数学一轮复习:直线的倾斜角与斜率及直线方程

合集下载

2024版高考数学大一轮第八章平面解析几何8-1直线的倾斜角斜率与方程

2024版高考数学大一轮第八章平面解析几何8-1直线的倾斜角斜率与方程
3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式).Leabharlann 教材梳理】1.直线的倾斜角
(1)定义:当直线 与 轴相交时,我们以 轴为基准, 轴正向与直线 _____的方向之间所成的角 叫做直线 的倾斜角.
(2)规定:当直线 与 轴____________时,我们规定它的倾斜角为 .
A.截距相等的直线都可以用方程 表示B.方程 能表示平行于 轴的直线C.经过点 ,倾斜角为 的直线方程为 D.经过两点 , 的直线方程为


解:对于A,截距相等且为0的直线都不可以用方程 表示,故错误;对于B,当 时,方程 表示平行于 轴的直线 ,故正确;对于C,经过点 ,倾斜角为 的直线方程不能写成 ,故错误;对于D,因为 ,所以直线的斜率存在,可写成 ,故正确.故选BD.
(Ⅲ) 经过点 ,且与两坐标轴围成一个等腰直角三角形.
解:由题意可知,所求直线的斜率为 ,又过点 ,得 .所求直线的方程为 或 .
(2) 一次函数 的图象同时经过第一、三、四象限的必要不充分条件是( )
A. 且 B. C. 且 D. 且
解:因为 的图象经过第一、三、四象限,故 ,且 ,即 ,且 为充要条件,因此 是它的一个必要不充分条件.故选B.
(4)若 ,且 时,直线即为 轴,方程为 .
1.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1) 倾斜角越小,斜率越小. ( )
×
(2) 不是所有的直线都有斜率. ( )

(3) 过点 的直线都可用方程 表示. ( )
×
(4) 能用斜截式方程表示的直线都能用点斜式方程表示. ( )
变式3.(1) 若直线 过点 ,则该直线在 轴、 轴上的截距之和的最小值为( )

高考数学一轮复习第9章解析几何1直线的倾斜角与斜率直线的方程课件新人教A版

高考数学一轮复习第9章解析几何1直线的倾斜角与斜率直线的方程课件新人教A版

1
-1
e
e + +2
e
0 时等号成立 ,所以 e + +2≥4,故 y'=
x

1
1
e
,即 =
1
≥- (当且仅当 x=0 时
4
等号成立).所以当 x=0 时,曲线的切线斜率取得最小值,此时切点的
坐标为 0,
1
2
1
1
,切线的方程为 y- =- (x-0),即 x+4y-2=0.该切线在 x 轴上
解析: (1)当 cos θ=0 时,方程变为 x+3=0,其倾斜角为 ;
1
当 cos θ≠0 时,由直线方程可得斜率 k=-cos .
∵cos θ∈[-1,1],且 cos θ≠0,
∴k∈(-∞,-1]∪[1,+∞),
即 tan α∈(-∞,-1]∪[1,+∞),
π π
又 α∈[0,π),∴α∈ 4 , 2 ∪
所以 M 0,-
5
2
,N(1,0),


所以直线 MN 的方程为1 + 5=1,
-2
即 5x-2y-5=0.
.
-21考点1
考点2
考点3
解题心得1.求直线方程时,应结合所给条件选择适当的直线方程
形式,并注意各种形式的适用条件.
2.涉及截距问题,还要考虑截距为0这一特殊情况.
-22考点1
考点2
考点3
π 3π
2
,
4
.
综上可知,倾斜角 α 的取值范围是
π 3π
4
,
4
,故选 C.
2
-15考点1

2020高三数学一轮复习(人教版理):直线的倾斜角与斜率、直线方程

2020高三数学一轮复习(人教版理):直线的倾斜角与斜率、直线方程
倾斜角为 α,则所求直线的倾斜角为 2α。 因为 tanα=3,所以 tan2α=1-2tatannα2α=-34。 又直线经过点 A(-1,-3), 因此所求直线方程为 y+3=-34(x+1), 即 3x+4y+15=0。 (3)由题意可知,所求直线的斜率为±1。 又过点(3,4),由点斜式得 y-4=±(x-3)。 所求直线的方程为 x-y+1=0 或 x+y-7=0。
答案
1 (2)2
与直线方程有关的最值问题的解题思路 1.借助直线方程,用 y 表示 x 或用 x 表示 y。 2.将问题转化成关于 x(或 y)的函数。 3.利用函数的单调性或基本不等式求最值。
【变式训练】 (1)当 k>0 时,两直线 kx-y=0,2x+ky-2=0 与 x 轴围 成的三角形面积的最大值为________。
解 (1)设所求直线的斜率为 k,依题意 k=-4×13=-43。又直线经过点 A(1,3),因此所求直线方程为 y-3=-43(x-1),即 4x+3y-13=0。
(2)当直线不过原点时,设所求直线方程为2xa+ay=1,将(-5,2)代入所设方 程,解得 a=-12,所以直线方程为 x+2y+1=0;当直线过原点时,设直线方 程为 y=kx,则-5k=2,解得 k=-25,所以直线方程为 y=-25x,即 2x+5y= 0。故所求直线方程为 2x+5y=0 或 x+2y+1=0。
解析 (1)由题意知 cosθ≠0,则斜率 k=tanα=scions2θθ--01=-cosθ∈ [-1,0)∪(0,1],那么直线 AB 的倾斜角的取值范围是0,π4∪34π,π。
答案 (1)0,4π∪34π,π
(2)已知两点 M(2,-3),N(-3,-2),斜率为 k 的直线 l 过点 P(1,1)且 与线段 MN 相交,则 k 的取值范围是________。

