(完整版)《算术平方根》教学设计

合集下载

算术平方根教学设计10篇

算术平方根教学设计10篇

算术平方根教学设计10篇《平方根》教案篇一教学设计示例一.教学目标1.会用计算器求数的平方根;2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。

二.教学重点与难点教学重点:用计算器求一个正数的平方根的程序教学难点:准确用计算器求解一个正数的平方根三.教学方法讲练结合四.教学手段实物投影仪,计算器五.教学过程在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01,等数的平方根,但对于如:2,3,,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。

具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。

复习提问学生有关乘方如何用计算器运算的步骤。

熟悉计算器基本键的功能。

现在讲计算器打开,按键,屏幕上显示“0”此时可以进行运算。

例1.用计算器求的值。

分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。

解:用计算器求的步骤如下:小结:在求解的过程中,由于要用到这个键上方的功能,这就需要用上方标有“2F”的键来转换。

例2.用计算器求的值。

(保留4个有效数字)解:用计算器求的步骤如下:小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。

例3.用计算器求的'值。

解:用计算器求的步骤如下:因为计算结果要求保留4个有效数字,例4.用计算器求1360.57的平方根。

解:用计算器求1360.57平方根的步骤如下:因为计算结果要求保留4个有效数字,小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。

例5.用计算器求值:分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。

算术平方根优秀教学设计

算术平方根优秀教学设计

课题:6.1平方根第一课时算术平方根〖学习目标〗:(1)了解算术平方根的概念,懂得使用根号表示正数的算式平方根。

(2)会求正数的算数平方根并会用符号表示。

(3)让学生体验数学与生活实际紧密联系着的,激发学生的学习兴趣。

〖学习重、难点〗:(1)重点:算术平方根的概念(2)难点:算术平方根的概念〖导学过程〗:一.身边趣事(1): 为了趣味接力比赛,要在运动场上圈出一个面积为100平方米的正方形场地,这个正方形场地的边长为多少?小鸥想装饰自己的房间,他想裁出一块面积为25dm2的正方形相框,镶上自己喜欢的明星tfboys,这块正方形画布的边长应取多少?小鸥还要准备一些面积如下的正方形画布,请你帮他把这些正方形的边长都算出来:正方形1 9 16 36的面积边长二.算术平方根的概念:一般地,如果一个的平方等于a,即 ,那么这个叫做a 的。

a的算术平方根记为:读作:三.练一练(一)我会填1. a的算术平方根(a≥0)表示为_______.2. 32 = 9,则9的____________是3,表示为________ 。

3. 0的算术平方根是_____,表示为________.(二)我会判(1)5是25的算术平方根;(2)36的算术平方根是 -6 ;(3)0的算术平方根是0;(4)0.01是0.1的算术平方根;四.讲练结合例1.求下列各数的算术平方根:(3)0.0001 (1)100 (2)4964练一练:1.求下列各数的算术平方根:(3)32 (1)0.0025 (2)115492.求下列各式的值:(3)−√9(4)√22(1)√1 (2)√925五.探究:探究11.被开方数a可以取任何数吗?2.√a是什么数?练一练:1.下列各式是否有意义,为什么?(1)−√3 (2)√−3 (3)√(−3)2 (4)√1102.下列各式中,x为何值时有意义?(1)√−x (2)√x2+1探究2:拼一拼1.你能用两个面积为1 dm2的小正方形拼成一个面积为2 dm2的大正方形吗?2.求大正方形的边长为多少?六.估计大小:√2在那两个整数之间?七.课堂小结:通过这节课的学习,你学到了哪些新知识?谈谈你的收获。

