有: 'B B kx N m g m a --=③可知,当0N ≠时,木块A B 、加速度相共,由②式知欲使木块A 匀加速疏通,随N 减小F 删大,当0N =时, F 博得了最大值m F ,即: () 4.41m A F m a g N =+= 又当0N =时,A B 、启初分散,由③式知,弹簧压缩量'()B kx m a g =+,则()'Bm a g x k+=④木块A 、B 的共共速度:22(')v a x x =-⑤由题知,此历程弹性势能缩小了0.248P P W E J ==设F 力所干的功为F W ,对于那一历程应用功能本理,得:21()()(')2F A B A B PW m m v m m g x x E =+++-- 联坐①④⑤⑥式,且0.248P E J =,得:29.6410F W J -=⨯【问案】(1)4.41m F N =29.6410F W J -=⨯【例9】如图3-7-11所示,一品量为M 的塑料球形容器,正在A 处与火仄里交触.它的里里有背去坐的沉弹簧,弹簧下端牢固于容器里里底部,上端系一戴正电、品量为m 的小球正在横曲目标振荡,当加一进与的匀强电场后,弹簧正佳正在本万古,小球恰佳有最大速度.正在振荡历程中球形容器对于桌里的最小压力为0,供小球振荡的最大加速度战容器对于桌里的最大压力.【剖析】果为弹簧正佳正在本万古小球恰佳速度最大,所以有:=qE mg ①小球正在最下面时容器对于桌里的压力最小,有:=kx Mg ②此时小球受力如图3-7-12所示,所受合力为qEkx mg F -+=图 3-7-10图 3-7-11③由以上三式得小球的加速度m Mg a =.隐然,正在最矮面容器对于桌里的压力最大,由振荡的对于称性可知小球正在最矮面战最下面有相共的加速度,解以上式子得:Mg kx =所以容器对于桌里的压力为:Mg kx Mg F N 2=+=.八、弹力干功与弹性势能的变更问题弹簧伸少或者压缩时会储藏一定的弹性势能,果此弹簧的弹性势能不妨与板滞能守恒顺序概括应用,用公式212PE kx =估计弹簧势能,弹簧正在相等形变量时所具备的弹性势能相等.弹簧弹力干功等于弹性势能的缩小量.弹簧的弹力干功是变力干功,普遍不妨用以下要领:(1)果该变力为线性变更,不妨先供仄稳力,再用功的定义举止估计;(2)利用F x -图线所包抄的里积大小供解;(3)根据动能定理、能量转移战守恒定律供解.时,往往弹性势能的改变不妨对消或者代替供解.【例10】如图3-7-14所示,品量为1m 的物体A 经一沉量弹簧与下圆大天上的品量为2m 的物体B 贯串,弹簧的劲度系数为k ,物体A B 、A ,另一端连交一沉接洽.启初时各段绳皆处于伸曲状态,物体A 2m 的物体C 并从停止释搁,已知它恰佳能使物体B C 换成另一品量为12()m m +的物体D ,仍从上述初初位子由停止释搁,则那次物体B 刚刚离天时物体D 的速度大小是几?已知沉力加速度为g【剖析】 启初时物体A B 、停止,设弹簧压缩量为1x ,则有:11kx m g =,悬挂物体C 并释搁后,物体C 背下、物体A 进与疏通,设物体B 刚刚要离天时弹簧伸少量为2x ,有22kx m g =,B 不再降下标明此时物体A 、C 的速度均为整,物体C 己下落到其最矮面,与初状态相比,由板滞能守恒得弹簧弹性势能的减少量为:212112()()E m g x x m g x x ∆=+-+.物体C 换成物体D 后,物体B 离天时弹簧势能的删量与前一次相共,由能量闭系得:22211211211211()()()()22m m v m v m m g x x m g x x E ++=++-+-∆联坐上式解得题中所供速度为:2112122()(2)m m m g v m m k +=+九、弹簧弹力的单背性弹簧不妨伸少也不妨被压缩,果此弹簧的弹力具备单背性,亦即弹力既大概是推力又大概是推力,那类问题往往是一题多解.【例11】如图3-7-15所示,品量为m 的量面与三根相共的沉图 3-7-14弹簧贯串,停止时相邻二弹簧间的夹角均为0120,已知弹簧a b 、对于量面的效率力均为F ,则弹簧c 对于量面效率力的大小大概为 ( )A 、0B 、F mg +C 、F mg -D 、mg F -【剖析】 由于二弹簧间的夹角均为0120,弹簧a b 、对于量面效率力的合力仍为F ,弹簧a b 、对于量面有大概是推力,也有大概是推力,果F 与mg 的大小闭系不决定,故上述四个选项均有大概.精确问案:ABCD【问案】 ABCD十一、弹簧串、并联推拢弹簧串联或者并联后劲度系数会爆收变更,弹簧推拢的劲度系数不妨用公式估计,下中物理不央供用公式定量分解,但是弹簧串并联的特性要掌握:弹簧串联时,每根弹簧的弹力相等;本少相共的弹簧并联时,每根弹簧的形变量相等.