直线的倾斜角、斜率与直线的方程

直线的倾斜角、斜率与直线的方程

直线的倾斜角、斜率与直线的方程一、基础知识1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(3)范围:直线l 倾斜角的取值范围是[0,π).2.斜率公式(1)定义式:直线l 的倾斜角为α)2(πα≠,则斜率k =tan α.(2)坐标式:P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.直线方程的五种形式名称方程适用范围点斜式y -y 0=k (x -x 0)不含垂直于x 轴的直线斜截式y =kx +b 不含垂直于x 轴的直线两点式y -y 1y 2-y 1=x -x 1x 2-x 1不含直线x =x 1(x 1≠x 2)和直线y =y 1(y 1≠y 2)截距式x a +y b=1不含垂直于坐标轴和过原点的直线一般式Ax +By +C =0,A 2+B 2≠0平面内所有直线都适用二、常用结论特殊直线的方程(1)直线过点P 1(x 1,y 1),垂直于x 轴的方程为x =x 1;(2)直线过点P 1(x 1,y 1),垂直于y 轴的方程为y =y 1;(3)y 轴的方程为x =0;(4)x 轴的方程为y =0.考点一直线的倾斜角与斜率[典例](1)直线2x cos α-y -3=0])3,6[(ππα∈的倾斜角的取值范围是()A.3,6[ππ B.3,4[ππ C.]2,4[ππ D.]32,4[ππ(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.[解析](1)直线2x cos α-y -3=0的斜率k =2cos α,因为α∈]3,6[ππ,所以12≤cos α≤32,因此k =2·cos α∈[1,3].设直线的倾斜角为θ,则有tan θ∈[1,3].又θ∈[0,π),所以θ∈]3,4[ππ,即倾斜角的取值范围是3,4[ππ.(2)设PA 与PB 的倾斜角分别为α,β,直线PA 的斜率是k AP =1,直线PB 的斜率是k BP =-3,当直线l 由PA 变化到与y 轴平行的位置PC 时,它的倾斜角由α增至90°,斜率的取值范围为[1,+∞).当直线l 由PC 变化到PB 的位置时,它的倾斜角由90°增至β,斜率的变化范围是(-∞,-3].故直线l 斜率的取值范围是(-∞,-3]∪[1,+∞).[答案](1)B(2)(-∞,-3]∪[1,+∞)[变透练清]1.(变条件)若将本例(1)中的条件变为:平面上有相异两点A (cos θ,sin 2θ),B (0,1),则直线AB 的倾斜角α的取值范围是________.解析:由题意知cos θ≠0,则斜率k =tan α=sin 2θ-1cos θ-0=-cos θ∈[-1,0)∪(0,1],所以直线AB 的倾斜角的取值范围是]4,0(π∪),43[ππ.答案:4,0(π∪),43[ππ.2.(变条件)若将本例(2)中P (1,0)改为P (-1,0),其他条件不变,则直线l 斜率的取值范围为________.解析:设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),即kx -y +k =0.∵A ,B 两点在直线l 的两侧或其中一点在直线l 上,∴(2k -1+k )(-3+k )≤0,即(3k -1)(k -3)≤0,解得13≤k ≤ 3.即直线l 的斜率的取值范围是]3,31[.答案:]3,31[3.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为________.解析:因为k AC =5-36-4=1,k AB =a -35-4=a -3.由于A ,B ,C 三点共线,所以a -3=1,即a =4.答案:4考点二直线的方程[典例](1)若直线经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距的2倍,则该直线的方程为_____.(2)若直线经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半,则该直线的方程为_______.(3)在△ABC 中,已知A (5,-2),B (7,3),且AC 的中点M 在y 轴上,BC 的中点N 在x 轴上,则直线MN 的方程为_______.[解析](1)①当横截距、纵截距均为零时,设所求的直线方程为y =kx ,将(-5,2)代入y =kx 中,得k =-25,此时,直线方程为y =-25x ,即2x +5y =0.②当横截距、纵截距都不为零时,设所求直线方程为x 2a +ya=1,将(-5,2)代入所设方程,解得a =-12,此时,直线方程为x +2y +1=0.综上所述,所求直线方程为x +2y +1=0或2x +5y =0.(2)由3x +y +1=0得此直线的斜率为-3,所以倾斜角为120°,从而所求直线的倾斜角为60°,故所求直线的斜率为 3.又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3),即3x -y +6=0.(3)设C (x 0,y 0),则M )22,25(00-+y x ,N )23,27(00++y x .因为点M 在y 轴上,所以5+x 02=0,所以x 0=-5.因为点N 在x 轴上,所以y 0+32=0,所以y 0=-3,即C (-5,-3),所以M 25,0(-,N (1,0),所以直线MN 的方程为x1+y -52=1,即5x -2y -5=0.[答案](1)x +2y +1=0或2x +5y =0(2)3x -y +6=0(3)5x -2y -5=0[题组训练]1.过点(1,2),倾斜角的正弦值是22的直线方程是________________.解析:由题知,倾斜角为π4或3π4,所以斜率为1或-1,直线方程为y -2=x -1或y -2=-(x -1),即x -y+1=0或x +y -3=0.答案:x -y +1=0或x +y -3=02.过点P (6,-2),且在x 轴上的截距比在y 轴上的截距大1的直线方程为________________.解析:设直线方程的截距式为x a +1+y a =1,则6a +1+-2a =1,解得a =2或a =1,则直线的方程是x 2+1+y2=1或x 1+1+y1=1,即2x +3y -6=0或x +2y -2=0.答案:2x +3y -6=0或x +2y -2=0考点三直线方程的综合应用[典例]已知直线l 过点M (2,1),且与x 轴、y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点,求当|MA ―→|·|MB ―→|取得最小值时直线l 的方程.[解]设A (a,0),B (0,b ),则a >0,b >0,直线l 的方程为x a +y b =1,所以2a +1b=1.|MA ―→|·|MB ―→|=-MA ―→·MB ―→=-(a -2,-1)·(-2,b -1)=2(a -2)+b -1=2a +b -5=(2a +b ))12(ba +-5=2b a +2ab ≥4,当且仅当a =b =3时取等号,此时直线l 的方程为x +y -3=0.[解题技法]与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题.先设出直线方程,建立目标函数,再利用基本不等式求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程.(3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的性质或基本不等式求解.[题组训练]1.若直线ax +by =ab (a >0,b >0)过点(1,1),则该直线在x 轴,y 轴上的截距之和的最小值为()A .1B .2C .4D .8解析:选C∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b ))12(ba +=2+b a +ab ≥2+2b a ·ab=4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.2.已知直线l :x -my +3m =0上存在点M 满足与A (-1,0),B (1,0)两点连线的斜率k MA 与k MB 之积为3,则实数m 的取值范围是()A .[-6,6] B.)66,(--∞∪),66[+∞C.]66,(--∞∪),66[+∞ D.]22,22[-解析:选C设M (x ,y ),由k MA ·k MB =3,得y x +1·y x -1=3,即y 2=3x 2-3.-my +3m =0,2=3x 2-3,得)31(2-mx 2+23m x +6=0(m ≠0),则Δ=2)32(m -24)31(2-m≥0,即m 2≥16,解得m ≤-66或m ≥66.∴实数m 的取值范围是66,(--∞∪),66[+∞.[课时跟踪检测]1.(2019·合肥模拟)直线l :x sin 30°+y cos 150°+1=0的斜率是()A.33B.3C .-3D .-33解析:选A设直线l 的斜率为k ,则k =-sin 30°cos 150°=33.2.倾斜角为120°,在x 轴上的截距为-1的直线方程是()A.3x -y +1=0B.3x -y -3=0C.3x +y -3=0D.3x +y +3=0解析:选D由于倾斜角为120°,故斜率k =- 3.又直线过点(-1,0),所以直线方程为y =-3(x +1),即3x +y +3=0.3.已知△ABC 的三个顶点坐标为A (1,2),B (3,6),C (5,2),M 为AB 的中点,N 为AC 的中点,则中位线MN 所在直线的方程为()A .2x +y -12=0B .2x -y -12=0C .2x +y -8=0D .2x -y +8=0解析:选C由题知M (2,4),N (3,2),则中位线MN 所在直线的方程为y -42-4=x -23-2,整理得2x +y -8=0.4.方程y =ax -1a表示的直线可能是()解析:选C当a >0时,直线的斜率k =a >0,在y 轴上的截距b =-1a<0,各选项都不符合此条件;当a <0时,直线的斜率k =a <0,在y 轴上的截距b =-1a >0,只有选项C 符合此条件.故选C.5.在等腰三角形MON 中,MO =MN ,点O (0,0),M (-1,3),点N 在x 轴的负半轴上,则直线MN 的方程为()A .3x -y -6=0B .3x +y +6=0C .3x -y +6=0D .3x +y -6=0解析:选C 因为MO =MN ,所以直线MN 的斜率与直线MO 的斜率互为相反数,所以k MN =-k MO =3,所以直线MN 的方程为y -3=3(x +1),即3x -y +6=0,选C.6.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则()A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D对于直线mx +ny +3=0,令x =0得y =-3n ,即-3n=-3,n =1.因为3x -y =33的斜率为60°,直线mx +ny +3=0的倾斜角是直线3x -y =33的2倍,所以直线mx +ny +3=0的倾斜角为120°,即-mn=-3,m = 3.7.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在()A .第一象限B .第二象限C .第三象限D .第四象限解析:选B-y =k -1,-x =2k=k k -1,=2k -1k -1.又∵0<k <12,∴x =k k -1<0,y =2k -1k -1>0,故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.8.若直线l :kx -y +2+4k =0(k ∈R)交x 轴负半轴于A ,交y 轴正半轴于B ,则当△AOB 的面积取最小值时直线l 的方程为()A .x -2y +4=0B .x -2y +8=0C .2x -y +4=0D .2x -y +8=0解析:选B由l 的方程,得A )0,42(k k +-,B (0,2+4k )-2+4kk <0,+4k >0,解得k >0.因为S =12|OA |·|OB |=12|2+4kk |·|2+4k |=12·(2+4k )2k =12)16416(++kk ≥12(2×8+16)=16,当且仅当16k =4k ,即k =12时等号成立.此时l 的方程为x -2y +8=0.9.以A (1,1),B (3,2),C (5,4)为顶点的△ABC ,其边AB 上的高所在的直线方程是________________.解析:由A ,B 两点得k AB =12,则边AB 上的高所在直线的斜率为-2,故所求直线方程是y -4=-2(x -5),即2x +y -14=0.答案:2x +y -14=010.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为____________.解析:由题意可设直线l 0,l 的倾斜角分别为α,2α,因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0.答案:4x -3y -4=011.直线l 经过点A (1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是______________.解析:由题意知直线l 的斜率存在,设直线l 的方程为y -2=k (x -1),直线l 在x 轴上的截距为1-2k ,令-3<1-2k <3,解不等式得k >12或k <-1.答案:(-∞,-1)∪),21(+∞12.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].答案:[-2,2]13.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4))34(+k=±6,解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程为y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.。