算术平方根【公开课教案】

算术平方根【公开课教案】

2.2 平方根第1课时 算术平方根第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数,但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=; (2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ; 2.9的算术平方根是 ;3.2)32(的算术平方根是 ; 4.若22=+m ,则=+2)2(m .二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1. 三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x 的平方等于a ,即a x 2,那么这个正数x 就叫做a 的算术平方根,”的“正数x ”,即被开方数是正的,由平方的意义,a 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.2.发展思维、适度拓展在教学中,根据学生的实际情况,在学有余力的情况下,可以对a的双重非负性的知识进行适当的拓展.4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式 已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52. 方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 18+0.4 216+0.8 324+1.2 432+1.6 540+2.0 … …解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2.根据算术平方根的概念求出非负数的算术平方根;(重点)3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念 【类型一】 求一个数的算术平方根 求下列各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402. 解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32; (3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质 【类型一】 含算术平方根式子的运算 计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1.方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计 算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。

算术平方根—教学设计及点评

算术平方根—教学设计及点评

§6.1《平方根》第1课时《算术平方根》教案一、教学内容分析:教材分析:《算术平方根》是人教版七年级下册第六章第一节《平方根》的第1课时的学习内容,它为后续学习无理数,数集的扩充以及二次根式的学习奠定基础,在教材中起到承上启下的作用。

学生分析:学生在小学阶段、七年级上册《有理数》的学习,对平方运算有一定的认识,这为过渡到本节内容的学习起到了铺垫的作用。

二、教学目标分析:知识目标:体会“已知正方形面积求边长和已知边长求面积”的互逆过程,理解算术平方根的概念。

技能目标:会用“”表示一个非负数的算术平方根;会用平方运算求某些非负数的算术平方根。

能力目标:体会引入“”的必要性,建立数感和符号意识,会用“”表示非负数的算术平方根。

三、教学重点难点分析:教学重点:算术平方根的概念和求法。

教学难点:“根号”产生的必要性,算术平方根的存在性,理解“”的意义。

四、教学准备:预备知识:有理数运算法则、几何图形初步。

教学方法:启发式。

教学道具:剪刀、两块1dm²的正方形纸片、透明胶纸。

五、教学过程:预计时间教学内容教师活动学生活动教学评价5分钟一、引入问题:1.学校要举行美术作品比赛,小鸥想裁出一块面积为25dm²的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?2.填表:1.正方形画布的边长应取多少?你是怎么算出来的?2.请你填写下列表格,体会正方形面积和边长的关系。

通过填表,你1.因为5²=25,所以这个正方形画布的边长取5dm.2.面积为1,边长为1;面积为4,边长为2……通过情景引入,让学生体会“已知正方形面积求边长和已知边长求面积”的互逆过程,为算术平方根的概念的引出四、探究:2的算术平方根是,的大小;在数轴上的什么位置呢(借助数轴估计)?六、小结解决一类新问题,已知一个正数的平方,求这个正数的问题(即已知任意一个正方形的面积求它的边长的问题).定义:如果一个正数x 的平方等于a,即x²=a,那么这个正数x 叫做a 的算术平方根.同学们,这节课我们由平方运算开始,学习了一种新的数,算术平方根,认识了一种新的运算,开方运算,由旧到新,数形结合,你有什么收获和疑问呢?答:1.解决新问题:已知一个正数的平方,求这个正数;2.理解新概念:算术平方根的概念;3.注意:0的算术平方根是0,负数没有算术平方根 观察学生能否用自己的方式将本节课的知识、技能、能力等进行归纳.理解算术平方根的定义及其表示方法.七、作业: 课本习题6.1P47 第1、2、6题6.1.1 算术平方根新授课 例题讲解 学生活动一、为什么引入根号? 例1. 求下列各数的算术平方根 二、定义:如果一个正数x (1)100;(2)4964;(3)0.0001的平方等于a,即x²=a,那么 这个正数x 叫做a 的算术平 方根.对林惠同志算术平方根的点评陈远刚广东省惠州市教育科学研究院林惠老师尊重教材、根据教材来设计教学环节,是一节师生互动有效,值得回味的优秀课。

