2017_2018学年高中物理全一册同步备课教学案(打包25套)粤教版选修3_5
2017-2018学年高中物理粤教版选修3-1学案:第一章 第1

[目标定位] 1.知道自然界中有两种电荷及其相互作用的性质.2.知道使物体带电的三种方式.3.掌握电荷守恒定律及元电荷的概念.一、起电方法的实验探究1.带电:物体具有吸引轻小物体的性质,我们称其为带电.2.两种电荷:用丝绸摩擦过的玻璃棒带正电,用毛皮摩擦过的橡胶棒带负电.同种电荷相互排斥,异种电荷相互吸引.3.三种起电方法(1)摩擦起电:两个物体互相摩擦时,一些束缚得不紧的电子往往从一个物体转移到另一个物体,原来呈电中性的物体由于得到电子而带负电,失去电子的物体则带正电.(2)接触起电:带电体接触导体时,电荷转移到导体上,使导体带上与带电体相同(填“相同”或“相反”)性质的电荷.(3)感应起电:当一个带电体靠近导体时,由于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷,这种现象叫做静电感应.利用静电感应使金属导体带电的过程叫做感应起电.深度思考(1)带正电的物体A与不带电的物体B接触,使物体B带上了什么电荷?在这个过程中电荷是如何转移的?(2)如图1所示,当将带正电荷的球C移近不带电的枕形金属导体时,由于电荷间的吸引,枕形金属导体中的自由电子向A端移动,而正电荷不移动,所以A端(近端)带________电,B 端带________电.(填“正”或“负”)图1答案(1)正电荷在这个过程中,有电子从物体B转移到物体A,物体B的电子减少,使物体B带正电.(2)负正例1如图2所示,A、B为相互接触的用绝缘支柱支撑的金属导体,起初它们不带电,在它们的下部贴有金属箔片,C是带正电的小球,下列说法正确的是()图2A.把C移近导体A时,A、B上的金属箔片都张开B.把C移近导体A,先把A、B分开,然后移去C,A、B上的金属箔片仍张开C.先把C移走,再把A、B分开,A、B上的金属箔片仍张开D.先把A、B分开,再把C移走,然后重新让A、B接触,A上的金属箔片张开,而B上的金属箔片闭合解析虽然A、B起初都不带电,但带正电的导体C对A、B内的电荷有力的作用,使A、B 中的自由电子向左移动,使得A端积累了负电荷,B端带正电荷,其下部贴有的金属箔片分别带上了与A、B同种的电荷,所以金属箔片都张开,A正确.C只要一直在A、B附近,先把A、B分开,A、B上的电荷因受C的作用力不可能中和,因而A、B仍带等量异种的感应电荷,此时即使再移走C,A、B所带电荷量也不变,金属箔片仍张开,B正确.但如果先移走C,A、B上的感应电荷会马上中和,不再带电,所以箔片都不会张开,C错.先把A、B 分开,再移走C,A、B仍然带电,但重新让A、B接触后,A、B上的感应电荷会完全中和,金属箔片都不会张开,D错.故选A、B.答案AB(1)静电感应中,电中性导体在两侧同时感应等量异种电荷,感应的过程,就是导体内电荷重新分布的过程.(2)接触起电是由于电荷间作用使导体间的电荷发生转移.二、电荷守恒定律1.电荷量:电荷的多少叫电荷量.在国际单位制中,它的单位是库仑,简称库,用C表示.2.元电荷:质子的电荷量为1.60×10-19库仑,用e表示,任何带电体的电荷量都是e的整数倍.因此,电荷量e被称为元电荷.3.电荷守恒定律:电荷既不能创造,也不能消灭,它们只能从一个物体转移到另一个物体,或者从物体的一个部分转移到另一个部分.在转移过程中,电荷的代数和不变.三种起电方式的本质都是电子的转移,在转移的过程中电荷的总量不变.注意(1)电中性的物体内部也有电荷的存在,只是正、负电荷量的代数和为零,对外不显电性;(2)电荷的中和是指带等量异种电荷的两物体接触时,经过电子的转移,最终达到电中性的过程. 深度思考(1)质子和电子就是元电荷吗?(2)带等量异种电荷的两小球接触后都不带电了,是电荷消失了吗?此过程中电荷还守恒吗? 答案 (1)不是.元电荷是最小的带电单位,不是带电粒子,没有电性之说.(2)没有消失,这是电荷的中和,是指两个带等量异种电荷的物体相互接触时,由于正、负电荷间的相互吸引作用,电荷发生转移,最后都达到电中性状态的一个过程.电荷仍然守恒.例2 关于元电荷,下列说法中正确的是( )A .元电荷实质上是指电子和质子本身B .所有带电体的电荷量一定等于元电荷的整数倍C .元电荷的值通常取e =1.60×10-19CD .电荷量e 的数值最早是由美国物理学家密立根用实验测得的解析 所有带电体的电荷量或者等于e ,或者是e 的整数倍,这就是说,电荷是不能连续变化的物理量,电荷量e 的数值最早是由美国物理学家密立根用实验测得的.由以上分析可知选项B 、C 、D 正确.答案 BCD元电荷是自然界最小的电荷量,是跟电子或质子所带电荷量数值相等的电荷量,不是带电粒子.例3 完全相同的两金属小球A 、B 带有相同的电荷量,相隔一定的距离,今让第三个完全相同的不带电金属小球C ,先后与A 、B 接触后移开.(1)若A 、B 两球带同种电荷,接触后两球的电荷量大小之比为多大?(2)若A 、B 两球带异种电荷,接触后两球的电荷量大小之比为多大?解析 (1)设A 、B 带同种电荷,且带电荷量均为q ,则A 、C 接触后,A 、C 带电荷量为q A =q C =12q . C 与B 球接触后,B 、C 所带电荷量为q B =q C ′=q +12q 2=34q .故A 、B 带电荷量大小之比为q A q B =12q 34q =23. (2)设q A ′=+q ,q B ′=-q .则C 与A 接触后,A 、C 带电荷量为q A ′=q C ″=+12q . C 与B 接触后,B 、C 带电荷量为q B ′=q C=12q -q 2=-14q , 故A 、B 带电荷量大小之比为q A ′q B ′=12q 14q =21. 答案 (1)2∶3 (2)2∶1(1)导体接触带电时电荷量的分配与导体的形状、大小有关,当两个完全相同的金属球接触后,电荷将平均分配,即最后两个球一定带等量的同种电荷.(2)若两个相同的金属球带同种电荷,接触后电荷量相加后均分;若带异种电荷,接触后电荷先中和再均分.三、验电器的使用1.验电器(或静电计)(如图3)的金属球、金属杆和下面的两个金属箔片连成同一导体.图32.当带电的物体与验电器上面的金属球接触时,有一部分电荷转移到验电器上,与金属球相连的两个金属箔片带上同种电荷,因相互排斥而张开,物体所带电荷量越多,电荷转移的越多,斥力越大,张开的角度也越大.3.当带电体靠近验电器的金属球时,金属箔片也会张开.因为带电体会使验电器的上端感应出异种电荷,而金属箔片上会感应出同种电荷(感应起电),两箔片在斥力作用下张开.例4 使带电的金属球靠近不带电的验电器,验电器的箔片张开.下列各图表示验电器上感应电荷的分布情况,正确的是()解析把带电金属球靠近不带电的验电器,若金属球带正电荷,则将导体上的自由电子吸引上来,这样验电器的上部将带负电荷,箔片带正电荷;若金属球带负电荷,则将导体上的自由电子排斥到验电器的箔片上,这样验电器的上部将带正电荷,箔片带负电荷.选项B正确.答案 B验电器中金属球、金属杆和金属箔片为一个整体.验电器带电后,金属箔片上也会带电,两金属箔片相互排斥而张开角度,张角的大小取决于两金属箔片带电荷量的大小.1.(对三种起电方式的理解)(多选)关于摩擦起电和感应起电的实质,下列说法中正确的是()A.摩擦起电现象说明机械能可以转化为电能,也说明通过做功创造出电荷B.摩擦起电说明电荷可以从一个物体转移到另一个物体C.感应起电说明电荷可以从物体的一部分转移到另一部分D.感应起电说明电荷可以从带电的物体转移到原来不带电的物体答案BC解析摩擦起电的实质是电子在相互摩擦的物体间发生转移,失电子的带正电,得电子的带负电,此过程并非创造了电荷,而是总电荷量守恒,A错,B对;感应起电的实质是电荷从导体的一部分转移到另一部分,是电荷在同一导体内部发生了转移,C对,D错.2.(对元电荷的理解)保护知识产权,抵制盗版是我们每个公民的责任与义务.盗版书籍影响我们的学习效率,甚至会给我们的学习带来隐患.小华同学有一次不小心购买了盗版的物理参考书,做练习时,他发现有一个带电质点的电荷量数字看不清,他只能看清是6._×10-18C,拿去问老师,如果你是老师,你认为该带电质点的电荷量可能是下列哪一个()A.6.2×10-18C B.6.4×10-18CC.6.6×10-18C D.6.8×10-18C答案 B解析任何带电体的电荷量是元电荷的整数倍,即是1.6×10-19C的整数倍,由计算可知,只有B选项是1.6×10-19C的整数倍,故B正确.3.(电荷守恒定律的理解和应用)有两个完全相同的带电绝缘金属小球A、B,分别带有电荷量Q A =6.4×10-9C ,Q B =-3.2×10-9C ,让两绝缘金属小球接触,在接触过程中,电子如何转移并转移了多少?答案 电子由B 球转移到了A 球,转移了3.0×1010个电子解析 当两小球接触时,带电荷量少的负电荷先被中和,剩余的正电荷再重新分配.由于两小球完全相同,剩余正电荷必均分,即接触后两小球带电荷量Q A ′=Q B ′=Q A +Q B 2=6.4×10-9-3.2×10-92C =1.6×10-9C. 在接触过程中,电子由B 球转移到A 球,不仅将自身电荷中和,且继续转移,使B 球带Q B ′的正电,这样,共转移的电子电荷量为ΔQ B =Q B ′-Q B =[1.6×10-9-(-3.2×10-9)]C =4.8×10-9C. 转移的电子数n =ΔQ B e =4.8×10-9C 1.6×10-19C =3.0×1010个. 4.(验电器及其原理)如图4所示,用丝绸摩擦过的玻璃棒和验电器的金属球接触,使验电器的金属箔片张开,关于这一现象下列说法正确的是( )图4A .两片金属箔片上带异种电荷B .两片金属箔片上均带负电荷C .箔片上有电子转移到玻璃棒上D .将玻璃棒移走,则金属箔片立即合在一起答案 C解析 自然界只存在两种电荷,正电荷和负电荷.丝绸摩擦过的玻璃棒带正电,即缺少电子,若将其接触验电器的金属球,此时两个箔片带同种电荷,正电;在此过程中,一部分电子会从验电器转移到玻璃棒;移走玻璃棒时,箔片仍带电,不会立即合在一起.选项C 正确.题组一 对元电荷的理解1.关于对元电荷的理解,下列说法正确的是( )A .元电荷就是电子B.元电荷就是质子C.元电荷是表示跟电子所带电荷量数值相等的电荷量D.元电荷是带电荷量最小的带电粒子答案 C解析元电荷是自然界最小的电荷量,是跟电子所带电荷量数值相等的电荷量,不是电子,不是质子,也不是带电荷量最小的带电粒子,选项C正确.2.(多选)下列说法正确的是()A.物体所带的电荷量可以为任意实数B.电子带有最小的负电荷,其电荷量的绝对值叫元电荷C.物体所带的电荷量只能是一些不连续的特定值D.物体带电荷量的最小值为1.6×10-19C答案BCD解析元电荷是自然界最小的电荷量,其数值e=1.6×10-19C,所有带电体的电荷量均为e 的整数倍,只能是一些特定值,选项A错误,B、C、D正确.题组二对三种起电方式的理解及应用3.关于摩擦起电和感应起电,下列说法正确的是()A.摩擦起电是电荷的转移,感应起电是创造了电荷B.摩擦起电是创造了电荷,感应起电是电荷的转移C.不论摩擦起电还是感应起电,都是电荷的转移D.以上说法均不正确答案 C解析无论哪种起电方式,都不是创造了电荷,而是电荷的转移,所以选项A、B、D错误,选项C正确.4.(多选)如图1用棉布分别与丙烯塑料板和乙烯塑料板摩擦,实验结果如图所示,由此对摩擦起电说法正确的是()图1A.