6.1.1算术平方根课堂反馈10分钟

合集下载

人教版七年级数学下册6.1.1《算术平方根》教案

人教版七年级数学下册6.1.1《算术平方根》教案

人教版七年级数学下册6.1.1《算术平方根》教案一. 教材分析《算术平方根》是人教版七年级数学下册第六章第一节的内容。

本节课主要让学生掌握算术平方根的定义,理解求一个数的算术平方根的方法,以及熟练运用算术平方根解决实际问题。

教材通过引入大量的生活实例,激发学生的学习兴趣,引导学生探究、发现算术平方根的规律,培养学生的抽象思维能力。

二. 学情分析七年级的学生已经掌握了实数的概念,具备了一定的数学基础。

但在计算能力和数学思维方面,学生之间存在较大差异。

因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。

三. 教学目标1.理解算术平方根的定义,掌握求一个数的算术平方根的方法。

2.能够运用算术平方根解决实际问题,提高学生的应用能力。

3.培养学生的抽象思维能力,提高学生的计算能力。

4.激发学生的学习兴趣,培养他们积极探究数学规律的精神。

四. 教学重难点1.算术平方根的定义及其求法。

2.运用算术平方根解决实际问题。

五. 教学方法1.情境教学法:通过生活实例,引导学生发现算术平方根的规律。

2.探究教学法:引导学生积极参与课堂讨论,自主发现算术平方根的求法。

3.练习法:通过大量练习,巩固学生对算术平方根的理解和运用。

六. 教学准备1.教学课件:制作精美的课件,辅助教学。

2.练习题:准备适量的一定难度的练习题,用于课堂练习和课后作业。

3.教学道具:准备一些实物,如正方形、长方形等,用于直观展示。

七. 教学过程1.导入(5分钟)利用生活实例,如衣服的尺码、房屋面积等,引导学生思考:如何快速找到一个数的平方根?从而引出本节课的主题——算术平方根。

2.呈现(10分钟)介绍算术平方根的定义,并通过PPT展示一些图片,让学生直观地感受算术平方根的应用。

3.操练(10分钟)让学生分组讨论,探索如何求一个数的算术平方根。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成。

算术平方根—教学设计及点评

算术平方根—教学设计及点评

《6.1.1算术平方根》教学设计人教版《义务教育教科书·数学》(七年级下册第六章实数)授课教师:江西师范大学附属中学段碧2019年10月一、内容和内容解析本节内容是《义务教育课程标准实验教科书——数学》(人教版)七年级下册第六章《实数》第一节第一课时的知识,主要介绍算术平方根的概念、表示方法和求法,以及用夹逼法估计2的大致范围。

教材的地位和作用:第一,教科书先介绍算术平方根,让学生看到算术平方根与实际的联系,在学习算术平方根的基础上再学习平方根。

算术平方根与之前学的平方运算存在互逆关系,也是下节课学习平方根的前提,具有承上启下的作用。

第二,2是历史上人们发现的第一个无理数,引发了数学危机,也促使数系从有理数扩充到无理数。

教科书采用夹逼的方法,利用2的一系列不足近似值和过剩近似值来估计它的大小,进而给出2是无限不循环小数的结论,并指3,等也是无限不循环小数,为后面学习无理数概念打下基础。

第三,会用出5根号表示非负数的算术平方根,了解算术平方根的非负性,为以后学习二次根式做出了铺垫,提供知识积累。

对本节课教学有利因素是:七年级学生会做加减乘除以及乘方运算了,但还是会发现一些生活中常见的数学问题(比如知道正方形面积求边长这一类的问题)没办法用这些计算方法解决,内心渴望新的计算方法出现,本节课的学习将实现他们内心的期盼。