算术平方根—教学设计及点评(获奖版)

算术平方根—教学设计及点评(获奖版)

§6.1《平方根》第1课时《算术平方根》教案广东省惠州市惠阳区崇雅实验学校初中部林惠一、教学内容分析:教材分析:《算术平方根》是人教版七年级下册第六章第一节《平方根》的第1课时的学习内容,它为后续学习无理数,数集的扩充以及二次根式的学习奠定基础,在教材中起到承上启下的作用。

学生分析:学生在小学阶段、七年级上册《有理数》的学习,对平方运算有一定的认识,这为过渡到本节内容的学习起到了铺垫的作用。

二、教学目标分析:知识目标:体会“已知正方形面积求边长和已知边长求面积”的互逆过程,理解算术平方根的概念。

技能目标:会用“”表示一个非负数的算术平方根;会用平方运算求某些非负数的算术平方根。

能力目标:体会引入“”的必要性,建立数感和符号意识,会用“”表示非负数的算术平方根。

三、教学重点难点分析:教学重点:算术平方根的概念和求法。

教学难点:“根号”产生的必要性,算术平方根的存在性,理解“”的意义。

四、教学准备:预备知识:有理数运算法则、几何图形初步。

教学方法:启发式。

教学道具:剪刀、两块1dm²的正方形纸片、透明胶纸。

五、教学过程:预计时间教学内容教师活动学生活动教学评价5分钟一、引入问题:1.学校要举行美术作品比赛,小鸥想裁出一块面积为25dm²的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?2.填表:1.正方形画布的边长应取多少?你是怎么算出来的?2.请你填写下列表格,体会正方形面积和边长的关系。

通过填表,你1.因为5²=25,所以这个正方形画布的边长取5dm.2.面积为1,边长为1;面积为4,边长为2……通过情景引入,让学生体会“已知正方形面积求边长和已知边长求面积”的互逆过程,为算术平方根的概念的引出四、探究:2的算术平方根是,的大小;在数轴上的什么位置呢(借助数轴估计)?六、小结解决一类新问题,已知一个正数的平方,求这个正数的问题(即已知任意一个正方形的面积求它的边长的问题).定义:如果一个正数x 的平方等于a,即x²=a,那么这个正数x 叫做a 的算术平方根.同学们,这节课我们由平方运算开始,学习了一种新的数,算术平方根,认识了一种新的运算,开方运算,由旧到新,数形结合,你有什么收获和疑问呢?答:1.解决新问题:已知一个正数的平方,求这个正数;2.理解新概念:算术平方根的概念;3.注意:0的算术平方根是0,负数没有算术平方根 观察学生能否用自己的方式将本节课的知识、技能、能力等进行归纳.理解算术平方根的定义及其表示方法.七、作业: 课本习题6.1P47 第1、2、6题6.1.1 算术平方根新授课 例题讲解 学生活动一、为什么引入根号? 例1. 求下列各数的算术平方根 二、定义:如果一个正数x (1)100;(2)4964;(3)0.0001的平方等于a,即x²=a,那么 这个正数x 叫做a 的算术平 方根.对林惠同志算术平方根的点评陈远刚广东省惠州市教育科学研究院林惠老师尊重教材、根据教材来设计教学环节,是一节师生互动有效,值得回味的优秀课。