两个物体摩擦时,表面粗糙的易失去电子B.两个物体摩擦起电时,一定同时带上种类及数量不同的电荷C.两个物体摩擦起电时,带上电荷的种类不同但数量相等D.同一物体与不同种类的物体摩擦,该物体所带电荷种类可能不同答案CD解析两物体摩擦时是否得失电子取决于原子核对电子的束缚力大小,A错.由于摩擦起电的实质是电子的转移,所以两物体带电种类一定不同,数量相等,B错,C对.由题中例子不难看出,同一物体与不同种类的物体摩擦,带电种类可能不同,D对.5.把两个完全相同的小球接触后分开,两球相互排斥,则两球原来的带电情况不可能是() A.一个小球原来带电,另一个小球原来不带电B.两个小球原来分别带等量异种电荷C.两个小球原来分别带同种电荷D.两个小球原来分别带不等量异种电荷答案 B解析两个完全相同的小球接触后分开,两球互相排斥,说明原来两球所带电荷量的代数和不等于零.若原来两小球分别带有等量的异种电荷,则接触后将发生中和,两球均不带电,不会发生排斥现象,故选项B正确.6.(多选)用金属箔做成一个不带电的圆环,放在干燥的绝缘桌面上.小明同学用绝缘材料做的笔套与头发摩擦后,将笔套自上向下慢慢靠近圆环,当距离约为0.5cm时圆环被吸引到笔套上,如图2所示.对上述现象的判断与分析,下列说法正确的是()图2A.摩擦使笔套带电B.笔套靠近圆环时,圆环上、下部感应出异号电荷C.圆环被吸引到笔套的过程中,圆环所受静电力的合力大于圆环的重力D.笔套碰到圆环后,笔套所带的电荷立刻被全部中和答案ABC解析笔套与头发摩擦后,能够吸引圆环,说明笔套上带了电荷,即摩擦使笔套带电,选项A正确;笔套靠近圆环时,由于静电感应,会使圆环上、下部感应出异号电荷,选项B正确;圆环被吸引到笔套的过程中,有向上的加速度,故圆环所受静电力的合力大于圆环所受的重力,故选项C正确;笔套碰到圆环后,笔套上的部分电荷转移到圆环上,使圆环带上性质相同的电荷,选项D错误.7.(多选)如图3所示,将带电棒移近两个不带电的导体球,甲、乙两个导体球开始时互相接触且对地绝缘.下述几种方法中能使两球都带电的是()图3A.先把两球分开,再移走棒B.先移走棒,再把两球分开C.先将棒接触一下其中的一球,再把两球分开D.移走棒,两导体球不分开答案AC解析感应起电应遵从以下几个步骤:(1)两导体彼此接触;(2)带电体移近两导体;(3)先分开两导体,再移走带电体.由此可知,A项可以使两球都带电;带电体与非带电体接触,电荷发生转移,使物体带电,C项可以使两球都带电.故正确选项为A、C.题组三验电器及其原理8.(多选)如图4所示,是一个带正电的验电器,当一个金属球A靠近验电器上的金属小球B 时,验电器中金属箔片的张角减小,则()图4A.金属球A可能不带电B.金属球A一定带正电C.金属球A可能带负电D.金属球A一定带负电答案AC解析验电器上的金属箔片和金属球都带有正电荷,金属箔片之所以张开,是由于箔片上的正电荷互相排斥造成的.当验电器金属箔片的张角减小时,说明箔片上的正电荷一定比原来减少了,由于金属球A只是靠近验电器而没有与验电器上的金属球B发生接触,要考虑感应起电的影响.当金属球A靠近时,验电器的金属球B、金属杆包括金属箔片整体相当于一个导体,金属球A离金属球B较近,而离金属箔片较远.如果金属球A带正电,验电器上的正电荷一定向远处移动,则金属箔片上的电荷量不会减少,所以选项B是错误的.如果金属球A带负电,验电器上的正电荷会由于引力作用向近端移动,造成金属箔片上的电荷量减少,所以选项C是正确的.如果金属球A不带电,由于受到金属球B上正电荷的影响,金属球A 靠近B的部分也会由于静电力的作用出现负电荷,而这些负电荷反过来会使得验电器上的正电荷向金属球B移动,效果与金属球A带负电荷一样.所以选项A也是正确的,选项D是错误的.9.如图5所示,用带正电的绝缘棒A去靠近原来不带电的验电器B,B的金属箔张开,这时金属箔带①电;若在带电棒A移开前,用手摸一下验电器的小球后离开,然后移开A,这时B的金属箔也能张开,它带②电.下列选项中正确的是()图5A.①正②负B.①负②负C.①负②正D.①正②正答案 A解析(1)用带正电的绝缘棒A靠近原来不带电的验电器B,由于静电感应验电器(导体)两端出现等量正、负感应电荷,近端的金属球的电荷的电性与A的电性相反,带负电;远端的金属箔片电荷与A的电性相同,带正电;(2)由于人和地球都是导体,用手瞬间接触金属球B时,人、地球和验电器构成一个整体,在带正电荷的棒A的影响下发生静电感应,近端带负电,金属箔片不带电;移开手后,验电器上的负电荷不变,故验电器带负电,再移开棒A后,验电器上的负电荷仍不变,金属箔片上此时也带负电.故A项正确.题组四对电荷守恒定律及电荷量的理解10.如图6所示,导体A带电荷量为5q的正电荷,另一完全相同的导体B带电荷量为q的负电荷,将两导体接触一会儿后再分开,则B导体带的电荷量为()图6A.-q B.qC.2q D.4q答案 C解析相同带电体接触后,电荷量先中和,后平分.故选项C正确.11.(多选)A和B都是不带电的物体,它们互相摩擦后A带负电荷1.6×10-10C,下列判断中正确的是( )A .在摩擦前A 和B 的内部电荷量为零B .摩擦的过程中电子从A 转移到了BC .A 在摩擦过程中一定得到了1×109个电子D .A 在摩擦过程中一定失去了1.6×10-19C 电子 答案 AC12.多少个电子的电荷量等于-32.0μC ?干燥的天气中,一个人脱了鞋在地毯上行走,身上聚集的电荷量为-48.0μC.求共转移到此人身上多少个电子?(电子电荷量e =-1.6×10-19C,1μC =10-6C) 答案 2.0×1014个 3.0×1014个解析 n 1=Q 1e =-32.0×10-6-1.6×10-19个=2.0×1014个. 人身上聚集的电子个数n 2=Q 2e =-48.0×10-6-1.6×10-19个=3.0×1014个. 13.如图7所示,通过调节控制电子枪产生的电子束,使其每秒有104个电子到达收集电子的金属瓶,经过一段时间,金属瓶上带有-8×10-12C 的电荷量,求:图7(1)金属瓶上收集到多少个电子?(2)实验的时间为多长?答案 (1)5×107个 (2)5000s解析 (1)金属瓶上收集的电子数目为:N =Q e =-8×10-12C -1.6×10-19C =5×107个. (2)实验的时间:t =5×107104s =5000s.。
2017-2018学年高中物理选修3-1教学案(18份) 粤教版3(优秀免费下载资料)

第二节探究静电力.点电荷是理想模型,当带电体的大小和形状可以忽略时,带电体可被看成点电荷,而不是依据带电体的体积大小和电量多少。
.库仑定律表达式为=,此式仅适用于真空中的点电荷,其中是静电力常量。
.库仑力又叫静电力,属于性质力,物体受静电力时,分析方法符合一般的力学规律。
一、点电荷()定义:如果一个带电体,它本身的大小比起它到其他带电体的距离小得多,那么在研究它与其他带电体的相互作用时,可以忽略电荷在带电体上的具体分布情况,把它抽象成一个几何点。
()理想化模型:当研究对象受多个因素影响时,在一定条件下可以抓住主要因素,忽略次要因素,将研究对象抽象为理想模型。
()点电荷是一种理想化的物理模型。
二、库仑定律.探究方法:控制变量法()保持电荷的电荷量不变,距离增大时,作用力减小;距离减小时,作用力增大。
()保持两个电荷之间的距离不变,电荷量增大时,作用力增大;电荷量减小时,作用力减小。
.库仑定律()内容:在真空中两个点电荷之间的相互作用力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比;作用力的方向在它们的连线上。
()公式:=。
()静电力常量=×·。
()适用条件:真空中的点电荷。
.自主思考——判一判()实验表明电荷之间的作用力一定和电荷间的距离成反比。
(×)()实验表明两个带电体的距离越大,作用力就越小。
(√)()点电荷是一个带有电荷的点,它是实际带电体的抽象,是一种理想化模型。
(√) ()球形带电体一定可以看成点电荷。
(×)()很大的带电体也有可能看做点电荷。
(√).合作探究——议一议()比较库仑定律=与万有引力定律=,你会发现什么?提示:仔细观察,我们会发现它们有惊人的相似:两个公式中都有,即两种力都与距离的二次方成反比;两个公式中都有与作用力有关的物理量(电荷量或质量)的乘积,且两种力都与乘积成正比;这两种力的方向都在两个物体的连线上。
对静电力与万有引力进行比较,我们可以看到,自然规律既具有多样性,又具有统一性,也许它们是同一种相互作用的不同表示。
2017-2018学年同步备课套餐之物理粤教版选修3-5讲义:

第2点微元法解决连续质量变动问题应用动量定理分析连续体相互作用问题的方法是微元法,具体步骤为:(1)确定一小段时间Δt内的连续体为研究对象;(2)写出Δt内连续体的质量Δm与Δt的关系式;(3)分析连续体的受力情况和动量变化;(4)应用动量定理列式、求解.对点例题飞船在飞行过程中有很多技术问题需要解决,其中之一就是当飞船进入宇宙微粒尘区时如何保持飞船速度不变的问题.我国科学家已将这一问题解决,才使得“神舟五号”载人飞船得以飞行成功.假如有一宇宙飞船,它的正面面积为S=0.98 m2,以v=2×103 m/s 的速度进入宇宙微粒尘区,尘区每1 m3空间有一微粒,每一微粒平均质量m=2×10-4 g,若要使飞船速度保持不变,飞船的牵引力应增加多少?(设微粒与飞船相碰后附着到飞船上) 解题指导由于飞船速度保持不变,因此增加的牵引力应与微粒对飞船的作用力相等,据牛顿第三定律知,此力也与飞船对微粒的作用力相等.只要求出时间t内微粒的质量,再由动量定理求出飞船对微粒的作用力,即可得到飞船增加的牵引力.时间t内附着到飞船上的微粒质量为:M=m·S·v t,设飞船对微粒的作用力为F,由动量定理得:Ft=M v=mS v t·v,即F=mS v2,代入数据解得F=0.784 N.由牛顿第三定律得,微粒对飞船的作用力为0.784 N,故飞船的牵引力应增加0.784 N.答案0.784 N方法点评对这类有连续质量变动问题的解决关键在于研究对象的选取,通常采用的方法是选Δt时间内发生相互作用的变质量物体为研究对象,确定发生相互作用前后的动量,然后由动量定理解题.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.正方体密闭容器中有大量运动粒子,每个粒子质量为m,单位体积内粒子数量n为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)答案 f =13nm v 2解析 一个粒子每与器壁碰撞一次给器壁的冲量ΔI =2m v如图所示,以器壁上面积为S 的部分为底、v Δt 为高构成柱体,由题设可知,其内有16的粒子在Δt 时间内与器壁上面积为S 的部分发生碰撞,碰撞粒子总数N =16n ·S v Δt Δt 时间内粒子给器壁的冲量I =N ·ΔI =13nSm v 2Δt 器壁上面积为S 的部分受到粒子的压力F =I Δt则器壁单位面积所受粒子的压力f =F S =13nm v 2.。
2017-2018学年同步备课套餐之物理粤教版选修3-5讲义:

第6点透析反冲运动的模型——“人船模型”
如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,如图1所示,则由m1v1=-m2v2得m1x1=-m2x2.该式的适用条件是:
图1
(1)系统的总动量守恒或某一方向上的动量守恒.