专题04 直线的倾斜角与斜率、直线方程问题(知识梳理+专题过关)(原卷版)

专题04 直线的倾斜角与斜率、直线方程问题(知识梳理+专题过关)(原卷版)

专题04直线的倾斜角与斜率、直线方程问题【知识梳理】1、倾斜角和斜率(1)直线的倾斜角的概念:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时,规定0a =°.(2)倾斜角α的取值范围: 0180a 埃<.当直线l 与x 轴垂直时, 90a =°.(3)直线的斜率:一条直线的倾斜角9(0)a a 拱的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是k tan a=①当直线l 与x 轴平行或重合时,0a =°,00k tan =°=;②当直线l 与x 轴垂直时, 90a =°,k 不存在.由此可知,一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在.(4)直线的斜率公式:给定两点()()11122212,,,,P x y P x y x x ¹,用两点的坐标来表示直线12P P 的斜率:21122112=y y y y k x x x x --=--2、两条直线的平行与垂直(1)两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即1212//l l k k Û=注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果12k k =,那么一定有12//l l (2)两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即1212=1l l k k Û×^-3、直线方程的不同形式间的关系直线方程的五种形式的比较如下表:名称方程的形式常数的几何意义适用范围点斜式()11y y k x x -=-11(,)x y 是直线上一定点,k 是斜率不垂直于x 轴斜截式y kx b =+k 是斜率,b 是直线在y 轴上的截距不垂直于x 轴两点式112121y y x x y y x x --=--11(,)x y ,22(,)x y 是直线上两定点不垂直于x 轴和y 轴截距式1x y a b+=a 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不垂直于x 轴和y 轴,且不过原点考点2:直线与线段的相交问题考点3:两直线平行问题考点4:两直线垂直问题考点5:五种直线方程考点6:直线与坐标轴围成三角形问题考点7:直线过定点问题【典型例题】考点1:倾斜角与斜率1.(2021·福建宁德·高二期中)已知点()20A ,,(3B ,则直线AB 的倾斜角为()A .30︒B .60︒C .120︒D .150︒2.(2020·北京十五中高二期中)如图,直线1234,,,l l l l 的斜率分别为1234,,,k k k k ,则()A .4321k k k k <<<B .3421k k k k <<<C .4312k k k k <<<D .3412k k k k <<<3.(2022·全国·高二期中)已知直线斜率为k ,且1k -≤≤α的取值范围是().A .ππ3π0,,324⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭B .π3π0,,π34⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭C .ππ3π0,,624⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭D .π3π0,,π64⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭4.(2021·湖北宜昌·高二期中)若倾斜角为3π的直线过(A ,()2,B a 两点,则实数=a ()AB C .D .5.(2021·广东·兴宁市叶塘中学高二期中)若(2,3)A -,(3,2)B -,1(,)2C m 三点共线,则m =()A .12B .12-C .2-D .26.(多选题)(2021·湖南·怀化五中高二期中)在下列四个命题中,错误的有()A .坐标平面内的任何一条直线均有倾斜角和斜率B .直线的倾斜角的取值范围是[0,π]C .若一条直线的斜率为1,则此直线的倾斜角为45度D .若一条直线的倾斜角为α,则此直线的斜率为tanα7.(多选题)(2021·江苏南通·高二期中)若经过()1,1A a a -+和()3,B a 的直线的倾斜角为钝角,则实数a 的值不可能为()A .2-B .0C .1D .28.(2022·上海·华东师范大学附属东昌中学高二期中)已知直线l 0y -=,则直线l 的倾斜角为_________.9.(2022·上海市大同中学高二期中)已知直线l 经过原点,且与直线y =x +1的夹角为45°,则直线l 的方程为______.10.(2022·上海市控江中学高二期中)设a ∈R ,若直线l 经过点(,2)A a 、(1,3)B a +,则直线l 的斜率是___________.11.(2021·新疆·八一中学高二期中)已知点A (2,-1),B (3,m ),若1m ⎡⎤∈-⎢⎥⎣⎦,则直线AB 的倾斜角的取值范围为__________.考点2:直线与线段的相交问题12.(2021·福建三明·高二期中)已知A (3,-1),B (1,2),P (x ,y )是线段AB 上的动点,则yx的取值范围是_______.13.(2021·广东·汕头市潮南区陈店实验学校高二期中)已知两点()1,2A -,()2,1B ,直线l 过点()0,1P -且与线段AB 有交点,则直线l 的倾斜角的取值范围为()A .π3π,44⎡⎤⎢⎥⎣⎦B .ππ30,,42π4⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦C .π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭D .πππ3,,422π4⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦14.(2021·广东·华中师范大学海丰附属学校高二期中)设点()2,3A -,()3,2B ,若直线ax +y +2=0与线段AB 有交点,则a 的取值范围是()A .54,,23⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭B .45,32⎛⎫- ⎪⎝⎭C .54,23⎡⎤-⎢⎥⎣⎦D .45,,32⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭15.(2021·山东济宁·高二期中)设点()4,3A -,()2,2B --,直线l 过点()1,1P 且与线段AB 相交,则l 的斜率k 的取值范围是()A .1k ³或4k ≤-B .1k ³或43k ≤-C .41k -≤≤D .413k -≤≤-16.(2021·天津市嘉诚中学高二期中)已知两点(2,3)M -,(3,2)N --,直线l 过点(1,1)P 且与线段MN 相交,则直线l 的斜率k 的取值范围是()A .34k ≥或4k ≤-B .344k -≤≤C .344k ≤≤D .344k -≤≤17.(2021·广西·防城港市防城中学高二期中)经过点()0,1P -作直线l ,若直线l 与连接()1,2A -,()2,1B 的线段总有公共点,则直线l 的斜率k 的取值范围为()A .[]1,1-B .(][),11,-∞-⋃+∞C .[)1,1-D .()[),11,∞∞--⋃+18.(2021·北京·景山学校高二期中)已知直线l :20ax y --=和点(2,1)P ,(3,2)Q -,若l 与线段PQ 相交,则实数a 的取值范围是()A .3243a -≤≤B .34a ≤-或23a ≥C .4332a -≤≤D .43a ≤-或32a ≥19.(2021·陕西安康·高二期中(理))已知点2)A ,(4,3)B -,直线l 过点(0,1)P 且与线段AB 相交,则直线l 的倾斜角的取值范围是()A .π3π0,,π64⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭B .π3π,64⎡⎤⎢⎥⎣⎦C .π5π0,,π36⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭D .π5π,36⎡⎤⎢⎣⎦20.(2021·广东·广州六中高二期中)已知点(1,1)A -,(3,1)B ,直线l 过点(1,3)C ,且,A B 两点在直线l 的同侧,则直线l 斜率的取值范围是()A .(1,1)-B .(,1)(1,)-∞-+∞C .(,1)(0,1)-∞-D .(1,0)(1,)-È+¥考点3:两直线平行问题21.(2022·四川·泸县五中高二期中(文))已知直线1:210l x my ++=与2:310l x y --=平行,则 m 的值为__________.22.(2020·四川巴中·高二期中(文))若直线1:10l x ay +-=与直线()2:2330l a x y -++=平行,则实数a 的值为______.23.(2022·上海市宝山中学高二期中)“直线1l 与2l 平行”是“直线1l 与2l 的斜率相等”的()条件A .充分非必要B .必要非充分C .充要D .既非充分又非必要24.(2021·浙江台州·高二期中)直线()1:110l a x y -++=,()2:4210l x a y ++-=,则“2a =”是“12l l //”的()条件A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件25.(2021·河北·石家庄市第二十二中学高二期中)下列说法正确的是()A .平行的两条直线的斜率一定存在且相等B .平行的两条直线的倾斜角一定相等C .垂直的两条直线的斜率之积为1-D .只有斜率相等的两条直线才一定平行26.(2021·福建·浦城县教师进修学校高二期中)已知A (-1,2),B (1,3),C (0,-2),点D 使AD ⊥BC ,AB ∥CD ,则点D 的坐标为()A .94(,)77-B .5413(,)77C .3813(,)33D .385(,)77考点4:两直线垂直问题27.(2021·吉林油田高级中学高二期中)下列方程所表示的直线中,一定相互垂直的一对是()A .210ax y +-=与220x ay ++=B .6430x y --=与10150x y c ++=C .2370x y +-=与4650x y -+=D .340x y b -+=与340x y +=28.(2021·贵州·黔西南州金成实验学校高二期中(理))已知直线1l :10mx y -+=,2l :()210mx m y ++-=,若12l l ⊥,则m =_________.29.(2022·上海市行知中学高二期中)若直线1:210l ax y -+=与2:(1)10l x a y +++=互相垂直,则=a ______.30.(2022·全国·高二期中)已知直线1:20l ax y +=,直线()2:10l a x y --=,若12l l ⊥,则实数a 的值为______.31.(2021·广东·珠海市第二中学高二期中)已知直线150l y --=,若直线21l l ⊥,则直线2l 的倾斜角大小为_____________.32.(多选题)(2021·河北·石家庄市第六中学高二期中)已知直线1l 的倾斜角为30°,2l 经过点M ,(2,0)N ,则1l 与2l 的位置关系为()A .平行B .垂直C .相交D .不确定考点5:五种直线方程33.(2018·江西·南昌市第八中学高二期中(理))直线l 过点()1,2-,且在两坐标轴上截距相等,则直线l 的一般式方程为___________.34.(2021·广东·新会陈经纶中学高二期中)过点(1,2)P 且与直线20x y --=平行的直线方程为___________________.35.(2021·浙江省杭州学军中学高二期中)经过点(3,2)A -,且在x 轴上的截距等于y 轴上截距的2倍的直线方程为___________.36.(2021·湖南·怀化五中高二期中)求符合下列条件的直线l 的方程:(1)过点A (﹣1,﹣3),且斜率为14-;(2)A (1,3),B (2,1))求直线AB 的方程;(3)经过点P (3,2)且在两坐标轴上的截距相等.37.(2021·福建·福州三中高二期中)已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在的直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0(1)求直线AC 的方程,(2)求直线BC 的方程38.(2021·河北·唐山市第十一中学高二期中)求满足下列条件的直线方程:(1)过点()4,2P -,倾斜角为45°;(2)过两点()()1,3,2,5A B .39.(2021·北京·北师大二附中未来科技城学校高二期中)经过点()1,2,且倾斜角为45°的直线方程是()A .3y x =-B .21y x -=-C .(3)y x =--D .(3)y x =-+40.(2022·全国·高二期中)已知直线l 过()2,1A -,并与两坐标轴截得等腰三角形,那么直线l 的方程是().A .10x y --=或30x y +-=B .10x y --=或30x y -+=C .10x y ++=或30x y -+=D .10x y ++=或30x y +-=41.(2022·江苏南通·高二期中)已知直线l 经过点()2,3-,且与直线250x y --=垂直,则直线l 的方程为()A .240x y ++=B .240x y +-=C .280x y --=D .280x y -+=42.(2021·江苏苏州·高二期中)已知三角形的顶点()4,1A ,()6,3B -,()3,0C .(1)求AC 边上的高BH 所在的直线方程;(2)求AB 边上的中线CD 所在的直线方程.考点6:直线与坐标轴围成三角形问题43.(2020·上海·格致中学高二期中)过点()3,1的直线分别与x 轴、y 轴的正半轴交于A 、B 两点,则AOB (O 为坐标原点)面积取得最小值时直线方程为____________.44.(2021·江苏扬州·高二期中)已知直线l 的斜率为16,且和坐标轴围成的三角形的面积为3,则直线l 的方程为___________.45.(2021·湖北荆州·高二期中)(1)求过点()4,3-且在两坐标轴上截距相等的直线l 的方程;(2)设直线l 的方程为()()120a x y a a ++--=∈R ,若1a >-,直线l 与x ,y 轴分别交于M ,N 两点,O 为坐标原点,求OMN 面积取最小值时,直线l 的方程.46.(2021·福建福州·高二期中)已知直线l 过点()3,2M .(1)若直线l 在两坐标轴上的截距相等,求直线l 的方程;(2)若l 与x 轴正半轴的交点为A ,与y 轴正半轴的交点为B ,求AOB (O 为坐标原点)面积的最小值.47.(2021·河北省盐山中学高二期中)已知直线l 过点()1,2P -.(1)若直线l 在两坐标轴上截距和为零,求l 方程;(2)设直线l 的斜率0k >,直线l 与两坐标轴交点别为AB 、,求AOB 面积最小值.48.(2020·安徽·合肥市庐阳高级中学高二期中(文))直线l 经过点()1,2A ,(1)直线l 与两个坐标轴围成的三角形的面积是4的直线方程.(2)直线l 与两个坐标轴的正半轴围成的三角形面积最小时的直线方程.考点7:直线过定点问题49.(2021·广东·揭阳华侨高中高二期中)直线10mx y m +--=恒过定点__________.50.(2021·四川·泸州老窖天府中学高二期中(理))直线(1)y k x =-过定点_________________.51.(2021·福建泉州·高二期中)已知点()10P -,在直线l ()20ax y a a R +-+=∈:上的射影为M ,点N (0,3),则线段MN 长度的最小值为______________52.(2021·湖南·益阳平高学校高二期中)设m R ∈,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(),P x y ,则PA PB +的最大值()A .B .C .3D .653.(2021·四川·遂宁中学高二期中(理))过定点M 的直线20ax y +-=与过定点N 的直线420x ay a -+-=交于点P ,则·PM PN 的最大值为()A .1B .3C .4D .2。