本节课教学不利因素是:第一、乘方运算是已知底数和指数,求幂,开方运算是已知幂和指数,求底数。

因为涉及到三个量的关系,与学过的互逆运算(加法和减法、乘法和除法)相比关系更为复杂,造成学生理解的困难。

第二、对一个正数,开平方运算可以得到一正一负两个平方根,正的那个叫算术平方根。

而教科书是从解决实际问题的需要出发,把算术平方根的学习放在平方根前面。

对算术平方根是非负的理解,学生会有些困难。

第三,对于可以表示成有理数的平方的数,由于它们的算术平方根都是有理数,所以学生容易把握这些算术平方根的大小。

七年级数学下册(人教版)6.1.1算术平方根(第一课时)优秀教学案例

七年级数学下册(人教版)6.1.1算术平方根(第一课时)优秀教学案例
1.理解算术平方根的概念,掌握求一个数的算术平方根的方法。
2.能够运用算术平方根的知识解决实际问题,如计算面积、体积等。
3.了解算术平方根在实际生活中的应用,如测量、建筑设计等。
(二)过程与方法
1.通过复习平方根的概念,引导学生自主探究算术平方根的定义,培养学生的自主学习能力。
2.利用多媒体展示、实物演示等方法,让学生在直观感知的基础上,理解并掌握算术平方根的概念。
3.通过学生之间的互相评价,让学生了解自己的学习情况,发现他人的优点,学会欣赏和尊重他人。
4.教师要根据学生的学习情况,及时调整教学策略,以保证教学目标的实现。同时,要对学生的进步给予肯定和鼓励,增强他们的自信心。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个实际问题:一块土地的面积是36平方米,求它的边长。让学生思考如何解决这个问题。
3.通过小组讨论、数学游戏等形式,激发学生的学习兴趣,培养学生合作探究的能力。
4.设计一系列练习题,巩固所学知识,提高学生的解题能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和好奇心,使他们感受到数学的趣味性和魅力。
2.培养学生的自信心,使他们相信自己能够掌握算术平方根的知识,并能够运用所学知识解决实际问题。
针对这一教学目标,我设计了以下教学案例。首先,通过复习平方根的概念,引导学生回顾已学知识,为新课的学习做好铺垫。然后,通过多媒体展示、实物演示等方法,生动形象地引入算术平方根的概念,让学生在直观感知的基础上,理解并掌握算术平方根的定义。接下来,运用数学游戏、小组讨论等形式,激发一系列练习题,巩固所学知识,提高学生的解题能力。最后,结合生活实际,引导学生运用所学知识解决实际问题,培养学生的应用意识。
整个教学过程中,注重启发式教学,引导学生主动参与,积极思考,提高学生的思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导和关爱,使他们在数学学习过程中感受到成功的喜悦。通过本节课的教学,使学生对算术平方根有了更深入的理解,提高了学生的数学素养,为后续学习奠定了基础。

初中数学_算术平方根教学设计学情分析教材分析课后反思

初中数学_算术平方根教学设计学情分析教材分析课后反思

6.1.1算术平方根教学设计第一课时一、教学内容:教科书第40—44页,6.1.1算术平方根二、教学目标:1.知识与技能:(1)了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。

(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。

2.过程与方法:通过学习算术平方根,建立初步的数感和符号感,发展抽象思维。

3.情感态度与价值观:通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。

通过探究活动培养学生的动手能力和锻炼克服困难的意志,建立自信心,提高学习热情。

三、教学重点、难点:重点:算术平方根的概念。

难点:根据算术平方根的概念正确求出非负数的算术平方根。

四、教学设计过程例2:求下列各数的算术平方根。

100;4964;0.0001对于以上问题,提出思考:被开方数的大小与它的算术平方根的大小之间有什么关系呢?思考讨论:16的算术平方根与的算术平方根的结果是否相学生活动:在全班交流每个式子表示的意思,注意语言的准确性学生独立思考,解决问题。