(2)构成系统的两物体原来静止,因相互作用而反向运动.
(3)x1、x2均为沿动量方向相对于同一参考系的位移.
对点例题如图2所示,质量m=60 kg的人,站在质量M=300 kg的车的一端,车长L=3 m,相对于地面静止.当车与地面间的摩擦可以忽略不计时,人由车的一端走到另一端的过程中,车将()
图2
A.后退0.5 m B.后退0.6 m
C.后退0.75 m D.一直匀速后退
解题指导人、车组成的系统动量守恒,则m v1=M v2,所以mx1=Mx2,又有x1+x2=L,解得x2=0.5 m.
答案 A
方法点评人船模型是典型的反冲实例,从瞬时速度关系过渡到平均速度关系,再转化为位移关系,是解决本题的关键所在.
一个质量为M、底边长为b的三角形斜劈静止于光滑的水平桌面上,如图3所示.有一质量为m的小球由斜面顶部无初速度地滑到底部时,斜劈移动的距离为多少?
图3
答案 mb M +m
解析 斜劈和小球组成的系统在整个运动过程中都不受水平方向的外力,所以系统在水平方向上动量守恒.斜劈和小球在整个过程中发生的水平位移如图所示,由图知斜劈的位移为x ,
小球的水平位移为b -x ,由m 1x 1=m 2x 2,得Mx =m (b -x ),所以x =mb M +m .。
2017-2018学年高中物理选修3-1教学案(18份) 粤教版13(优秀免费下载资料)

第三节研究闭合电路.电源的电动势数值上等于不接用电器时电源正负两极间的电压。
.闭合电路欧姆定律=.电源电动势等于外和内之和,即=外+=+。
.路端电压随外电阻的增大而增大。
电源电动势和内阻不随外电阻的变化而变化。
.在电源的-图像中,图线与纵轴的交点即为电源的电动势,与横轴的交点是短路电流,直线的斜率即为电源的内阻。
一、电动势闭合电路的欧姆定律.电动势()电源外部的电路叫做外电路,外电路上的电阻称为外电阻。
电源内部的电路叫做内电路,内电路上的电阻即电源的电阻称为内电阻。
()电源的电动势数值上等于不接用电器时电源正负两极间的电压。
()电动势的单位与电压的单位相同,也是伏特。
.闭合电路的欧姆定律()内容:闭合电路中的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。
()公式:=。
()电源的电动势等于外和内之和,即=内+外。
二、路端电压跟负载的关系.路端电压跟负载的关系式:=-,而=。
图--.当外电阻增大时,电路中的电流减小,路端电压增大。
当外电阻减小时,电路中的电流增大,路端电压减小。
.路端电压与电流的关系图像如图--所示,可知()图线是一条向下倾斜的直线。
()路端电压随着电流的增大而减小。
三、测量电源的电动势和内阻.实验目的()知道测量电源电动势和内阻的实验原理,进一步理解电源路端电压随电流变化的关系。
()学会根据图像合理外推进行数据处理的方法。
()尝试进行电源电动势和内电阻测量误差的分析,了解测量中减小误差的办法。
.实验原理实验的电路如图--所示,实验原理是闭合电路的欧姆定律。
图--.实验器材待测电池一节,电流表(~)、电压表(~)各一块,滑动变阻器一只,开关一只,导线若干。
.实验步骤()确定电流表、电压表的量程,按原理图连接好电路,并将滑动变阻器的滑片移到使接入电路的阻值为最大值的一端。
()闭合开关,接通电路,将滑动变阻器的滑片由一端向另一端移动,从电流表有明显读数开始,记录一组电流表、电压表读数。
2017-2018学年高中物理(SWSJ)粤教版选修3-1教学案:第二章第五节电功率含答案

第五节电_功_率1。
电功的普适公式W=UIt。
2.电功率的普适公式P=错误!=UI。
3.焦耳定律即求解电热的表达式Q=I2Rt可适用于任何电路。
4.热功率的普适公式P热=I2R.一、电功和电功率1.电功(1)定义:电流通过一段电路时,自由电荷在电场力的推动下作定向移动,电场力对自由电荷所做的功。
(2)表达式:W=UIt。
2.电功率(1)定义:单位时间内电流所做的功。
(2)表达式:P=错误!=UI。
二、焦耳定律和热功率1.焦耳定律(1)内容:电流通过导体产生的热量,跟电流的二次方成正比,跟导体的电阻及通电时间成正比。
(2)公式:Q=I2Rt。
2.热功率(1)定义:单位时间内的发热量.(2)公式:P=错误!=I2R。
三、闭合电路中的功率(1)闭合电路中能量转化关系:EI=U外I+U内I。
(2)电源提供的能量一部分消耗在外电路上,转化为其他形式的能量;另一部分消耗在内电阻上,转化为内能。
(3)电动势反映了电源把其他形式的能量转化为电能的能力。
1.自主思考——判一判(1)电功越大,电功率就越大。
(×)(2)只有纯电阻电路中,电热的表达式是Q=I2Rt.(×)(3)非纯电阻电路中,电热的表达式是Q=I2Rt。
(√)(4)电动机工作时,消耗的电能大于产生的电热。
(√)(5)电源的功率越大,其输出功率越大。
(×)2.合作探究——议一议(1)根据我们的生活、生产经验列举一些常见的用电器,并说明电能主要转化为什么能?提示:①电灯,把电能转化为光能。
②电热毯、电熨斗、电饭煲、电热水器,把电能转化为内能(热能)。
③电动机,把电能转化为机械能。
④电解槽,把电能转化为化学能。
(2)用电器铭牌上所标的功率有何意义?提示:用电器铭牌上所标功率指的是用电器的额定功率,即用电器能长时间正常工作时的最大功率,用电器实际工作时,其功率不一定等于额定功率,一般要小于或等于额定功率。
(3)电功率与热功率的含义分别是什么,计算公式分别是什么?提示:电功率是指某段电路的全部电功率,或这段电路上消耗的全部电功率,计算公式P=IU;热功率是指在这段电路上因发热而消耗的功率,计算公式P=I2R。
2017-2018学年高中物理粤教版选修3-1学案:第一章 第3

[目标定位] 1.知道电荷间的相互作用是通过电场发生的,知道电场是客观存在的一种物质形态.2.知道电场强度的概念和定义式,并会进行有关的计算.3.理解点电荷的电场强度及叠加原理.4.会用电场线表示电场,并熟记几种常见电场的电场线分布.一、电场和电场强度1.电场(1)概念:存在于电荷周围的一种特殊的物质,由电荷产生.场和实物是物质存在的两种不同形式.(2)基本性质:对放入其中的电荷有力的作用.电荷之间通过电场发生相互作用.(3)静电场:静止的电荷产生的电场. 2.电场强度(1)试探电荷:放入电场中探测电场性质的电荷满足:①电荷量应足够小.②线度足够小. (2)电场强度①定义:在电场中同一点的点电荷所受电场力的大小与它的电荷量的比值叫做该点的电场强度,简称场强.②物理意义:表示电场的强弱和方向.③定义式:E =Fq,单位为牛(顿)每库(仑),符号为N/C.④方向:电场强度的方向与正电荷所受静电力的方向相同,与负电荷所受静电力方向相反. 3.匀强电场:如果电场中各点的场强大小和方向都相同,这种电场叫做匀强电场. 深度思考(1)由于E =Fq ,所以有人说电场强度的大小与放入的试探电荷受到的力F 成正比,与电荷量q的大小成反比,你认为这种说法正确吗?为什么?(2)这里定义电场强度的方法叫比值定义法,你还学过哪些用比值定义的物理量?它们都有什么共同点?答案 (1)不正确.电场中某点的电场强度E 是唯一的,由电场本身决定,与是否放入试探电荷以及放入试探电荷的正负、电荷量的大小无关.(2)如加速度a =Δv Δt ,密度ρ=MV等.用比值定义的新物理量可反映物质本身的某种属性,与用来定义的原有物理量并无直接关系.例1 A 为已知电场中的一固定点,在A 点放一电荷量为q 的试探电荷,所受电场力为F ,A 点的场强为E ,则( )A .若在A 点换上-q ,A 点场强方向发生变化B .若在A 点换上电荷量为2q 的试探电荷,A 点的场强将变为2EC .若在A 点移去电荷q ,A 点的场强变为零D .A 点场强的大小、方向与q 的大小、正负、有无均无关解析 电场强度E =Fq 是通过比值定义法得出的,其大小及方向与试探电荷无关;故放入任何电荷时电场强度的方向和大小均不变,故A 、B 、C 均错误;故选D. 答案 D例2 真空中O 点放一个点电荷Q =+1.0×10-9C ,直线MN 通过O 点,OM 的距离r =30cm ,M 点放一个点电荷q =-1.0×10-10C ,如图1所示.求:图1(1)q 在M 点受到的作用力; (2)M 点的场强;(3)拿走q 后M 点的场强.解析 (1)电场是一种物质,电荷q 在电场中M 点所受的作用力是电荷Q 通过它的电场对q的作用力,根据库仑定律,得F M =k Qq r 2=9.0×109×1.0×10-9×1.0×10-100.32N=1.0×10-8N .因为Q 为正电荷,q 为负电荷,库仑力是吸引力,所以力的方向沿MO 指向Q .(2)M 点的场强E M =F M q =1.0×10-81.0×10-10N /C =100 N/C ,其方向沿OM 连线背离Q ,因为它的方向跟正电荷所受电场力的方向相同.(3)在M 点拿走试探电荷q ,有的同学说M 点的场强E M =0,这是错误的.其原因在于不懂得场强是反映电场的力的性质的物理量,它是由形成电场的电荷Q 及场中位置决定的,与试探电荷q 是否存在无关.故M 点的场强仍为100N/C ,方向沿OM 连线背离Q . 答案 (1)大小为1.0×10-8N 方向沿MO 指向Q(2)大小为100N/C 方向沿OM 连线背离Q (3)大小为100N/C 方向沿OM 连线背离Q(1)公式E =Fq是电场强度的定义式,不是决定式.其中q 是试探电荷的电荷量.(2)电场强度E 的大小和方向只由电场本身决定,与是否放入的试探电荷以及放入试探电荷的正负、电荷量的大小无关.二、点电荷的电场 电场的叠加原理1.真空中点电荷周围的场强 (1)大小:E =k Q r2.(2)方向:Q 为正电荷时,E 的方向由点电荷指向无穷远;Q 为负电荷时,E 的方向由无穷远指向点电荷.2.电场的叠加原理:如果在空间同时存在多个点电荷,这时在空间某一点的电场强度等于各个电荷单独存在时在该点产生的场强的矢量和,这叫做电场的叠加原理. 深度思考公式E =F q 与E =k Qr2有什么区别?答案 公式E =F q 是电场强度的定义式,适用于任何电场,E 可以用Fq 来度量,但与F 、q 无关.其中q 是试探电荷.公式E =k Qr 2是点电荷场强的决定式,仅适用于点电荷的电场强度求解,Q 是场源电荷,E 与Q 成正比,与r 2成反比.