2025版高考数学一轮总复习知识梳理第8章第1讲直线的倾斜角斜率与直线的方程(含答案)

2025版高考数学一轮总复习知识梳理第8章第1讲直线的倾斜角斜率与直线的方程(含答案)

高考数学一轮总复习知识梳理:第一讲直线的倾斜角、斜率与直线的方程知识梳理知识点一直线的倾斜角1.定义:当直线l与x轴相交时,我们取x轴作为基准,把x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°.2.倾斜角的取值范围为 [0°,180°).知识点二直线的斜率1.定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即k= tan α,倾斜角是90°的直线斜率不存在.2.过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(其中x1≠x2)的直线的斜率公式为k=y2-y1x2-x1.3.直线的方向向量与斜率的关系1.直线的倾斜角α和斜率k之间的对应关系:α 0° 0°<α<90° 90° 90°<α<180°kk >0且α越大,k 就越大 不存在k <0且α越大,k 就越大口诀:斜率变化分两段,直角便是分界线; 小正大负皆递增,分类讨论记心中. 2.特殊直线的方程(1)过点P 1(x 1,y 1)垂直于x 轴的直线方程为x =x 1; (2)过点P 1(x 1,y 1)垂直于y 轴的直线方程为y =y 1; (3)过原点的直线的方程为x =my . 3.谨记以下几点(1)“截距”是直线与坐标轴交点的坐标值,它可正,可负,也可以是零,而“距离”是一个非负数.求与截距有关的直线方程时应注意过原点的特殊情况是否满足题意.(2)当直线与x 轴不垂直时,可设直线的方程为y =kx +b ;当不确定直线的斜率是否存在时,可设直线的方程为x =my +b .(3)A ,B ,C 三点共线⇔k AB =k AC (或k AB =k BC ,或k AC =k BC ). (4)直线Ax +By +C =0(A 2+B 2≠0)的一个方向向量a =(-B ,A ).双 基 自 测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)坐标平面内的任何一条直线均有倾斜角与斜率.( × ) (2)直线的倾斜角越大,其斜率就越大.( × ) (3)斜率相等的两直线的倾斜角一定相等.( √ )(4)经过定点A (0,b )的直线都可以用方程y =kx +b 表示.( × ) (5)不经过原点的直线都可以用x a +y b=1表示.( × )(6)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ )题组二 走进教材2.(选择性必修1P 58T7)经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y=( B )A .-1B .-3C .0D .2[解析] 由2y +1--34-2=2y +42=y +2,得y +2=tan 3π4=-1,∴y =-3.3.(选择性必修1P 67T7)过点P (2,3)且在两坐标轴上截距相等的直线方程为 3x -2y =0或x +y -5=0 .[解析] 当截距为0时,直线方程为3x -2y =0; 当截距不为0时,设直线方程为x a +y a=1,则2a +3a=1,解得a =5.所以直线方程为x +y -5=0.题组三 走向高考4.(2022·北京高考真题)若直线2x +y -1=0是圆(x -a )2+y 2=1的一条对称轴,则a =( A )A.12 B .-12C .1D .-1[解析] 由题意知圆心坐标为(a,0),又直线2x +y -1=0是圆(x -a )2+y 2=1的一条对称轴,所以圆心在直线上,即2a +0-1=0,解得a =12.故选A.5. (2021·山东高考真题)如右图,直线l 的方程是( D )A.3x -y -3=0B.3x -2y -3=0C.3x -3y -1=0 D .x -3y -1=0[解析] 由图可得直线的倾斜角为30°,所以斜率k =tan 30°=33,又直线l 与x 轴的交点为(1,0),所以直线的点斜式方程可得l :y -0=33(x -1),即x -3y -1=0.故选D.。

名师伴你行级数学一轮复习第九章直线的倾斜角与斜率直线的方程

名师伴你行级数学一轮复习第九章直线的倾斜角与斜率直线的方程

B.kcosα>0 D.kcosα≤0
解析:显然 k<0,2π<α<π,∴cosα<0,∴kcosα>0. 答案:B
3.已知 m≠0,则过点(1,-1)的直线 ax+3my+2a=0
的斜率为( )
1 A.3
B.-13
C.3
D.-3
解析:由于点(1,-1)在直线上,所以 a-3m+2a=0, ∴m=a,∴直线斜率为-13.
变式训练 1 已知直线 l 过点 P(-1,2),且与以 A(-2, -3),B(3,0)为端点的线段相交,求直线 l 的斜率的取值范围.
解析:如图所示,直线 PA 的斜率
kPA=-2- 1---32=5, 直线 PB 的斜率
kPB=3-0--21=-12. 当直线 l 绕着点 P 由 PA 旋转到与 y 轴平行的位置 PC 时, 它的斜率变化范围是[5,+∞); 当直线 l 绕着点 P 由 PC 旋转到 PB 的位置时,它的斜率 的变化范围是-∞,-12. ∴直线 l 的斜率的取值范围是-∞,-12∪[5,+∞).
(2)当直线不过原点时,设所求直线方程为2xa+ay=1,将 (-5,2)代入所设方程,解得 a=-12,
此时,直线方程为 x+2y+1=0. 当直线过原点时,斜率 k=-25,直线方程为 y=-25x, 即 2x+5y=0, 综上可知,所求直线方程为 x+2y+1=0 或 2x+5y=0.
考点三 直线方程的应用
角为□3 ____.
②倾斜角的范围为□4 __________________.
(2)直线的斜率:
①定义:一条直线的倾斜角 α 的□5 __________叫做这条 直线的斜率,斜率常用小写字母 k 表示,即 k=□6 ________,
倾斜角是 90°的直线斜率不存在.