教师关注:不同层次的学生对知识的理解程度,有针对性地讲解;学生在练习中暴露出问题,要及时反馈。

学生自由发表对本节课的理解,针对学生存在的问题,让学生之间互相讲解。

不同层次的学生对本节知识的认识程度;学生是否从不同方面谈感受;学生发表见解的勇气。

学生先独立思考,然后分组与同学交流自己的解答和理解过程。

能展示学生对算术平方根的思考过程,培养学生积极主动、独立思考良好的学习习惯。

将学生对知识的理解转化为数学技能,使学生获得成功体验,激发学生的积极性,建立学好数学的自信心。

让学生按这一模式进行小结,培养学生学习——归纳——总结——反思的良好习惯;同时通过自我评价来获得成功的快乐,提高学习的自信心。

五、板书设计六、教学后记1。

本节课是本章的第一节课,主要是要建立算术平方根的概念。

为了使学生体会引入算术平方根的必要性,也为了激发学生的学习热情,所以章前图的学习不要省略。

【人教版数学七年级下册】《6.1 平方根(第3课时)》教学设计教学反思

【人教版数学七年级下册】《6.1 平方根(第3课时)》教学设计教学反思

6.1 平方根第3课时一、教学目标【知识与技能】1.了解平方根的概念,掌握平方根的特征.2.能正确区分平方根与算术平方根的意义.3.能利用开平方与平方互为逆运算的关系,求某些非负数的平方根.【过程与方法】类比算术平方根概念探究平方根,利用平方与开平方互逆揭示开平方运算的本质,经历观察、思考、交流、总结归纳出平方根的特征.【情感态度与价值观】使学生深入体验平方与开平方的互逆关系,培养学生逆向思维解决问题的习惯.二、课型新授课三、课时第3课时共3课时四、教学重难点【教学重点】理解平方根概念,会用符号表示一个正数的平方根.【教学难点】理解平方根的意义.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2-3)1.什么叫做算术平方根?如果一个正数x 的平方等于a,那么这个正数x 叫做a 的算术平方根.2.判断下列各数有没有算术平方根,如果有,请求出它们的算术平方根.100; 1;36121 ; 0; -0.0025; (-3)2 ; -25.3.填空:(1)3²=_______, (-3)²=_______;(2)(23)2=________,=(−23)2=________; (3)0.8²=_______,(-0.8)²=_______.反过来,如果已知一个数的平方,怎样求这个数?(二)探索新知1.出示课件5-9,探究平方根的概念及性质教师问:要做一张边长是3分米的方桌面,它的面积是多少?学生答:它的面积是9平方分米.教师问:这个问题实际上就是求:32=? 这是已知底数和指数,求幂的运算.这是什么运算?学生答:这是乘方运算.教师问:反过来,要做一张面积是9平方分米的方桌面,它的边长是多少分米?学生答:它的边长是3分米.教师问:实际上就是要求出一个数,使它的平方等于9,即:()2=9,应该填什么呢?学生答:显然,括号里应是±3.教师问:桌子的边长为何是3分米?学生答:-3不符题意. ∴方桌面的边长应是3分米.教师问:你还能得到什么问题呢?学生问:如果一个数的平方等于9,这个数是多少?教师答:由于(±3)2=9 ,所以这个数是3或-3.教师问:想一想:3和-3有什么特征?学生答:3和-3互为相反数,只有符号不同.教师问:3和-3互为相反数,会不会是巧合呢?学生答:猜想不一定是巧合,需要实例吧!做一做,想一想:(1) 4的平方等于16,那么16的算术平方根就是_____.(2)25的平方等于425,那么425的算术平方根就是____. (3) 展厅地面为正方形,其面积是49 m 2,则其边长为___m. 教师依次展示学生的答案:学生1答:(1)16的算术平方根就是4.学生2答:(2)425的算术平方根就是25. 学生3答:(3)其边长为7m.教师总结如下:答案如下:(1)4;(2)25;(3)7. 教师问:平方等于16, 425 ,49的数还有吗? 学生答:还有-4,-25,-7. 教师问:填一填,想一想: 写出左圈和右圈中的“?”表示的数:学生答:如下图所示:总结点拨:(出示课件10)根据上述问题,即要找出一个数,使它的平方等于给定的数.我们抽象出下述概念:定义:如果有一个数x ,使得x ²=a ,那么我们把x 叫作a 的一个平方根,也叫作二次方根.例如: (±1)2=1,1的平方根为±1.平方根的性质:如果x 是正数a 的一个平方根,那么a 的平方根有且只有两个:x 与-x.即平方根互为相反数.教师问:121的平方根是什么?(出示课件11)学生答:121的平方根是±11.教师问:0的平方根是什么?学生答:0的平方根是0.教师问:1649的平方根是什么? 学生答:1649的平方根是±47. 教师问:-9有没有平方根?为什么?