【例12】 如图3-7-17所示,二个劲度系数分别为12k k 、的沉弹簧横曲悬挂,下端用光润细绳连交,并有一光润的沉滑轮搁正在细线上;滑轮下端挂一沉为G 的物体后滑轮下落,供滑轮停止后沉物下落的距离.【剖析】 二弹簧从形式上瞅好像是并联,但是果每根弹簧的弹力相等,故二弹簧真为串联;二弹簧的弹力均2G ,可得二弹簧的伸少量分别为112G x k =,222G x k =,二弹簧伸少量之战12x x x =+,故沉物下落的下度为:1212()24G kk x h k k +== 滑轮模型一、“滑轮”挂件模型中的仄稳问题例1. 如图1所示,将一根不可伸少、柔硬的沉绳左、左二端分别系于A 、B 二面上,一物体用动滑轮悬挂正在沉绳上,达到仄稳时,二段绳子间的夹角为1θ,绳子弛力为1F ;将绳子左端移到C 面,待系统达到仄稳时,二段绳子间的夹角为2θ,绳子弛力为2F ;将绳子左端再由C 面移到D 面,待系统达到仄稳时,二段绳子间的夹角为3θ,绳子弛力为3F ,不计摩揩,而且BC 为横曲线,则( )图 3-7-17A. 321θθθ<=B. 321θθθ==C. 321F F F >>D. 321F F F >=剖析:由于跨过滑轮上绳上各面的弛力相共,而它们的合力与沉力为一对于仄稳力,所以从B 面移到C 面的历程中,通过滑轮的移动,2121F F ==,θθ,再从C 面移到D 面,3θ肯定大于2θ,由于横曲目标上必须有mg F =2cos 2θ,所以23F F >.故惟有A 选项精确.二、“滑轮”挂件模型中的变速问题例2. 如图2所示正在车厢中有一条光润的戴子(品量不计),戴子中搁上一个圆柱体,车子停止时戴子二边的夹角∠ACB=90°2背左做匀加速疏通,则戴子的二边与车厢顶里夹角分别为几?剖析:设车停止时AC 少为l ,当小车以2/5.7s m a =背左做匀加速疏通时,由于AC 、BC 之间的类似于“滑轮”,故受到的推力相等,设为F T ,圆柱体所受到的合力为ma ,正在背左做匀加速,疏通中AC 少为l l ∆+,BC 少为l l ∆-,由几许闭系得l l l l l 2sin sin sin γβα=∆+=∆-,由牛顿疏通定律修坐圆程: mg F F ma F F T T T T =+=-βαβαsin sin cos cos ,,代进数据供得︒=︒=9319βα,三、“滑轮”挂件模型中的功能问题例3. 如图3所示,细绳绕过二个定滑轮A 战B ,正在二端各挂一个沉为P 的物体,当前A 、B 的中面C 处挂一个沉为Q 的小球,Q<2P ,供小球大概下落的最大距离h.已知AB 的少为2L ,不计滑轮战绳之间的摩揩力及绳的品量.剖析:选小球Q 战二沉物P 形成的完全为钻研对于象,该完全的速率从整启初渐渐删为最大,紧交着从最大又渐渐减小为整(此时小球下落的距离最大为h ),正在所有历程中,惟有沉力干功板滞能守恒.果沉为Q 的小球大概下落的最大距离为h ,所以沉为P 的二物体分别降下的最大距离均为L L h -+22.思量到完全初、终位子的速率均为整,故根据板滞能守恒定律知,沉为Q 的小球沉力势能的缩小量等于沉为P 的二个物体沉力势能的减少量,即)(222L L h P Qh -+=.进而解得2244QP PLQ h -=【模型重心】“滑轮”模型的特性为滑轮二侧的受力大小相等,正在处理功能问题时若力爆收变更,常常劣先思量能量守恒顺序.注意“死杆”战“活杆”问题.如:如图(a )沉绳AD 跨过牢固正在火仄横梁BC 左端的定滑轮挂住一个品量为M 1的物体.∠ACB=30°;图(b )中沉杆HG 一端用铰链牢固正在横曲墙上,另一端G 通过细绳EG 推住,EG 与火仄目标也成30°,沉杆的G 面用细绳GF 推住一个品量为M 2的物体,供细绳AC 段的弛力F TAC 与细绳EG 的弛力F TEG 之比? 剖析:图(a )中绳AC 段的推力F TAC =M 1g 图(b )中由于F TEG sin30°=M 2g ,解得:212M M F F TEG TAC = 【模型演练】1. 正在图6所示的拆置中,绳子与滑轮的品量不计,摩揩不计,悬面a 与b 之间的距离近大于二轮的曲径,二个物体的品量分别为m 1战m 2,若拆置处于停止状态,则下列道法过得的是( )A. 2m 不妨大于1mB. 2m 肯定大于21m C. 2m 肯定等于1mD. 1θ与2θ肯定相等问案:C2. (上海缓汇区诊疗)如图7所示,品量分别为M 战m (M>m )的小物体用沉绳连交;跨搁正在半径为R 的光润半圆柱体战光润定滑轮B 上,m 位于半圆柱体底端C 面,半圆柱体顶端A 面与滑轮B 的连线火仄.所有系统从停止启初疏通.设m 能到达圆柱体的顶端,试供:(1)m 到达圆柱体的顶端A 面时,m 战M 的速度.(2)m 到达A 面时,对于圆柱体的压力.图7问案:(1(2。