八年级数学下册《算术平方根》教案、教学设计

八年级数学下册《算术平方根》教案、教学设计
-设计有针对性的练习题,让学生在练习中巩固所学知识,突破重难点。
4.课堂小结,总结提升
-通过课堂小结,让学生回顾本节课所学内容,加深对算术平方根的理解。
-教师总结学生在学习过程中的优点和不足,提出改进措施,促进学生的全面发展。
5.课后拓展,提高应用能力
-布置课后作业,让学生运用算术平方根知识解决实际问题,提高学生的应用能力。
1.请同学们完成课本第chapter页的练习题,题目涵盖了算术平方根的定义、性质和求法等知识点,通过练习,加深对算术平方根的理解。
2.结合生活实际,找一找身边的例子,运用算术平方根知识解决问题,并简要说明解题过程。例如:计算家中某间房屋的面积、求解物体速度等。
3.小组合作,探讨以下问题:
a.算术平方根与平方根有什么区别和联系?
b.如何求解含有算术平方根的实际问题?
c.在计算过程中,如何避免符号和精度问题?
4.针对课堂学习中的难点,请同学们自主查找相关资料,总结求解算术平方根的方法和技巧,并在下节课分享。
5.结合课后拓展阅读,了解算术平方根在科学研究和生产生活中的应用,提高学生的数学素养。
作业要求:
1.认真完成作业,书写规范,保持卷面整洁。
4.设计丰富的练习题,巩固所学知识,培养学生的逻辑思维能力和解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的热情。
2.培养学生勇于探索、善于合作的精神,增强学生的自信心。
3.使学生认识到算术平方根在日常生活和科学计算中的重要性,提高学生的数学应用意识。
4.培养学生严谨、细致的学习态度,养成良好的学习习惯。
3.每个小组汇报解题过程和答案,其他小组进行评价和补充。
(四)课堂练习,500字

人教版七年级下册6.1.1《算术平方根》(教学设计)

人教版七年级下册6.1.1《算术平方根》(教学设计)

人教版七年级下册6.1.1《算术平方根》(教学设计)一. 教材分析《算术平方根》是人教版七年级下册数学教材第六章第一节的内容。

本节课主要介绍了算术平方根的概念、性质及其求法。

通过学习本节课,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够应用算术平方根解决实际问题。

教材通过例题和练习题的形式,帮助学生巩固所学知识,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了有理数、整数、分数等基础知识,具备了一定的逻辑思维能力和运算能力。

但部分学生对平方根的概念可能还比较模糊,需要通过实例和练习来进一步理解。

此外,学生可能对算术平方根的求法存在一定的困惑,需要通过教师的引导和同学的讨论来掌握。

三. 教学目标1.知识与技能目标:理解算术平方根的概念,掌握求算术平方根的方法,能够熟练运用算术平方根解决实际问题。

2.过程与方法目标:通过自主学习、合作交流,培养学生探究问题和解决问题的能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,激发学生学习数学的积极性。

四. 教学重难点1.重点:算术平方根的概念及其求法。

2.难点:算术平方根在实际问题中的应用。

五. 教学方法1.启发式教学:通过问题引导,激发学生的思考,培养学生的探究能力。

2.合作学习:学生进行小组讨论,促进学生之间的交流与合作,共同解决问题。

3.实例教学:通过具体的例子,让学生更好地理解算术平方根的概念和求法。

4.练习巩固:通过适量练习,巩固所学知识,提高学生的应用能力。

六. 教学准备1.教材:人教版七年级下册数学教材。

2.课件:制作课件,包括算术平方根的定义、性质、求法及应用等内容。

3.练习题:准备一些有关算术平方根的练习题,用于课堂练习和巩固。

4.板书:准备黑板,用于书写重要概念和步骤。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的平方根知识,为新课的学习做好铺垫。

例如:“请大家回忆一下,平方根的概念是什么?我们已经学习了哪些求平方根的方法?”2.呈现(10分钟)教师展示课件,介绍算术平方根的定义、性质和求法。

2.2算术平方根(教案)