一轮复习:直线的倾斜角、斜率与直线的方程

一轮复习:直线的倾斜角、斜率与直线的方程

授课主题直线的倾斜角、斜率与直线的方程教学目标1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系. 4.掌握两点间的距离公式.教学内容1. 平面直角坐标系中的基本公式(1)两点间的距离公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),则d (A ,B )=x 2-x 12+y 2-y 12.(2)中点公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x =x 1+x 22,y =y 1+y 22.2. 直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x 轴平行或重合的直线的倾斜角为零度角.(2)倾斜角的范围:[0°,180°). 3. 直线的斜率(1)定义:直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线斜率不存在;(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1 (x 1≠x 2).若直线的倾斜角为θ (θ≠π2),则k =tan_θ.4. 直线方程的形式及适用条件名称 几何条件 方程 局限性 点斜式过点(x 0,y 0),斜率为ky -y 0=k (x -x 0)不含垂直于x 轴的直线斜截式斜率为k ,纵截距为by =kx +b不含垂直于x 轴的直线两点式过两点(x 1,y 1),(x 2,y 2),(x 1≠x 2,y 1≠y 2) y -y 1y 2-y 1=x -x 1x 2-x 1 (x 2≠x 1,y 2≠y 1) 不包括垂直于坐标轴的直线 截距式在x 轴、y 轴上的截距分别为a ,b (a ,b ≠0)x a +y b =1 不包括垂直于坐标轴和过原点的直线 一般式Ax +By +C =0平面直角坐标系内的直线都适用题型一 直线的倾斜角与斜率例1、直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.方法点拨:数形结合,由斜率公式求得k P A ,k PB . 答案 (-∞,-3]∪[1,+∞) 解析 如图,∵k AP =1-02-1=1, k BP =3-00-1=-3,∴k ∈(-∞,-3]∪[1,+∞). 方法技巧求直线倾斜角与斜率问题的求解策略1.求直线倾斜角或斜率的取值范围时,常借助正切函数y =tan x 在[0,π)上的单调性求解,这里特别要注意,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0). 2.先画出满足条件的图形,找到直线所过的点,然后求定点与端点决定的直线的斜率.见典例.【冲关针对训练】已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.答案 -23≤m ≤12解析 如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k P A =-2,k l =-1m ,∴-1m ≤-2或-1m ≥32,解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为-23≤m ≤12.题型二 直线方程的求法又∵2a +1b ≥22ab ⇒12ab ≥4,当且仅当2a =1b =12,即a =4,b =2时,△AOB 面积S =12ab 有最小值为4. 此时,直线l 的方程是x 4+y2=1,即x +2y -4=0.(2)设所求直线l 的方程为y -1=k (x -2). 则可得A ⎝⎛⎭⎫2k -1k ,0,B (0,1-2k )(k <0),∴截距之和为2k -1k +1-2k =3-2k -1k ≥3+2(-2k )·⎝⎛⎭⎫-1k =3+2 2. 此时-2k =-1k ⇒k =-22.故截距之和最小值为3+22,此时l 的方程为y -1=-22(x -2),即x +2y -2-2=0. 方法技巧与直线方程有关问题的常见类型及解题策略1.求解与直线方程有关的最值问题,先设出直线方程,建立目标函数,再利用基本不等式求解最值或用函数的单调性解决.2.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解. 【冲关针对训练】已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解 (1)设A (a,0),B (0,b )(a >0,b >0). 设直线l 的方程为x a +y b =1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4, 当且仅当“a =b =2”时取等号,此时直线l 的方程为x +y -2=0. (2)设直线l 的斜率为k ,则k <0, 直线l 的方程为y -1=k (x -1), 则A ⎝⎛⎭⎫1-1k ,0,B (0,1-k ), 所以|MA |2+|MB |2=⎝⎛⎭⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k2≥2+2k 2·1k2=4. 当且仅当k 2=1k2,即k =-1时取等号,此时直线l 的方程为y -1=-(x -1),即x +y -2=0.1.(2017·大庆模拟)两直线x m -y n =a 与x n -ym=a (其中a 是不为零的常数)的图象可能是( )答案 B解析 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同号.故选B.2.(2017·豫南九校联考)若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( ) A .-12B .-12或-2C.12或2 D .-2答案 D解析 ∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+sin2θ=15,∴2sin θcos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0, ∴sin θ-cos θ=355,②由①②解得⎩⎨⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2,故选D.3.(2018·江西南昌模拟)已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( )A .150°B .135°C .120°D .105°答案 A解析 由y =2-x 2得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,2为半径的圆的一部分,如图所示. 由题意知直线l 的斜率存在,设过点P (2,0)的直线l 的方程为y =k (x -2),则圆心到此直线的距离d =|2k |1+k 2,弦长|AB |=22-⎝ ⎛⎭⎪⎫|2k |1+k 22=22-2k 21+k 2,所以S △AOB=12×|2k |1+k 2×22-2k 21+k 2≤(2k )2+2-2k 22(1+k 2)=1,当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,结合图可知k =-33⎝⎛⎭⎫k =33舍去,故所求直线l 的倾斜角为150°.故选A.4.(2014·四川高考)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.答案 5解析 易知A (0,0),B (1,3),且P A ⊥PB ,∴|P A |2+|PB |2=|AB |2=10,∴|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |=5时取“=”).一、选择题1.(2018·朝阳模拟)直线x +3y +1=0的倾斜角为( )A.π6 B.π3 C.2π3 D.5π6答案 D解析 直线斜率为-33,即tan α=-33,0≤α<π,∴α=5π6,故选D. 2.(2017·正定质检)直线x cos140°+y sin40°+1=0的倾斜角是( )A .40°B .50°C .130°D .140°答案 B解析 将直线x cos140°+y sin40°+1=0化成x cos40°-y sin40°-1=0,其斜率为k =cos40°sin40°=tan50°,倾斜角为50°.故选B.3.(2018·哈尔滨模拟)函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax -by +c =0的倾斜角为( )A.π4B.π3 C.2π3 D.3π4答案 DA .1B .2C .4D .8答案 C解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·ab=4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.故选C. 9.(2017·烟台期末)直线mx +n2y -1=0在y 轴上的截距是-1,且它的倾斜角是直线3x -y -33=0的倾斜角的2倍,则( )A .m =-3,n =-2B .m =3,n =2C .m =3,n =-2D .m =-3,n =2答案 A解析 根据题意,设直线mx +n2y -1=0为直线l ,另一直线的方程为3x -y -33=0, 变形可得y =3(x -3),其斜率k =3,则其倾斜角为60°,而直线l 的倾斜角是直线3x -y -33=0的倾斜角的2倍,则直线l 的倾斜角为120°,且斜率k =tan120°=-3,又由l 在y 轴上的截距是-1, 则其方程为y =-3x -1;又由其一般式方程为mx +n2y -1=0,分析可得m =-3,n =-2.故选A.10.若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3答案 C解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0. 欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值.而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点和点(m ,n )的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小,最小值为2. 故m 2+n 2的最小值为4.故选C. 二、填空题11.已知P (-3,2),Q (3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q 点),则a 的取值范围是________.答案 ⎝⎛⎭⎫-73,-13解析 直线l :ax +y +3=0是过点A (0,-3)的直线系,斜率为参变数-a ,易知PQ ,QA ,l 的斜率分别为:k PQ=13,k AQ =73,k l =-a .若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a <-13. 12.(2018·石家庄期末)一直线过点A (-3,4),且在两轴上的截距之和为12,则此直线方程是________.答案 x +3y -9=0或y =4x +16解析 设横截距为a ,则纵截距为12-a ,直线方程为x a +y 12-a =1,把A (-3,4)代入,得-3a +412-a =1,解得a =-4,a =9.a =9时,直线方程为x 9+y3=1,整理可得x +3y -9=0.a =-4时,直线方程为x -4+y16=1,整理可得4x -y +16=0.综上所述,此直线方程是x +3y -9=0或4x -y +16=0.13.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为________.答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0.综上知,直线m 的方程为x -2y +2=0或x =2. 14.在下列叙述中:1112 ∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,当k ≠0时,直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧ -1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围为[0,+∞). (3)由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.方法与技巧1. 要正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”.3. 求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法. 失误与防范1. 求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2. 根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3. 利用一般式方程Ax +By +C =0求它的方向向量为(-B ,A )不可记错,但同时注意方向向量是不唯一的.1. 如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D 解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线的倾斜角与斜率及直线方程知识梳理1、直线的倾斜角与斜率: 对于一条与x 轴相交的直线,把x 轴所在直线绕着它与直线的交点按照逆时针方向旋转到和直线重合时,所转过的最小正角叫倾斜角;倾斜角的取值范围是[00,1800)直线的倾斜角α与斜率k 的关系:当α090≠时, k 与α的关系是αtan =k ;α090=时,直线斜率不存在;经过两点P 1(x 1,y 1)P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式是1212x x y y k --=;三点C B A ,,共线的充要条件是AC AB k k = 2.直线方程的五种形式:点斜式方程是()y y k x x -=-00;不能表示的直线为垂直于x 轴的直线 斜截式方程为b kx y +=;不能表示的直线为垂直于x 轴的直线 两点式方程为121121x x x x y y y y --=--;不能表示的直线为垂直于坐标轴的直线截距式方程为1=+bya x ;不能表示的直线为垂直于坐标轴的直线和过原点的直线. 一般式方程为0=++c by ax . 3.几种特殊直线的方程:①过点),(b a P 垂直于x 轴的直线方程为x=a;过),(b a P 垂直于y 轴的直线方程为y=b ②已知直线的纵截距为b ,可设其方程为b kx y +=; ③已知直线的横截距为a ,可设其方程为a my x +=;④过原点的直线且斜率是k 的直线方程为y=kx重难点突破重点: 理解倾斜角与斜率的对应关系,熟练利用五种形式求直线方程 难点:在求直线方程时,条件的转化和设而不求的运用重难点:结合图形,把已知条件转化为确定直线位置的要素,从而顺利求出直线方程 (1)倾斜角与斜率的对应关系涉及这类问题的题型一般有:(1)已知倾斜角(或范围)求斜率(范围)(2)已知斜率(或范围)求倾斜角(或范围),如:问题1:直线023tan=++y x π的倾斜角α是 A.3π B. 6π C. 32π D. 3π-点拨:转化为: 已知),0[,3tantan παπα∈-=,求α ,答案: C问题2: 求直线023cos =++y x θ的倾斜角的取值范围点拨: 要从αtan =k 和正切函数的单调性来理解倾斜角与斜率的对应关系, ①当)2,0[πα∈时,),0[+∞∈k ,k 随α的增大而增大;②当),2(+∞∈πα时,)0,(-∞∈k ,k 随α的增大而增大.本题可先求出斜率的取值范围,再利用倾斜角与斜率的对应关系,求出倾斜角的取值范围.3k θ=-,故:k ≤≤当03k ≤≤α满足:06πα≤≤当0k ≤<时,直线的倾斜角α满足56παπ≤<所以,直线的倾斜角的范围:06πα≤≤和56παπ≤< (2)利用直线方程的几何特征确定直线的位置问题3:已知函数)10(,)(≠>=a a a x f x且,当1)(0><x f x 时,,方程 aax y 1+=表示的直线是点拨:这是直线方程中的参数的几何意义问题,可先确定直线的斜率和截距的范围,再确定直线的位置,由已知可得)1,0(∈a ,从而斜率)1,0(∈k ,截距1>b ,故选C (3)选择恰当的形式求直线方程问题4:过点)2,1(--P 的直线分别交x 轴、y 轴的负半轴于B A ,两点,当||||PB PA ⋅最小时,求直线l 的方程。