学生答:没有,因为一个数的平方不可能是负数.教师问:通过这些题目的解答,你能发现什么?(出示课件12)学生答:有些数有两个平方根,有些数有一个平方根,有些数没有平方根.教师问:正数有几个平方根?学生答:正数有2个平方根.教师问:0有几个平方根?学生答:0有1个平方根.教师问:有没有一个数的平方是负数?学生答:没有一个数的平方是负数.教师问:负数有几个平方根呢?学生答:负数没有平方根.教师问:为何负数没有平方根呢?学生答:因为任何实数的平方都为非负数,所以负数没有平方根,也没有算术平方根.总结点拨:(出示课件13)平方根的性质:1.正数有两个平方根,两个平方根互为相反数.2.0的平方根还是0.3.负数没有平方根.考点1:求平方根求下列各数的平方根:(1)100; (2) 9; (3)0.25.(出示课件14)16师生共同讨论解答如下:教师依次展示学生解答过程:学生1解:(1) ∵(±10)2=100,∴100的平方根是±10;学生2解:(2) ∵(±34 )2=916 , ∴916 的平方根是±34; 学生3解:(3) ∵(±0.5)2=0.25,∴0.25的平方根是±0.5. 方法总结:正确理解平方根的概念,明确是求哪一个数的平方根. 出示课件15,学生自主练习后口答,教师订正.2.出示课件16-17,探究平方根的读法和表示教师问:非负数a 的平方根表示为什么呢?学生答:非负数a 的平方根表示为±√a .教师问:±√a 的各部分表示什么意思呢?师生一起解答:一个正数a 的正平方根,用“√a ”表示,(读作“根号a”).又叫a 的算术平方根.a 的负平方根,用“-√a ”表 示a 的算术平方根的相反数,(读作“负根号a”). 合起来,一个正数a 的平方根就用“ ±√a ”表示,(读作“正、负根号a”)如下图所示:出示课件17,学生自主练习后口答,教师订正.考点2:利用平方根的表示求平方根分别求下列各数的平方根:(1)36;(2)259 ;(3)1.21 (出示课件18) 学生独立思考后,师生共同分析后解答.教师依次展示学生解答过程:学生1解:(1)由于(±6)²=36,因此36的平方根是6与-6. 即±√36=±6.学生2解:(2)由于(±53)²=259,因此259的平方根是53与-53. 即±√259=±53. 学生3解:(3)由于(±1.1)²=1.21,因此1.21的平方根是1.1与-1.1.即±√1.21=±1.1.出示课件20,学生自主练习后口答,教师订正.3.出示课件21-24,探究平方与开方的关系教师出示问题:请完成下面的题目:学生答:答案如下图所示:教师问:上面的运算是平方运算,什么是平方运算呢?学生答:已知一个数,求它的平方的运算,叫作平方运算.教师问:反之,已知一个数的平方,求这个数的运算是什么?师生一起解答:求一个数的平方根的运算叫作开平方.教师问:开平方与平方是什么关系?学生答:互为逆运算.教师总结点拨:(出示课件23)已知底数和指数求幂已知幂和指数求底数教生一起完成下面的题目:总结点拨:(出示课件25)平方根与算术平方根的联系与区别:考点3:开平方的有关计算求下列各式的值:(出示课件26)(1)√36;(2)-√0.81;(3)±√499学生独立思考后,师生共同分析后解答. 教师依次展示学生解答过程:学生1解:(1)√36=6;学生2解:(2)-√0.81=−0.9;学生3解:(3)±√499=±73.出示课件27,学生自主练习,教师给出答案.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.(三)课堂练习(出示课件28-33)练习课件第28-33页题目,约用时20分钟.(四)课堂小结(出示课件34)(五)课前预习预习下节课(6.2第1课时)的相关内容.知道立方根、三次方根、开立方的定义及利用计算器求立方根的步骤.七、课后作业1、教材第46-47页练习第1,2,3,4题.2、七彩课堂第47-48页第3、7、9题.八、板书设计6.1.平方根第3课时1、平方根定义2、归纳正数有两个平方根,0的平方根是0;负数没有平方根3、考点讲解考点1 考点2 考点3九、教学反思成功之处:本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.整节课以“问题情境—合作探究—分析计算—总结升华”为主线,使学生亲身体验根据平方根计算和算术平方根计算的探索和验证过程,努力做到由传统的数学课堂向实验课堂转变.不足之处:在教学过程中,对于平方根的作用、算术平方根深入讨论,有些学生只是知道要取算术平方根,对于其中的原因根本没有明白,部分学生对于平方根的理解还不够深刻.补救措施:适当增加学生熟悉的实例,通过对比,使学生明白为什么要取算术平方根,并能更进一步理解平方根的含义,掌握根据平方根和算术平方根的异同.。