例3 真空中距点电荷(电荷量为Q )为r 的A 点处,放一个带电荷量为q (q ≪Q )的点电荷,q 受到的电场力大小为F ,则A 点的场强为( ) A.F Q B.F q C .k q r 2D .k Q r2 解析 E =F q 中q 指的是试探电荷,E =kQr 2中Q 指的是场源电荷,故B 、D 正确.答案 BD例4 如图2所示,真空中带电荷量分别为+Q 和-Q 的点电荷A 、B 相距为r ,则:图2(1)两点电荷连线的中点O 的场强多大?(2)在两点电荷连线的中垂线上,距A 、B 两点都为r 的O ′点的场强如何?解析 求解方法是分别求出+Q 和-Q 在某点的场强大小和方向,然后根据电场强度的叠加原理求出合场强.(1)如图甲所示,A 、B 两点电荷在O 点产生的场强方向相同,由A 指向B .A 、B 两点电荷在O 点产生的电场强度 E A =E B =kQ ⎝⎛⎭⎫r 22=4kQ r 2. 故O 点的合场强为E O =2E A =8kQr 2,方向由A 指向B .(2)如图乙所示,E A ′=E B ′=kQr 2,由矢量图所形成的等边三角形可知,O ′点的合场强E O ′=E A ′=E B ′=kQr 2,方向与A 、B 的中垂线垂直,即E O ′与E O 同向.答案 (1)8kQr2,方向由A 指向B(2)kQr2,方向与AB 连线平行,由A 指向B电场强度是矢量,合成时遵循矢量运算法则(平行四边形定则或三角形定则),常用的方法有图解法、解析法、正交分解法等;对于同一直线上电场强度的合成,可先规定正方向,进而把矢量运算转化成代数运算.三、电场线1.电场线:在电场中画出一系列曲线,使曲线上每一点的切线方向都和该处的场强方向一致.这样的曲线就叫做电场线. 2.几种特殊的电场线熟记六种特殊电场电场线分布,如图3所示.图33.电场线的特点(1)电场线是为了形象描述电场而假想的一条条有方向的曲线,曲线上每点的切线方向表示该点的电场强度方向.(2)电场线从正电荷或无限远出发,到负电荷终止或延伸到无限远.(3)电场线在电场中不相交.(4)电场越强的地方,电场线越密.电场线的疏密程度反映了电场的强弱.(5)匀强电场的电场线是间隔距离相等的平行直线.深度思考(1)在相邻的两条电场线之间没画电场线的地方有电场吗?(2)电场线是物体的运动轨迹吗?答案(1)电场线是假想的.如果在每个地方都画电场线也就无法对电场进行描述了,所以在相邻的两条电场线之间没画电场线的地方也有电场.(2)电场线不是运动轨迹,运动轨迹由运动电荷的受力和初速度共同决定,运动轨迹的切线方向为速度方向;电场线上各点的切线方向为该点的场强方向,决定着电荷所受电场力的方向.例5如图4所示是某静电场的一部分电场线分布情况,下列说法中正确的是()图4A.这个电场可能是负点电荷的电场B.点电荷q在A点处受到的电场力比在B点处受到的电场力大C.正电荷可以沿电场线由B点运动到C点D.点电荷q在A点处的瞬时加速度比在B点处的瞬时加速度小(不计重力)解析 负点电荷的电场线是从四周无限远处不同方向指向负点电荷的直线,故A 错;电场线越密的地方场强越大,由题图知E A >E B ,又因F =qE ,得F A >F B ,故B 正确;由a =Fm 知,a ∝F ,而F ∝E ,E A >E B ,所以a A >a B ,故D 错;正电荷在B 点受到的电场力的方向沿切线方向,故其轨迹不可能沿曲线由B 到C ,故C 错误. 答案 B(1)电场线并不是粒子运动的轨迹.带电粒子在电场中的运动轨迹由带电粒子所受合外力与初速度共同决定.电场线上各点的切线方向是场强方向,决定着粒子所受电场力的方向.轨迹上每一点的切线方向为粒子在该点的速度方向.(2)电场线与带电粒子运动轨迹重合必须同时满足以下三个条件 ①电场线是直线.②带电粒子只受电场力作用,或受其他力,但其他力的方向沿电场线所在直线. ③带电粒子初速度的大小为零或初速度的方向沿电场线所在的直线.1.(对电场强度的理解)电场中有一点P ,下列说法中正确的有( ) A .若放在P 点的试探电荷的电荷量减半,则P 点的场强减半 B .若P 点没有试探电荷,则P 点场强为零C .P 点的场强越大,则同一试探电荷在P 点受到的电场力越大D .P 点的场强方向就是放在该点的试探电荷所受电场力的方向 答案 C解析 场强是表示电场本身性质的物理量,由电场本身决定,与是否有试探电荷以及试探电荷的电荷量均无关,选项A 、B 错误;由E =Fq 得,F =qE ,q 一定时F 与E 成正比,则知P点的场强越大,同一试探电荷在P 点受到的电场力越大,故C 正确;P 点的场强方向就是放在该点的正试探电荷所受电场力的方向,与放在该点的负试探电荷所受电场力的方向相反,故D 错误.2.(对电场强度的理解)如图5所示,在一带负电的导体A 附近有一点B ,如在B 处放置一个q 1=-2.0×10-8C 的电荷,测出其受到的静电力F 1大小为4.0×10-6N ,方向如图,则B 处场强多大?如果换用一个q 2=+4.0×10-7C 的电荷放在B 点,其受力多大?此时B 处场强多大?图5答案 200N/C 8.0×10-5N200N/C解析 由场强公式可得E B =F 1q 1=4.0×10-62.0×10-8N /C =200 N/C ,因为是负电荷,所以场强方向与F 1方向相反.q 2在B 点所受静电力F 2=q 2E B =4.0×10-7×200N =8.0×10-5N ,方向与场强方向相同,也就是与F 1方向相反.此时B 处场强仍为200N/C ,方向与F 1相反.3.(点电荷的电场 电场强度的叠加)如图6所示,M 、N 和P 是以MN 为直径的半圆弧上的三点,O 点为半圆弧的圆心,∠MOP =60°.电荷量相等、符号相反的两个点电荷分别置于M 、N 两点,这时O 点电场强度的大小为E 1;若将N 点处的点电荷移到P 点,则O 点的场强大小变为E 2,E 1与E 2之比为( )图6A .1∶2B .2∶1C .2∶ 3D .4∶ 3答案 B解析 设半圆弧的半径为r ,M 、N 点的点电荷的电荷量分别为Q 和-Q ,M 、N 两点的点电荷在O 点所产生的场强均为E =k Qr2,则O 点的合场强E 1=k Q r 2+k Q r 2=2k Qr 2.当N 点处的点电荷移到P 点时,O 点场强如图所示,合场强大小为E 2=k Qr2,则E 1与E 2之比为2∶1.4.(电场线的特点及应用)下列各电场中,A 、B 两点电场强度相同的是( )答案 C解析 A 图中,A 、B 两点场强大小相等,方向不同;B 图中,A 、B 两点场强的方向相同,但大小不等;C 图中是匀强电场,则A 、B 两点场强大小、方向均相同;D 图中A 、B 两点场强大小、方向均不相同.故选C.题组一 对电场及电场强度的理解1.(多选)下列关于电场和电场强度的说法正确的是( )A .电荷间的相互作用是通过电场产生的,电场最基本的特征是对处在它里面的电荷有力的作用B .电场是人为设想出来的,其实并不存在C .某点的场强越大,则同一电荷在该点所受到的电场力越大D .某点的场强方向为试探电荷在该点受到的电场力的方向 答案 AC解析 电场是电荷周围客观存在的一种特殊物质,电荷间的相互作用是通过电场产生的,不是假想的,故A 正确,B 错误;由E =Fq 得,F =Eq ,当q 一定时,E 越大,F 越大,所以C正确;场强方向规定为正电荷在该点所受的电场力方向,与负电荷所受的电场力的方向相反,D 错误.2.(多选)关于电场强度的下列说法中,正确的是( ) A .电场强度与试探电荷所受电场力成正比 B .试探电荷的电荷量越大,电场强度越大C .电场强度是电场本身的性质,与试探电荷的电荷量及其所受电场力大小无关D .电场强度的方向就是正的试探电荷所受电场力的方向 答案 CD解析 电场中某点的电场强度只与电场本身的性质有关,与试探电荷所带的电荷量及其所受电场力大小无关,A 、B 错,C 对.人们规定电场强度的方向与正电荷所受电场力的方向相同,D 对.3.下列关于电场强度的说法中,正确的是( ) A .公式E =Fq只适用于真空中点电荷产生的电场B .由公式E =Fq 可知,电场中某点的电场强度E 与试探电荷在电场中该点所受的静电力成正比C .在公式F =k q 1q 2r 2中,k q 2r 2是点电荷q 2产生的电场在点电荷q 1处的电场强度大小;而k q 1r 2是点电荷q 1产生的电场在点电荷q 2处的电场强度大小D .由公式E =kQr 2可知,在离点电荷非常近的地方(r →0),电场强度E 可达无穷大答案 C解析 电场强度的定义式E =Fq 适用于任何电场,选项A 错误;电场中某点的电场强度由电场本身决定,与电场中该点是否有试探电荷以及引入的试探电荷所受的静电力无关,选项B 错误;点电荷间的相互作用力是通过电场产生的,选项C 正确;公式E =kQr 2是点电荷产生的电场中某点电场强度的计算式,当r →0时,所谓的“点电荷”已不存在,该公式已不适用,选项D 错误.题组二 电场强度的叠加4.如图1所示,AC 、BD 为圆的两条互相垂直的直径,圆心为O ,将带有等量电荷量q 的正、负点电荷放在圆周上,它们的位置关于AC 对称.要使圆心O 处的电场强度为零,可在圆周上再放置一个适当电荷量的正点电荷+Q ,则该点电荷+Q 应放在( )图1A .A 点B .B 点C .C 点D .D 点答案 D解析 由电场的叠加原理和对称性可知,+q 、-q 在O 点的合场强方向应沿OD 方向,要使O 点的合场强为零,放上的电荷+Q 在O 点的场强方向应与+q 、-q 在O 点的合场强方向相反,所以D 正确.5.在一个等边三角形ABC 顶点B 和C 处各放一个电荷量相同的点电荷时,测得A 处的场强大小为E ,方向与BC 边平行沿B 指向C ,如图2所示.拿走C 处的点电荷后,A 处电场强度情况将是( )图2A .大小仍为E ,方向由A 指向B B .大小仍为E ,方向由B 指向AC .大小变为E2,方向不变D .不能作出结论 答案 B解析 设点电荷B 、C 在A 产生的场强度大小均为E ′,则E ′=E ,拿走C 处的点电荷后,A 处电场强度大小为E ,方向由B 指向A ,选项B 正确.题组三 电场线的特点和应用6.(多选)以下关于电场和电场线的说法中正确的是 ( ) A .电场线就是电荷在电场中的运动轨迹B .