点拨:设直线方程要从条件和结论两方面考虑,为更好表示||||PB PA ⋅,本题用点斜式设出方程最简便。

解:设直线l 的方程为)1(2+=+x k y ,2,0-==k y x 得,12,0-==k x y 得,)2,0(),0,12(--∴k B kA , ∴4844144||||2222≥++=+⋅+=⋅k k k k PB PA ,当且仅当221k k =,即k=±1时等号成立,但k<0,故直线l 的方程为:x+y+3=0;(4)设直线方程时要考虑是否会有丢解的情况,如:问题5:求过点)4,3(P ,且在y 轴上的截距是在x 轴上的截距的2倍的直线方程。

点拨: 设直线方程都要考虑是否丢解的问题,本题用截距式设直线方程容易漏掉过原点的直线,应警惕。

解:当直线过原点时,方程为x y 34=;当直线不经过原点时,设方程为12=+aya x ,把)4,3(P 代入得5=a , 102=+∴y x 综上,所求方程为x y 34=或102=+y x 热点考点题型探析直线的倾斜角和斜率题型 :已知倾斜角(或范围)求斜率(或范围)或已知斜率(或范围)求倾斜角(或范围) [例1 ]已知经过),12,(),2,(--m m B m A 的直线的倾斜角为α,且oo13545<<α,试求实数m 的取值范围。