《6.1.1算术平方根》教学设计

《6.1.1算术平方根》教学设计

知识点 编号 学
学习 目标
具体描述语句
习 6.1.1-1 目 标 6.1.1-2 描 述 6.1.1-3
知识和能力
过程和方法 情感态度和
价值观
1.了解算术平方根的概念; 2.会使用二次根号表示非负数的算术平方根; 3.能理解二次根式中双重非负性的含义,并利用性质解决问题。 1.经历算术平方根概念的形成过程,通过从特殊到一般理解算术平 方根的定义; 2.通过讲解例题,学生学会模仿格式,书写过程;会求正数的算术 平方根并会用符号表示; 3.通过引导、启发学生探索、合作交流等数学活动,使学生掌握研 究问题的方法。 1.让学生体验数学与生活的联系,激发学生的学习兴趣; 2.通过挑战自我,勇攀高峰,锻炼学生克服困难的勇气。
念、掌握解题方
法。

6.1.1-3 情感态度

和价值观
基础+提高
F、G、 G、H J
课件(文字)效果与检测

通过拓展延伸,
下载
进 一 步 加 深 对15 分
概念的理解。
自制

①媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提 供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔 视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.自定义。
通过本节课的学习,目的是让学生正确深刻的理解算术平方根的概念,并且利用二次根
式的性质解决问题,在教学中虽然也采用了由浅入深、不断深化的教学,让学生体会概念的形
教 成过程也是思维过程,在教学中加强概念形成过程的教学,通过设计不同层次的题目来提高学 学 生的思维水平,尽量使概念过程化,做到讲清概念,加强训练,逐步深化,但是授课之余发现 反 部分学生对算术平方根的概念的理解不是很到位,需要加深认识,通过做题发现个别学生对二 思 次根式的双重非负性的认知不够深,做题出现问题,通过反思教学,希望对以后的课堂教学有

人教版七年级数学下册 教学设计6.1 第3课时《算术平方根和平方根》

人教版七年级数学下册 教学设计6.1 第3课时《算术平方根和平方根》

人教版七年级数学下册教学设计6.1 第3课时《算术平方根和平方根》一. 教材分析本节课的教学内容是算术平方根和平方根。

这是人教版七年级数学下册第六章第一节的一部分,主要介绍了平方根和算术平方根的概念、性质和运算。

这一部分内容是学生学习平方根和算术平方根的基础,对于后续学习二次根式、勾股定理等知识具有重要意义。

教材通过例题和练习题,帮助学生掌握平方根和算术平方根的求法,提高学生的运算能力。

二. 学情分析学生在之前的学习中已经掌握了有理数的乘方、平方根的概念,为本节课的学习奠定了基础。

然而,对于算术平方根的概念和求法,部分学生可能还存在一定的困惑。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的实际需求进行有针对性的教学。

三. 教学目标1.理解平方根和算术平方根的概念,掌握它们的性质和运算方法。

2.能够运用平方根和算术平方根解决实际问题,提高运算能力。

3.培养学生的逻辑思维能力和团队合作精神。

四. 教学重难点1.平方根和算术平方根的概念及其区别。

2.平方根和算术平方根的求法。

3.运用平方根和算术平方根解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入平方根和算术平方根的概念,激发学生的学习兴趣。

2.小组讨论法:让学生在小组内讨论平方根和算术平方根的性质和运算方法,培养学生的团队合作精神。

3.案例教学法:通过例题和练习题,让学生巩固所学知识,提高运算能力。

4.启发式教学法:引导学生思考问题,培养学生的逻辑思维能力。

六. 教学准备1.教学课件:制作课件,展示平方根和算术平方根的概念、性质和运算方法。

2.练习题:准备一些有关平方根和算术平方根的练习题,用于巩固所学知识。

3.教学工具:准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用生活实例,如正方形的面积公式,引入平方根的概念。