在电场中,凡是有电场线通过的点,场强不为零,不画电场线的区域内的点,场强为零C .同一试探电荷在电场线密集的地方所受静电力大D .电场线是人们假想的,用以形象表示电场强度的大小和方向,客观上并不存在 答案 CD解析 电场线是为了方便描述电场强度的大小及方向而引进的假想线,它一般不与电荷的运动轨迹重合,没画电场线的区域也有电场,场强不为零,A 、B 错误,D 正确.在同一电场中,电场强度较大的地方电场线较密,电荷受到的电场力也较大,C 正确.7.如图3所示是点电荷Q 周围的电场线,图中A 到Q 的距离小于B 到Q 的距离.以下判断正确的是( )图3A .Q 是正电荷,A 点的电场强度大于B 点的电场强度 B .Q 是正电荷,A 点的电场强度小于B 点的电场强度C .Q 是负电荷,A 点的电场强度大于B 点的电场强度D .Q 是负电荷,A 点的电场强度小于B 点的电场强度 答案 A解析 正电荷的电场线向外辐射,电场线密的地方电场强度大,所以A 正确. 8.(多选)某电场的电场线分布如图4所示,则( )图4A.电荷P带正电B.电荷P带负电C.a点的电场强度大于b点的电场强度D.正试探电荷在c点受到的电场力大于在d点受到的电场力答案AD解析电场线从正电荷出发,故A正确,B错误;从电场线的分布情况可知,b点的电场线比a点的密,所以b点的电场强度大于a点的电场强度,故C错误;c点的场强大于d点场强,所以正试探电荷在c点受到的电场力大于在d点受到的电场力,故D正确;故选A、D. 9.A、B是一条电场线上的两个点,一带负电的微粒仅在静电力作用下,以一定的初速度从A点沿电场线运动到B点,其v-t图象如图5所示.则此电场的电场线分布可能是()图5答案 A解析从题图可以直接看出,粒子的速度随时间的增大逐渐减小,故微粒所受电场力做负功,图线的斜率逐渐增大,说明粒子的加速度逐渐变大,电场强度逐渐变大,从A到B电场线逐渐变密.综合分析知,微粒是顺着电场线运动,由电场线疏处到达密处,正确选项是A. 10.(多选)A、B两个点电荷在真空中所产生电场的电场线(方向未标出),如图6所示.图中C点为两点电荷连线的中点,MN为两点电荷连线的中垂线,D为中垂线上的一点,电场线的分布关于MN左右对称.则下列说法中正确的是()图6A.这两点电荷一定是同种电荷B .这两点电荷一定是异种电荷C .D 、C 两点电场强度相等D .C 点的电场强度比D 点的电场强度大 答案 BD解析 由题图可知,电场线关于中垂线对称,两点电荷一定是等量异种电荷,A 错,B 对.中垂线上,C 点场强最大,离C 点越远,场强越小,C 错,D 对.题组四 综合应用11.在一个点电荷Q 的电场中,Ox 坐标轴与它的一条电场线重合,坐标轴上A 、B 两点的坐标分别为2m 和5m .已知放在A 、B 两点的试探电荷受到的电场力方向都跟x 轴的正方向相同,电场力的大小跟试探电荷所带电荷量大小的关系图象如图7中直线OA 、OB 所示,放在A 点的试探电荷带正电,放在B 点的试探电荷带负电.求:图7(1)B 点的电场强度的大小和方向.(2)试判断点电荷Q 的电性,并确定点电荷Q 位置坐标. 答案 (1)2.5N/C ,方向沿x 轴负方向 (2)带负电,位置坐标x =2.6m解析 (1)由题图可得B 点电场强度的大小E B =F q =10.4N /C =2.5 N/C.因B 点的试探电荷带负电,而受力指向x 轴的正方向,故B 点场强的方向沿x 轴负方向. (2)因A 点的正电荷受力和B 点的负电荷受力均指向x 轴的正方向,故点电荷Q 位于A 、B 两点之间,带负电.设点电荷Q 的坐标为x ,则E A =k Q (x -2)2,E B =k Q(5-x )2由题图可得E A =40N/C ,则E A E B =(5-x )2(x -2)2=402.5解得x =2.6m 或x =1m(不符合题意舍去).12.竖直放置的两块足够长的平行金属板间有匀强电场.其电场强度为E ,在该匀强电场中,用丝线悬挂质量为m 的带电小球,丝线跟竖直方向成θ角时小球恰好平衡,如图8所示.请问:图8(1)小球带电荷量是多少?(2)若剪断丝线,小球碰到金属板需多长时间? 答案 (1)mg tan θE(2)2b gcot θ解析 (1)由小球处于平衡状态,知小球带正电,对小球受力分析如图所示 F T sin θ=qE ① F T cos θ=mg ②由①②联立得tan θ=qE mg ,故q =mg tan θE .(2)由第(1)问中的方程②知F T =mgcos θ,而剪断丝线后小球所受电场力和重力的合力与未剪断丝线时丝线对小球的拉力大小相等、方向相反,故剪断丝线后小球所受重力、电场力的合力等于mg cos θ.小球的加速度a =F 合m =gcos θ,小球由静止开始沿着丝线拉力的反方向做匀加速直线运动,当碰到金属板上时,它的位移为x =b sin θ,又由x =12at 2,得t =2xa=2b cos θg sin θ=2bgcot θ.。
2017-2018学年同步备课套餐之物理粤教版选修3-2讲义:

第9点电磁感应中的动力学问题电磁感应和力学问题的综合,其联系桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系,这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程,再趋于一个稳定状态,故解这类问题时正确的进行动态分析,确定最终状态是解题的关键.1.受力情况、运动情况的动态分析及思考路线导体受力运动产生感应电动势→感应电流→通电导体受安培力→合力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至最终达到稳定状态,此时加速度为零,而导体通过加速达到最大速度做匀速直线运动或通过减速达到稳定速度做匀速直线运动.2.解决此类问题的基本思路解决电磁感应中的动力学问题的一般思路是“先电后力”.(1)“源”的分析——分析出电路中由电磁感应所产生的电源,求出电源参数E和r;(2)“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力;(3)“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;(4)“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.3.两种状态处理(1)导体处于平衡态——静止状态或匀速直线运动状态.处理方法:根据平衡条件(合外力等于零),列式分析.(2)导体处于非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.4.电磁感应中的动力学临界问题(1)解决这类问题的关键是通过运动状态的分析寻找过程中的临界状态,如由速度、加速度求最大值或最小值的条件.(2)基本思路注意 当导体切割磁感线运动存在临界条件时:(1)若导体初速度等于临界速度,导体匀速切割磁感线;(2)若导体初速度大于临界速度,导体先减速,后匀速运动;(3)若导体初速度小于临界速度,导体先加速,后匀速运动.对点例题 如图1甲所示,两根足够长的平行金属导轨MN 、PQ 相距为L ,导轨平面与水平面夹角为α,金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为m ,导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B .金属导轨的上端与开关S 、阻值为R 1的定值电阻和电阻箱R 2相连,不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g .现在闭合开关S ,将金属棒由静止释放.图1(1)判断金属棒ab 中电流的方向;(2)若电阻箱R 2接入电路的阻值为0,当金属棒下降高度为h 时,速度为v ,求此过程中定值电阻R 1上产生的焦耳热Q ;(3)当B =0.40 T 、L =0.50 m 、α=37°时,金属棒能达到的最大速度v m 随电阻箱R 2阻值的变化关系如图乙所示,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,求R 1的大小和金属棒的质量m .答案 (1)b 到a (2)mgh -12m v 2 (3)2.0 Ω 0.1 kg 解题指导 (1)由右手定则可知,金属棒ab 中的电流方向为b 到a .(2)由能量守恒定律可知,金属棒减少的重力势能等于增加的动能和电路中产生的焦耳热mgh =12m v 2+Q 解得:Q =mgh -12m v 2 (3)设最大速度为v m 时,切割磁感线产生的感应电动势E =BL v m由闭合电路欧姆定律得:I =E R 1+R 2从b 端向a 端看,金属棒受力如图所示金属棒达到最大速度时满足mg sin α-BIL =0由以上三式得最大速度:v m =mg sin αB 2L 2R 2+mg sin αB 2L 2R 1题图乙斜率k =60-302.0m /(s·Ω)=15 m/(s·Ω),纵截距b =30 m/s 则:mg sin αB 2L 2R 1=b mg sin αB 2L 2=k 解得:R 1=2.0 Ωm =0.1 kg.1. (多选)如图2所示,电阻阻值为R ,其他电阻均可忽略,ef 是一电阻可不计的水平放置的导体棒,质量为m ,棒的两端分别与ab 、cd 保持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的匀强磁场中,当导体棒ef 从静止下滑一段时间后闭合开关S ,则S 闭合后( )图2A .导体棒ef 的加速度可能大于gB .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度随S 闭合时刻的不同而不同D .导体棒ef 的机械能与回路内产生的电能之和一定守恒答案 AD2. 一个刚性矩形铜制线圈从高处自由下落,进入一水平的匀强磁场区域,然后穿出磁场区域继续下落,如图3所示,则 ( )图3A .若线圈进入磁场过程是匀速运动,则离开磁场过程也是匀速运动B .若线圈进入磁场过程是加速运动,则离开磁场过程也是加速运动C .若线圈进入磁场过程是减速运动,则离开磁场过程也是减速运动D .