【解题思路】由倾斜角α的范围得出斜率k 的范围,从而求出参数m 的取值范围. 【解析】01113545=-<>∴<<m k k oo或或α ,1232>--∴m m 或01232=-<--m m m 或,解得:00430=<<<m m m 或或 m ∴的取值范围是)43,(-∞【指引】根据正切函数在),0[π上的单调性,要分)90,45(00∈α;090=α)135,90(00∈α三种情况讨论,特别注意090=α时容易遗漏. 题型 :动直线与线段(曲线段、区域)相交[例2 ]已知直线l :y=kx-2和两点P (1,2)、Q (-4,1),若l 与线段PQ 相交,求k 的取值范围;【解题思路】用运动的观点,结合图形得出倾斜角的范围,从而得出斜率取值范围 [解析]由直线方程y=kx-2可知直线过定点(0,-2),∵2(2)410MP k --==-1(2)3(4)04MQ k --==---∴要使直线l 与线段PQ 有交点,则k 的取值范围 是k ≥4和k ≤-3/4【指引】(1)用“运动的观点”是解决这类问题的根本方法,注意“两条直线相交”和“直线与线段相交”的区别(2)在观察动直线在运动过程中,要特别注意倾斜角是否含有090角,若含有,则斜率的范围是),[],(21+∞⋃-∞k k ,若不含有,则斜率的范围是],[21k k (21,k k 分别为线段端点与直线所过定点连线的斜率)1. 下列多组点中,三点共线的是( )A.(1,4),(-1,2),(3,5)B.(-2,-5),(7,6),(-5,3)C.(1,0),(0,-31),(7,2) D.(0,0),(2,4),(-1,3)【解析】C. 由K AB =K BC 可得2.若函数f (x )=log 2(x+1)且a >b >c >0,则aa f )(、bb f )(、cc f )(的大小关系是A 、aa f )(>bb f )(>cc f )( B 、cc f )(>bb f )(>aa f )(C 、b b f )(>a a f )(>c c f )(D 、a a f )(>c c f )(>b b f )(【解析】B把aa f )(、bb f )(、cc f )(分别看作函数f (x )=log 2(x+1)图像上的点))(,()),(,()),(,(b f c b f b a f a 与原点连线的斜率,对照草图可得答案3.已知直线3443x t y t =+⎧⎨=-+⎩(t 为参数),则下列说法错误的是( )A .直线的倾斜角为3arctan4B .直线必经过点11(1,)2-C .直线不经过第二象限D .当t=1时,直线上对应点到点(1,2)的距离为【解析】D. 将直线方程化为02543=--y x ,直线的斜率为43,直线的倾斜角为3arctan 4,将点11(1,2-代入,满足方程,斜率为正,截距为负,直线不经过第二象限4. 若A 为不等式组00x y y x ≤⎧⎪≥⎨⎪-≤⎩2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 [解析] 如图,当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分(四边形OBCD)区域的面积与区域A(ABO ∆)的面积之比为87,而区域A 的面积为2,故所求的面积为745.在平面直角坐标系中,点AB C ,,的坐标分别为(01)(42)(26),,,,,.如果()P x y ,是ABC △围成的区域(含边界)上的点,则1+x y的取值范围是 [解析] :把1+x y 看作区域上的点与点(-1,0)连线的斜率,结合图形可得结果为]2,52[ 6.已知点A (-2,3),B (3,2),P (0,-2),过P 点的直线 与线段AB 有公共点,求直线 的斜率k 的变化范围;[解析] 25-=PA k ,34=PB k ,画出图形,数形结合可得结果∈k 54(,][,)23-∞-⋃+∞求直线方程题型:根据题目条件,选择方程的形式求直线方程[例3 ] 等腰直角三角形ABC 的直角顶点C 和顶点B 都在直线2x +y –6=0上,顶点A 的坐标是(1, –1),求边AB , AC 所在的直线方程.【解题思路】从确定直线AB , AC 的条件入手,直线AC 满足:经过点A 且垂直于直线2x +y –6=0,直线AB 满足:经过点A 且与直线2x +y –6=0成4π角,(或|AB|等于点A 到直线2x +y –6=0的距离的2倍)解法1:由条件知直线AC 垂直于直线2x +y –6=0,设直线AC 的方程为x-2y+c=0, 把A (1, –1)代入得c=-3, 故直线AC 的方程为x-2y-3=0,10||555||=∴==AB AC ,设B(x,y),则⎩⎨⎧=-+=++-∴06210)1()1(22y x y x , 解得)2,2(B 或)2,4(-B ,所以直线AB 的方程为043=--y x 或023=++y x解法2: 直线AC 的斜率为21,由点斜式并化简得,直线AC 的方程为x-2y-3=0 考虑直线AB , AC 的夹角为4π,设直线AB , AC 的方向向量分别为),1(),1,2(k ==则22)1(5|2||,cos |2=++=><k k ,解得3=k 或31-=k ,所以直线AB 的方程为043=--y x 或023=++y x【指引】求直线方程的一般步骤:(1)寻找所求直线的满足的两个条件(2)将条件转化,使转化后的条件更利于列出方程组(3)列方程组求解[例4] 过点P (0,1)作直线l ,使它被两直线l 1:2x+y-8=0和l 2:x-3y+10=0所截得的线段被点P 平分的直线的方程. 【解题思路1】:设出直线l 的点斜式方程,分别与直线l 1,l 2建立方程组,求出交点坐标,再用中点坐标公式求出k,即可求出l 的方程;解析1:由题意可知直线l 的斜率存在,设直线l 的方程为y=kx+1联立1280{,y kx x y =++-=解得交点坐标是782(,)22K A K K +++ 联立13100{,y kx x y =+-+=解得交点坐标是7101(,)3131K B K K ---而点P (0,1)是AB 的中点,∴7723102k k ++-=,解得k=-14,故所求的直线方程为: x+4y-4=0;【解题思路2】:设出l,l 1的交点A 坐标(x 1,y 1),通过中点坐标公式求出l 与l 2的交点B 的坐标,然后分别将A,B 两点的坐标带入直线l 1, l 2的方程,联立方程组进行求解; 解析2:设直线l 与已知l 1, l 2的交点A (x 1,y 1),B (x 2,y 2) ∵P 是AB 的中点∴12120212{,x x y y +=+=即21212{,x xy y=-=-带入l 2的方程的,得(-x 1)-3(2-y 1)+10=0,即x 1-3y 1-4=0联立1111340280{x y x y --=+-=解得A(4,0)故所求的直线方程为:041004y x --=--,即x+4y-4=0.【指引】(1)解法1思路明显,但运算量较大,解法2使用“设而不求” 减少了运算量(2)中点弦问题和两条曲线关于某点对称的问题,都可以考虑运用解法2中的“设而不求” 7.已知点A (3,4)(1)经过点A 且在两坐标轴上截距相等的直线方程为: ; (2)经过点A 且与两坐标轴围成的三角形面积是1的直线方程为 : (3)经过点A 且与两坐标轴围成一个等腰直角三角形的直线方程为: ; (4)经过点A 且在x 轴上的截距是在y 轴上的截距的2倍的直线方程为: ; [解析](1)4x -3y =0或x +y -7=0[当直线经过原点时,方程为4x -3y =0,当直线不经过原点时,设方程为1=+aya x ,代入点A 的坐标得直线方程x +y -7=0](2)2x -y -2=0或8x -9y +12=0;[设直线方程为1=+b y a x ,由143=+ba 和2||=ab 求得b a ,的值](3)x -y +1=0或x +y -7=0;[斜率为1或-1,由点斜式易得](4)x +2y -11=0或4x -3y =0;[当直线经过原点时,方程为4x -3y =0,当直线不经过原点时,设直线方程为1=+b y a x ,由143=+ba 和b a 2=求得b a ,的值] 8.已知直线l 经过点(1,4)P ,分别交x 轴,y 轴正半轴于点A ,B ,其中O 为原点,求 △AOB 的面积最小时,直线l 的方程; [解析] 设直线l 的方程为)1(4-=-x k y ,令k y x -==4,0得,令k x y 41,0-==得,)4,0(),0,41(k B kA --∴,∴8|)16()(8|21|)4)(41(|21||||21≥-+-+=--=⋅=∆k k k k OB OA S AOB ,当且仅当kk 16=,即k=±4时等号成立,但k<0,故直线l 的方程为:084=-+y x对称问题题型:求点关于某直线的对称点或求两点的对称直线方程 [例5 ] [例5 ]已知直线l :2x-3y+1=0,点A (-1,-2),求: (1)点A 关于直线l 的对称点'A 的坐标;(2)直线m:3x-2y-6=0关于直线l 的对称直线'm 方程; (3)直线l 关于点A(-1,-2)对称的直线'l 的方程; 【解题思路】:求对称直线的方程,方法1是转化为点对称问题,二是用相关点转移法解决; [解析](1)设点A 关于l 的对称点是),('y x A ,⎪⎪⎩⎪⎪⎨⎧=+---⋅-=⋅++∴0122321213212y x x y 解得⎪⎪⎩⎪⎪⎨⎧=-=1341333y x )134,1333('-∴A(2)设点)','('y x P 是直线m 上任意一点,)','('y x P 关于直线l 的对称点为),(y x P⎪⎪⎩⎪⎪⎨⎧=++-+⋅-=⋅--∴012'32'2132''y y x x x x y y 解得:⎪⎪⎩⎪⎪⎨⎧+-=-+=136512'134125'y x y y x x )','('y x P 在直线l 上, 0613651221341253=-+---+∴y x y x化简得:0102469=+-y x(3)设点),('b a Q 是直线l 上任意一点,点),('b a Q 关于点A(-1,-2)的对称点为),(y x Q , 则⎪⎪⎩⎪⎪⎨⎧-=+-=+2212y b xa ,解得⎩⎨⎧--=--=yb x a 42因点),('b a Q 在直线l 上,01)4(3)2(2=+-----y x , 化简得:0932=--y x【指引】(1)要抓住两点关于直线对称的特征来列式;(2)点对称是其它对称问题(曲线的对称等)的基础,务必重点掌握; 题型:利用对称知识解决有关问题[例6 ] [2008·深一模] 如图,已知(4,0)A 、(0,4)B ,从点(2,0)P 射出的光线经直线AB 反向后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是A.B .6C.D.【解题思路】:利用对称知识,将折线PMN 的长度转化为折线CNMD 的长度[解析] 设点P 关于直线AB 的对称点为)2,4(D ,关于y 轴的对称点为)0,2(-C ,则光线所经过的路程PMN 的长=≥++=++=CD NC MN DM NP MNPM 【指引】本例是运用数形结合解题的典范,关键是灵活利用平面几何知识与对称的性质实现转化,一般地,在已知直线上求一点到两个定点的距离之和的最小值,需利用对称将两条折线由同侧化为异侧,在已知直线上求一点到两个定点的距离之差的最大值,需利用对称,将两条折线由异侧化为同侧,从而实现转化。

相关文档
最新文档