引导学生思考:什么是平方根?如何求一个数的平方根?2.呈现(10分钟)介绍平方根的性质和运算方法,引导学生总结平方根的定义和求法。

【人教版数学七年级下册】《6.1 平方根(第1课时)》教学设计教学反思

【人教版数学七年级下册】《6.1 平方根(第1课时)》教学设计教学反思

6.1 平方根第1课时一、教学目标【知识与技能】1.了解算术平方根的概念,会表示正数的算术平方根,并了解算术平方根的非负性.2. 会求一些数的算术平方根,并用算术平方根符号表示.3.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根.【过程与方法】通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.【情感态度与价值观】1. 通过学习算术平方根,认识数学与人类生活的密切联系.2. 通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情.二、课型新授课三、课时第1课时共3课时四、教学重难点【教学重点】算术平方根的意义及求法.【教学难点】算术平方根的概念,对符号的理解.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)同学们,你们知道宇宙飞船离开地球进入轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度v1 (m/s )而小于第二宇宙速度v2 (m/s). v1、v2的大小满足v12=gR, v22=2gR, 其中,g是物理中的一个常数, g≈9.8m/s2 , R是地球半径,R≈6.4×10 6 m.怎样求v1和v2呢?(二)探索新知1.出示课件4-6,探究算术平方根的概念教师问:学校要举行美术作品比赛,小鸥同学很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?学生答:因为52 =25, 所以这块正方形画布的边长应取5dm. 教师出示完成下题:填表:教师依次展示学生答案:学生1答:学生2答:学生3答:学生4答:教师总结如下:填写如下表:教师问:你能从表1发现什么共同点吗?学生答:已知一个正数,求这个正数的平方,这是平方运算. 教师出示问题:完成下表:教师依次展示学生答案:学生1答:学生2答:学生3答:学生4答:教师总结如下:填写如下表:教师问:你能从表2发现什么共同点吗?学生答:已知一个正数的平方,求这个正数.教师问:表1和表2中的两种运算有什么关系?学生答:互为逆运算.总结点拨:(出示课件7)定义:一般地,如果一个正数 x 的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根. a的算术平方根记为√a,读作“ 根号a” .规定:0的算术平方根是0,即√0=0.教师问:怎么用符号来表示一个数的算术平方根?(出示课件8)教师问:一个正数的算术平方根有几个?学生答:一个正数的算术平方根有1个.教师问:0的算术平方有几个?学生答:0的算术平方根有1个,是0.教师问:-1有算术平方根吗?负数有算术平方根?学生答:负数没有算术平方根.总结点拨:一个正数的算术平方根只有一个,是一个正数,0的算术平方根是0.考点1:求一个数的算术平方根求下列各数的算术平方根:(1)100 ;(2)49;(3)0.0001.(出示课件10)64师生共同讨论解答如下:学生1解:(1)因为 10²=100 ,所以100的算术平方根是10 .即√100 =10.学生2解:(2)因为 (78)2=4964,所以4964的算术平方根是78.即√4964=78.学生3解:(3)因为0.012=0.0001, 所以0.0001的算术平方根是0.01 . 即√0.0001 =0.01.总结点拨:从例题可以看出:被开方数越大,对应的算术平方根也越大,这个结论对所有正数都成立.出示课件13,学生自主练习后口答,教师订正. 2.出示课件14,探究算术平方根的双重非负性 教师问:负数有算术平方根吗? 学生答:负数没有算术平方根. 教师问:√a 是什么数? 学生答:√a 是正数或0.教师问:√a 中的a 可以取任何数吗? 学生答:a 的值为非负数. 总结点拨:(出示课件14)√a 的双重非负性:1.被开方数a≥0;2.a 的算术平方根√a ≥0. 也就是说,非负数的“算术”平方根是非负数.负数不存在算术平方根,即当 a <0 时,√a 无意义.考点2:算术平方根有意义的识别下列各式是否有意义,为什么?(出示课件15)(1)√−4;(2)-√4;(3)√(−3)2;(4)√1102.学生独立思考后,师生共同解答.解:(1)无意义;(2)有意义;(3)有意义;(4)有意义.出示课件16,学生自主练习后口答,教师订正.考点3:利用非负性求字母的值若|m-1| +√n+3=0,求m+n的值.(出示课件17)学生独立思考后,师生共同解答.解: 因为|m-1| ≥0,√n+3≥0,又|m-1| +√n+3=0,所以 |m-1| =0,√n+3=0,所以m=1,n=-3,所以m+n=1+(-3)=-2.师生共同归纳:几个非负数的和为0,则每个数均为0,初中阶段学过的非负数有绝对值、偶次幂及一个数的算术平方根.出示课件18,学生自主练习后口答,教师订正.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧.(三)课堂练习(出示课件19-24)练习课件第19-24页题目,约用时20分钟.(四)课堂小结(出示课件25)0,0a(五)课前预习预习下节课(6.1第2课时)的相关内容. 知道利用计算器开平方的步骤和估算的步骤. 七、课后作业1、教材第41页练习第1,2题.2、七彩课堂第47-48页第2、10题. 八、板书设计: 1.知识梳理算术平方根⎩⎪⎨⎪⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎪⎨⎪⎧a ≥0a ≥0 2.考点讲解考点1 考点2 考点3 九、教学反思成功之处:让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.不足之处:课堂上对学生的能力把握不对位,认为对负数没有算术平方根很好理解,所以处理不够细致,做练习时发现有些学生不理解,还需要加强练习.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档