若线圈进入磁场过程是减速运动,则离开磁场过程是加速运动答案 C3.如图4甲所示,水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆,金属杆与导轨的电阻忽略不计;匀强磁场垂直水平面向里,用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 和F 的关系如图乙所示(重力加速度g 取10 m/s 2).问:图4(1)金属杆在做匀速运动之前做什么运动?(2)若m =0.5 kg ,L =0.5 m ,R =0.5 Ω,则磁感应强度B 为多大?(3)由v -F 图线的截距可求得什么物理量?其值为多少?答案 (1)见解析 (2)1 T (3)见解析解析 (1)变速运动(或变加速运动或加速度减小的加速运动或加速运动).(2)感应电动势:E =BL v感应电流:I =E R ,安培力:F 安=BIL =B 2L 2v R由题图乙中图线可知金属杆受拉力、安培力和阻力的作用,匀速运动时合力为零.故F =B 2L 2v R +f ,v =R (F -f )B 2L 2=R B 2L 2F -R f B 2L 2 由题图乙中图线可知直线的斜率为k =2,得B =1 T.(3)由图线的截距可以求得金属杆受到的阻力f ,f =2 N .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节物体的碰撞[学习目标] 1.了解生活中的各种碰撞现象,知道碰撞的特点.2.通过实验探究,知道弹性碰撞和非弹性碰撞.一、碰撞特点及分类1.碰撞:碰撞就是两个或两个以上的物体在相遇的极短时间内产生非常大的相互作用的过程.2.碰撞特点(1)相互作用时间短.(2)作用力变化快.(3)作用力峰值大.因此其他外力可以忽略不计.3.碰撞的分类(1)按碰撞前后,物体的运动方向是否沿同一直线可分为:①正碰(对心碰撞):作用前后沿同一条直线.②斜碰(非对心碰撞):作用前后不沿同一条直线.(2)按碰撞过程中机械能是否损失可分为弹性碰撞和非弹性碰撞.[即学即用] 判断下列说法的正误.(1)最早发表有关碰撞问题研究成果的是伽利略.( ×)(2)碰撞过程作用时间很短,相互作用力很大.( √)(3)所有的碰撞,作用前、后物体的速度都在一条直线上.( ×)二、弹性碰撞和非弹性碰撞[导学探究] 演示实验:用如图1所示装置做实验.图1(1)让橡皮球A与另一静止的橡皮球B相碰,两橡皮球的质量相等,会看到什么现象?两橡皮球碰撞前后总动能相等吗?(2)在A、B两球的表面涂上等质量的橡皮泥,再重复实验(1),可以看到什么现象?若两橡皮球粘在一起上升的高度为橡皮球A 摆下时的高度的14,则碰撞前后总动能相等吗?答案 (1)可看到碰撞后橡皮球A 停止运动,橡皮球B 摆到橡皮球A 开始时的高度;根据机械能守恒定律知,碰撞后橡皮球B 获得的速度与碰撞前橡皮球A 的速度相等,这说明碰撞前后A 、B 两球的总动能相等.(2)可以看到碰撞后两球粘在一起,摆动的高度减小. 碰前总动能E k =mgh碰后总动能E k ′=2mg ·h 4=12mgh因为E k ′<E k ,所以碰撞前后总动能减少.[知识梳理] 按碰撞前后系统的总动能是否损失,可将碰撞分为:(1)弹性碰撞:两个小球碰撞后形变能完全恢复,没有能量损失,即碰撞前后两个小球构成的系统总动能相等,E k1+E k2=E k1′+E k2′.(2)非弹性碰撞:两个小球碰撞后形变不能完全恢复,一部分动能最终转化为其他形式的能(如热能),即碰撞前后两个小球构成的系统总动能不再相等,E k1+E k2>E k1′+E k2′. [即学即用] 判断下列说法的正误.(1)碰撞时形变能够完全恢复的系统动能没有损失.( √ ) (2)两物体碰撞后粘在一起运动,系统的动能也可能不损失.( × ) (3)两物体碰撞后总动能可能增加.( × )一、弹性碰撞与非弹性碰撞的判断1.碰撞中能量的特点:碰撞过程中,一般伴随机械能的损失,即:E k1′+E k2′≤E k1+E k2. 2.碰撞的类型(1)弹性碰撞:两个物体碰撞后形变能够完全恢复,碰撞后没有动能转化为其他形式的能,即碰撞前后两物体构成的系统的动能相等.(2)非弹性碰撞:两个物体碰撞后形变不能完全恢复,该过程有动能转化为其他形式的能,总动能减少.(3)完全非弹性碰撞:非弹性碰撞的特例:两物体碰撞后粘在一起以共同的速度运动,该碰撞称为完全非弹性碰撞,碰撞过程能量损失最多.例1 一个质量为2 kg 的小球A 以v 0=3 m/s 的速度与一个静止的、质量为1 kg 的小球B 正碰,试根据以下数据,分析碰撞性质: (1)碰后小球A 、B 的速度均为2 m/s ;(2)碰后小球A 的速度为1 m/s ,小球B 的速度为4 m/s.答案 (1)非弹性碰撞 (2)弹性碰撞 解析 碰前系统的动能E k0=12m A v 02=9 J.(1)当碰后小球A 、B 速度均为2 m/s 时,碰后系统的动能E k =12m A v A 2+12m B v B 2=(12×2×22+12×1×22) J =6 J <E k0,故该碰撞为非弹性碰撞.(2)当碰后v A ′=1 m/s ,v B ′=4 m/s 时,碰后系统的动能E k ′=12m A v A ′2+12m B v B ′2=(12×2×12+12×1×42) J =9 J =E k0,故该碰撞为弹性碰撞.针对训练 如图2所示,有A 、B 两物体,m 1=3m 2,以相同大小的速度v 相向运动,碰撞后A 静止,B 以2v 的速度反弹,那么A 、B 的碰撞为( )图2A .弹性碰撞B .非弹性碰撞C .完全非弹性碰撞D .无法判断答案 A解析 设m 1=3m ,m 2=m碰撞前总动能12m 1v 12+12m 2v 22=2mv 2碰撞后总动能12m 1v 1′2+12m 2v 2′2=0+12×m (2v )2=2mv 2因为碰撞前后总动能不变,故为弹性碰撞,A 项正确. 二、碰撞模型的拓展例2 如图3所示,物体A 静止在光滑的水平面上,A 的左边固定有轻质弹簧,与A 质量相等的物体B 以速度v 向A 运动并与弹簧发生碰撞.A 、B 始终沿同一直线运动,则A 、B 组成的系统动能损失最大的时刻是( )图3A .A 开始运动时B .A 的速度等于v 时C .B 的速度等于零时D .A 和B 的速度相等时答案 D解析 方法一:B 和A (包括弹簧)的作用,可以看成广义上的碰撞,两物体(包括弹簧)碰后粘在一起或碰后具有共同速度时,其动能损失最多,故选D.方法二:B 与弹簧作用后,A 加速,B 减速,当A 、B 速度相等时,弹簧最短、弹性势能最大,系统动能损失最多,故D正确.两物体通过弹簧的相互作用可以看成广义上的碰撞,当弹簧最短(两物体速度相等)时相当于完全非弹性碰撞;当弹簧完全恢复原状,两物体分离时相当于弹性碰撞.1.(多选)关于碰撞的特点,下列说法正确的是( )A.碰撞的过程时间极短B.碰撞时,质量大的物体对质量小的物体作用力大C.碰撞时,质量大的物体对质量小的物体作用力和质量小的物体对质量大的物体的作用力相等D.碰撞时,质量小的物体对质量大的物体作用力大答案AC解析两物体发生碰撞,其碰撞时间极短,碰撞时,质量大的物体对质量小的物体作用力和质量小的物体对质量大的物体的作用力是一对相互作用力,大小相等,方向相反,故A、C 正确,B、D错误,故选A、C.2.(多选)两个物体发生碰撞,则( )A.碰撞中一定产生了内能B.碰撞过程中,组成系统的动能可能不变C.碰撞过程中,系统的总动能可能增大D.碰撞过程中,系统的总动能可能减小答案BD解析若两物体发生弹性碰撞,系统的总动能不变;若两物体发生的是非弹性碰撞,系统的总动能会减小,但无论如何,总动能不会增加,所以正确选项为B、D.3.(多选)如图4所示,两个小球A、B发生碰撞,在满足下列条件时能够发生正碰的是( )图4A.小球A静止,另一个小球B经过A球时刚好能擦到A球的边缘B.小球A静止,另一个小球B沿着A、B两球球心连线去碰A球C.相碰时,相互作用力的方向沿着球心连线时D.相碰时,相互作用力的方向与两球相碰之前的速度方向都在同一条直线上答案 BD解析 根据牛顿运动定律,如果力的方向与速度方向在同一条直线上,这个力只改变速度的大小,不能改变速度的方向;如果力的方向与速度的方向不在同一直线上,则速度的方向一定发生变化,所以B 、D 项正确;A 项不能发生一维碰撞;在任何情况下相碰两球的作用力方向都沿着球心连线,因此满足C 项条件不一定能发生一维碰撞.故正确答案为B 、D. 4.(多选)如图5甲所示,在光滑水平面上的两个小球发生正碰,小球的质量分别为m 1和m 2,图乙为它们碰撞前后的s -t 图象.已知m 1=0.1 kg ,m 2=0.3 kg ,由此可以判断,下列说法正确的是( )图5A .碰前m 2静止,m 1向右运动B .碰后m 2和m 1都向右运动C .此碰撞为弹性碰撞D .此碰撞为非弹性碰撞 答案 AC解析 由题图乙可以看出,碰前m 1位移随时间均匀增加,m 2位移不变,可知m 2静止,m 1向右运动,故A 是正确的;碰后一个位移增大,一个位移减小,说明运动方向不一致,即B 错误;由乙图可以计算出碰前m 1的速度v 1=4 m/s ,碰后速度v 1′=-2 m/s ,碰前m 2的速度v 2=0,碰后速度v 2′=2 m/s ,m 2=0.3 kg ,碰撞过程中系统损失的机械能ΔE k =12m 1v 12-12m 1v 1′2-12m 2v 2′2=0,因此C 是正确的,D 是错误的. 5.质量为1 kg 的A 球以3 m/s 的速度与质量为2 kg 静止的B 球发生碰撞,碰后两球均以1 m/s 的速度一起运动,则两球的碰撞属于________类型的碰撞,碰撞过程中损失了________ J 动能.答案 完全非弹性碰撞 3解析 由于两球碰后速度相同,没有分离,因此两球的碰撞属于完全非弹性碰撞,在碰撞过程中损失的动能为ΔE k =12m A v 2-12(m A +m B )v 12=(12×1×32-12×3×12) J =3 J.第四章原子核章末总结一、对核反应方程及类型的理解1.四类核反应方程的比较(1)熟记一些粒子的符号α粒子(42He)、质子(11H)、中子(10n)、电子(0-1e)、氘核(21H)、氚核(31H)(2)注意在核反应方程中,质量数和电荷数是守恒的;在解有关力学综合问题时,还有动量守恒和能量守恒.例1(多选)能源是社会发展的基础,发展核能是解决能源问题的途径之一.下列释放核能的反应方程中,表述正确的是( )A.42He+2713Al―→3015P+10n是原子核的人工转变B.31H+11H―→42He+γ是核聚变反应C.199 F+11H―→16 8 O+42He是α衰变D.23592 U+10n―→9038Sr+13654 Xe+1010n是裂变反应答案ABD解析我们要对人工转变、聚变、裂变、衰变的定义作深入认识,根据各种定义可知:A是原子核的人工转变的反应方程式;B是聚变的核反应方程式;C并不是α衰变,而是人工转变,衰变是自发进行的,不受外界因素的影响;D是裂变的核反应方程式.故A、B、D正确.针对训练1 在下列四个核反应方程式中,X表示中子的是______,属于原子核的人工转变的是________.A.14 7N+42He―→17 8O+XB.2713Al+42He―→3015P+XC.21H+31H―→42He+XD.235 92U+X―→9038Sr+136 54Xe+10X答案BCD AB解析在核反应中,不管是什么类型的核反应,都遵守电荷数守恒和质量数守恒,据此,可以判断未知粒子属于什么粒子,对A,未知粒子的质量数:14+4=17+x,x=1,其电荷数:7+2=8+y,y=1,即未知粒子是质子(11H);对B,未知粒子的质量数:27+4=30+x,x =1,其电荷数:13+2=15+y,y=0,所以X是中子(10n);对C,未知粒子的质量数为:2+3=4+x,x=1,电荷数为:1+1=2+y,y=0,X也是中子(10n);对D,未知粒子质量数为235+x=90+136+10x,x=1,电荷数为:92+y=38+54+10y,y=0,X也是中子(10n),故方程中X是中子的核反应为B、C、D,其中A、B为原子核的人工转变.二、半衰期及衰变次数的计算例2(多选)关于原子核的有关知识,下列说法正确的是( )A.天然放射性射线中β射线实际就是电子流,它来自原子核内B.放射性原子经过α、β衰变致使新的原子核处于较高能级,因此不稳定从而产生γ射线C.氡222经过衰变变成钋218的半衰期为3.8天,一个氡222原子核四天后一定衰变为钋218D.平均结合能越大,原子越容易发生衰变答案AB解析因为半衰期是统计规律,对单个原子核没有意义,所以C项错;平均结合能描述原子核的稳定性,平均结合能越大,原子核越稳定,越不容易发生衰变,所以D项错.针对训练2 放射性元素238 92U衰变有多种可能途径,其中一种途径是先变成210 83Bi,而210 83Bi可以经一次衰变变成210a X(X代表某种元素),也可以经一次衰变变成b81Tl,210a X和b81Tl最后都变成20682Pb,衰变路径如图1所示.则( )图1A.a=82,b=211B.210 83Bi→210a X是β衰变,210 83Bi→b81Tl是α衰变C.210 83Bi→210a X是α衰变,210 83Bi→b81Tl是β衰变D.b81Tl经过一次α衰变变成206 82Pb答案 B解析由210 83Bi→210a X,质量数不变,说明发生的是β衰变,同时知a=84.由210 83Bi→b81Tl,核电荷数减2,说明发生的是α衰变,同时知b=206,由206 81Tl→206 82Pb发生了一次β衰变,故选B.三、核能的计算1.利用质能方程来计算核能(1)根据核反应方程,计算核反应前与核反应后的质量亏损Δm.(2)根据爱因斯坦质能方程E=mc2或ΔE=Δmc2计算核能.方程ΔE=Δmc2中若Δm的单位用“kg”、c的单位用“m/s”,则ΔE的单位为“J”;若Δm的单位用“u”,可直接用质量与能量的关系式推算ΔE,此时ΔE的单位为“兆电子伏(MeV)”,即1 u=1.66×10-27 kg,相当于931.5 MeV,即原子质量单位1 u对应的能量为931.5 MeV,这个结论可在计算中直接应用.2.利用平均结合能来计算核能原子核的结合能=核子的平均结合能×核子数.核反应中反应前系统内所有原子核的总结合能与反应后生成的所有新核的总结合能之差,就是该次核反应所释放(或吸收)的核能. 例3 已知氘核的平均结合能为1.1 MeV ,氦核的平均结合能为7.1 MeV ,则两个氘核结合成一个氦核时( ) A .释放出4.9 MeV 的能量 B .释放出6.0 MeV 的能量 C .释放出24.0 MeV 的能量 D .吸收4.9 MeV 的能量 答案 C解析 依据题意可写出两个氘核结合成一个氦核的核反应方程为21H +21H→42He ,因氘核的平均结合能为1.1 MeV ,氦核的平均结合能为7.1 MeV ,故结合前氘核的能量为E 1=2×1.1 MeV,结合后氦核的能量E 2=4×7.1 MeV,可知吸收的能量为ΔE =2E 1-E 2=-24.0 MeV ,式中负号表示释放核能,故选C.例4 用中子轰击锂核(63Li)发生核反应,生成氚核(31H)和α粒子,并放出4.8 MeV 的能量.已知1 u 相当于931.5 MeV 的能量. (1)写出核反应方程; (2)求出质量亏损;(3)若中子和锂核是以等大反向的动量相碰,且核反应释放的能量全部转化为新生核的动能,则氚核和α粒子的动能比是多少?(4)在问题(3)的条件下,α粒子的动能是多大? 答案 (1)63Li +10n→31H +42He +4.8 MeV (2)0.005 2 u (3)4∶3 (4)2.06 MeV解析 (1)核反应方程为63Li +10n→31H +42He +4.8 MeV. (2)依据ΔE =Δmc 2得,Δm =4.8931.5 u≈0.005 2 u.(3)根据题意有m 1v 1=m 2v 2式中m 1、v 1、m 2、v 2分别为氚核和α粒子的质量和速度,由上式及动能E k =p 22m ,可得它们的动能之比为E k1∶E k2=p 22m 1∶p 22m 2=12m 1∶12m 2=m 2∶m 1=4∶3.(4)α粒子的动能E k2=37(E k1+E k2)=37×4.8 MeV≈2.06 MeV.1.氪90(9036Kr)是不稳定的,它经过一系列衰变最终成为稳定的锆90(9040Zr),这些衰变是( ) A .1次α衰变,6次β衰变 B .4次β衰变 C .2次α衰变D .2次α衰变,2次β衰变 答案 B解析 解法一 推理计算法根据衰变规律,β衰变不影响核的质量数,发生一次β衰变,核电荷数增加1;发生一次α衰变,质量数减少4,核电荷数减少2,9036Kr 衰变为9040Zr ,质量数不变,故未发生α衰变;核电荷数增加4,一定是发生了4次β衰变. 解法二 列方程求解设9036Kr 衰变为9040Zr ,经过了x 次α衰变,y 次β衰变,则有9036Kr→9040Zr +x 42He +y 0-1e 由质量数守恒得90=90+4x 由电荷数守恒得36=40+2x -y解得x =0,y =4,即只经过了4次β衰变,选项B 正确.2.恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”.(1)完成“氦燃烧”的核反应方程:42He +____________→84Be +γ. (2)84Be 是一种不稳定的粒子,其半衰期为2.6×10-16s .一定质量的84Be ,经7.8×10-16s后所剩下的84Be 占开始时的________________. 答案 (1)42He (2)18(或12.5%)解析 (2)由题意可知经过了3个半衰期,故剩余的84Be 的质量m 余=m 原(12)3=18m 原.3.在下列描述核反应过程的方程中,属于α衰变的是________,属于β衰变的是________,属于裂变的是________,属于聚变的是________.(填正确答案标号) A.146C→147N + 0-1e B.3215P→3216S + 0-1e C.23892U→23490Th +42He D.147N +42He→178O +11H E.23592U +10n→14054Xe +9438Sr +210n F.31H +21H→42He +10n 答案 C AB E F4.两个动能均为1 MeV 的氘核发生正面碰撞,引起如下反应:21H +21H→31H +11H.(已知21H 的质量m 0=2.013 6 u ,31H 的质量m 1=3.015 6 u ,11H 的质量m 2=1.007 3 u,1 u 相当于931.5 MeV的能量)(1)此核反应中放出的能量ΔE 为______________.(2)若放出的能量全部变为新生核的动能,则新生的氚核具有的动能是______.答案 (1)4.005 MeV (2)1.001 MeV解析 (1)此核反应中的质量亏损和放出的能量分别为:Δm =(2×2.013 6-3.015 6-1.007 3) u =0.004 3 u ,ΔE =Δmc 2=0.004 3×931.5 MeV≈4.005 MeV.(2)因碰前两氘核动能相同,相向正碰,故碰前的总动量为零.因核反应中的动量守恒,故碰后氚核和质子的总动量也为零.设其动量分别为p 1、p 2,必有p 1=-p 2.设碰后氚核和质子的动能分别为E k1和E k2,则E k1E k2=12m 1v 2112m 2v 22=m 1v 21m 2v 22=p 21m 1p 22m 2=m 2m 1=13, 故新生的氚核具有的动能为 E k1=14ΔE =14×4.005 MeV≈1.001 MeV. 第二节 动量 动量守恒定律(二)[学习目标] 1.理解系统、内力、外力的概念.2.知道动量守恒定律的内容及表达式,理解守恒的条件.3.了解动量守恒定律的普遍意义,会初步利用动量守恒定律解决实际问题.一、动量守恒定律[导学探究]1.如图1所示,公路上三辆汽车发生了追尾事故.如果将甲、乙两辆汽车看做一个系统,丙车对乙车的作用力是内力,还是外力?如果将三车看成一个系统,丙对乙的力是内力还是外力?图1答案 内力是系统内物体之间的作用力,外力是系统以外的物体对系统以内的物体的作用力.一个力是内力还是外力关键是看选择的系统.如果将甲和乙看成一个系统,丙车对乙车的力是外力,如果将三车看成一个系统,丙对乙的力是内力.2.如图2所示,水平桌面上的两个小球,质量分别为m1和m2,沿着同一直线向相同的方向做匀速运动,速度分别是v1和v2,v2>v1.当第二个小球追上第一个小球时两球发生碰撞,碰撞后两球的速度分别为v1′和v2′.试用动量定理和牛顿第三定律推导两球碰前总动量m1v1+m2v2与碰后总动量m1v1′+m2v2′的关系.图2答案设碰撞过程中两球间的作用力分别为F1、F2,相互作用时间为t根据动量定理:F1t=m1(v1′-v1),F2t=m2(v2′-v2).因为F1与F2是两球间的相互作用力,根据牛顿第三定律知,F1=-F2,则有:m1v1′-m1v1=m2v2-m2v2′即m1v1+m2v2=m1v1′+m2v2′此式表明两球在相互作用前的总动量等于相互作用后的总动量,这就是动量守恒定律的表达式.[知识梳理]1.系统、内力与外力(1)系统:相互作用的两个或多个物体组成一个力学系统.(2)内力:系统内部物体间的相互作用力.(3)外力:系统外部物体对系统内物体的作用力.2.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.(2)表达式:m1v1+m2v2=m1v1′+m2v2′(作用前后动量相等).(3)适用条件:系统不受外力或者所受外力的矢量和为零.[即学即用] 判断下列说法的正误.(1)一个系统初、末态动量大小相等,即动量守恒.( ×)(2)两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒.( √)(3)只要系统受到的外力的功为零,动量就守恒.( ×)(4)只要系统所受到的合力的冲量为零,动量就守恒.( √)(5)系统动量守恒也就是系统的动量变化量为零.( √)二、对动量守恒定律的认识[导学探究] 如图3所示,进行太空行走的宇航员A和B的质量分别为80 kg和100 kg,他们携手远离空间站,相对空间站的速度为0.1 m/s.A将B向空间站方向轻推后,A的速度变为0.2 m/s.(1)A、B二人相互作用时动量守恒吗?(2)如果守恒,应以什么为参考系?(3)轻推后B的速度大小是多少?方向如何?图3答案(1)守恒(2)以空间站为参考系(3)0.02 m/s 远离空间站方向解析规定远离空间站的方向为正方向,则v0=0.1 m/s,v A=0.2 m/s根据动量守恒定律(m A+m B)v0=m A v A+m B v B代入数据可解得v B=0.02 m/s,方向为远离空间站方向.[知识梳理] 对动量守恒定律的理解1.对系统“总动量保持不变”的理解(1)系统在整个过程中任意两个时刻的总动量都相等,不能误认为只是初、末两个状态的总动量相等.(2)系统的总动量保持不变,但系统内每个物体的动量可能都在不断变化.2.动量守恒定律的“四性”(1)矢量性:动量守恒定律的表达式是一个矢量式.(2)相对性:动量守恒定律中,系统中各物体在相互作用前后的动量必须相对于同一惯性系,各物体的速度通常均为相对于地面的速度.(3)同时性:动量守恒定律中,p1、p2……必须是系统中各物体在相互作用前同一时刻的动量,p1′、p2′……必须是系统中各物体在相互作用后同一时刻的动量.(4)普适性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统.不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.[即学即用] 如图4所示,甲木块的质量为m1,以速度v沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙木块上连有一轻质弹簧.甲木块与弹簧接触后( )图4A.甲木块的动量守恒B.乙木块的动量守恒C.甲、乙两木块所组成系统的动量守恒D.甲、乙两木块所组成系统的机械能守恒答案 C一、动量守恒条件的理解1.系统不受外力作用:这是一种理想化的情形.2.系统受外力作用,但所受合外力为零.3.系统受外力作用,但当系统所受的外力远小于系统内各物体间的内力时,系统的总动量近似守恒.例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以完全忽略不计,系统的动量近似守恒.4.系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒.例1(多选)如图5所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则下列说法正确的是( )图5A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统动量守恒答案BCD解析如果A、B与平板车上表面间的动摩擦因数相同,弹簧释放后,A、B分别相对于小车向左、向右滑动,它们所受的滑动摩擦力f A向右,f B向左.由于m A∶m B=3∶2,所以f A∶f B =3∶2,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,A选项错;对A、B、C组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力为竖直方向上的重力和支持力,它们的合力为零,故该系统的动量守恒,B、D选项均正确.若A、B所受摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,C选项正确.1.动量守恒定律的研究对象是相互作用的物体组成的系统.判断系统的动量是否守恒,与选择哪几个物体作为系统和分析哪一段运动过程有直接关系.2.判断系统的动量是否守恒,要注意守恒的条件是不受外力或所受合外力为零,因此要分清哪些力是内力,哪些力是外力.3.一般来说,系统的动量守恒时,系统内各物体的动量是变化的,但系统内各物体的动量的矢量和是不变的.针对训练1 如图6所示,小车与木箱紧挨着静放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法正确的是( )图6A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量相同答案 C解析由动量守恒定律成立的条件可知男孩、小车与木箱三者组成的系统动量守恒,选项A、B错误,C正确;木箱的动量增量与男孩、小车的总动量增量大小相等,方向相反,选项D 错误.二、动量守恒定律的简单应用1.动量守恒定律不同表现形式的表达式的含义:(1)p=p′:系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反.(4)Δp=0:系统总动量增量为零.2.应用动量守恒定律的解题步骤:例2将两个完全相同的磁铁(磁性极强)分别固定在质量相等的小车上,水平面光滑.开始时甲车速度大小为3 m/s,乙车速度大小为2 m/s,方向相反并在同一直线上,如图7所示.图7(1)当乙车速度为零时,甲车的速度多大?方向如何?(2)由于磁性极强,故两车不会相碰,那么两车的距离最小时,乙车的速度是多大?方向如何?答案 (1)1 m/s 方向向右 (2)0.5 m/s 方向向右解析 两个小车及磁铁组成的系统在水平方向不受外力作用,两车之间的磁力是系统内力,系统动量守恒,设向右为正方向.(1)v 甲=3 m/s ,v 乙=-2 m/s.据动量守恒得:mv 甲+mv 乙=mv 甲′,代入数据解得v 甲′=v 甲+v 乙=(3-2) m/s =1 m/s ,方向向右.(2)两车相距最小时,两车速度相同,设为v ′,由动量守恒得:mv 甲+mv 乙=mv ′+mv ′.解得v ′=mv 甲+mv 乙2m =v 甲+v 乙2=3-22m/s =0.5 m/s ,方向向右. 例3 如图8所示,一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为( )图8A .v 0-v 2B .v 0+v 2C .v 0-m 2m 1v 2D .v 0+m 2m 1(v 0-v 2) 答案 D解析 根据动量守恒定律有(m 1+m 2)v 0=m 1v 1+m 2v 2,可得v 1=v 0+m 2m 1(v 0-v 2),故选D.应用动量守恒定律解题,在规定正方向的前提下,要注意各已知速度的正负号,求解出未知速度的正负号,一定要指明速度方向.针对训练2 质量m 1=10 g 的小球在光滑的水平桌面上以30 cm/s 的速率向右运动,恰遇上质量为m 2=50 g 的小球以10 cm/s 的速率向左运动,碰撞后,小球m 2恰好停止,则碰后小球m 1的速度大小和方向如何?答案 20 cm/s 方向向左解析 碰撞过程中,两小球组成的系统所受合外力为零,动量守恒.设向右为正方向,则 v 1=30 cm/s ,v 2=-10 cm/s ;v 2′=0.由动量守恒定律列方程m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,代入数据解得v 1′=-20 cm/s.故碰后小球m 1的速度大小为20 cm/s ,方向向左.1.(多选)如图9所示,在光滑水平地面上有A 、B 两个木块,A 、B 之间用一轻弹簧连接.A 靠在墙壁上,用力F 向左推B 使两木块之间的弹簧压缩并处于静止状态.若突然撤去力F ,则下列说法中正确的是( )图9A .木块A 离开墙壁前,A 、B 和弹簧组成的系统动量守恒,机械能也守恒B .木块A 离开墙壁前,A 、B 和弹簧组成的系统动量不守恒,但机械能守恒C .木块A 离开墙壁后,A 、B 和弹簧组成的系统动量守恒,机械能也守恒D .木块A 离开墙壁后,A 、B 和弹簧组成的系统动量不守恒,但机械能守恒答案 BC解析 若突然撤去力F ,木块A 离开墙壁前,墙壁对木块A 有作用力,所以A 、B 和弹簧组成的系统动量不守恒,但由于A 没有离开墙壁,墙壁对木块A 不做功,所以A 、B 和弹簧组成的系统机械能守恒,选项A 错误,选项B 正确;木块A 离开墙壁后,A 、B 和弹簧组成的系统所受合外力为零,所以系统动量守恒且机械能守恒,选项C 正确,选项D 错误.2.解放军鱼雷快艇在南海海域附近执行任务,假设鱼雷快艇的总质量为M ,以速度v 前进,现沿快艇前进方向发射一颗质量为m 的鱼雷后,快艇速度减为原来的35,不计水的阻力,则鱼雷的发射速度为( )A.2M +3m 5mv B.2M 5m v C.4M -m 5mv D.4M 5mv 答案 A。