2.2算术平方根(教案)
-算术平方根的应用:能够将算术平方根应用于解决实际问题的情境中,如计算面积、体积等。
2.教学难点
-无理数算术平方根的理解:解释无理数算术平方根的存在,如√2、√3等,并理解它们不能表示为两个整数的比。
-估算无理数算术平方根的精确度:如何通过近似计算得到一个无理数算术平方根的近似值,并理解误差的概念。
1.讨论主题:学生将围绕“算术平方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
首先,算术平方根的定义对于一些学生来说可能还是有点抽象。虽然通过正方形边长的例子帮助他们理解了算术平方根的实际意义,但在抽象出数学概念的过程中,部分学生仍然感到困惑。在今后的教学中,我需要更多地借助直观模型和实际例子,让学生更好地理解算术平方根的定义。
其次,无理数算术平方根这一部分是学生们的一个明显难点。他们对无理数的概念本身就感到陌生,更不用说理解无理数算术平方根了。在讲解这一部分时,我意识到需要更耐心地引导学生们去感受无理数的无限不循环小数特性,以及如何估算无理数算术平方根的精确度。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了算术平方根的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对算术平方根的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对算术平方根的概念和计算方法掌握得还不错,但确实存在一些难点需要我们去关注和解决。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《算术平方根》教学设计
都匀市杨柳街中学张启航
教材:人教版《义务教育课程标准实验教科书数学》七年级下
目标:1、知识与技能
(1)了解算术平方根的概念,懂得使用根号表示正数的算术平方根。

(2)会求正数的算术平方根并会用符号表示。

2、过程与方法
(1)经历算术平方根概念的形成过程,理解平方与开方之间是互为
逆,会求正数的算术平方根并会用符号表示。

(2)通过引导、启发学生探索、合作交流等数学活动,使学生掌握
研究问题的方法。

3、情感态度与价值观
让学生体验数学与生活实际是紧密联系着的,激发学生的学习兴趣。

重点:算术平方根的概念。

难点:算术平方根的概念。

学情、教法分析:
《算术平方根》是人教版教材七年级数学第6章第一节的内容。

在此之前,学生们已经掌握了数的平方,这为过渡到本节内容的学习起到了铺垫的作用。

本课是《实数》的开篇第一课,掌握好算术平方根的概念和计算,为今后学习根式运算、方程、函数等知识作出了铺垫,提供了知识积累。

本节课中重难点不多,利于学生对知识的掌握,利于学生能力的发展。

因此,本节课通过引导、启发学生探索、交流、
合作等数学活动,初步培养学生分析问题、解决问题的能力,使学生掌握研究问题的方法,从而学会学习。

教具:课件、计算机、投影仪。

过程:
一、创设情境,复习引入
1、我们知道,要求正方形的面积,只要知道边长,利用面积公式即可救出;知道面积,怎样求边长呢?如:“学校要举行美术作品比赛,小欧想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?”
(1)谁来说这块正方形画布的边长应取多少分米?你是怎么算出来的?
(2)大家说了很多方法,我们知道52=25,所以这个正方形画布的边长应取5分米;现在请同学们根据这一方法填写下表:
2、想一想:如果正方形的面积是10 dm2,它的边长是多少?
表中的数,我们很容易知道是什么数的平方,但10是什么数的平方呢?这就是我们今天要学习的“算术平方根”,学习后大家说知道了。

二、感知新知识
1、算术平方根的概念
(1)从填表知道正数3的平方等于9,我们把正数3叫做9的算术平方根;正数4的平方等于16,我们把正数4叫做16的算术平方根。

(2)归纳概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。

a的算术平方根记为a,读作“根号a”,a叫做被开方数,规定:0的算术平方根是0。

(3)上述概念可归纳为:在等式x2=a(x≥0)中,规定x=a
2、教学例1
例1、求下列各数的算术平方根
49(3)0.0001
(1)100 (2)
64
①以100为例进行分析:100的算术平方根,就是求一个数x,使x2=100,因为102=400,所以100的算术平方根是10,记作100=10。

解:因为102=400,所以100的算术平方根是10,即100=10。

②学生独立完成(2)(3)的分析后,同桌互相交流。

③在学生交流的基础上2人板书,并根据板书的情况进行订正。

3、试一试
求下列各数的算术平方根
81
(1)121 (2) 0.25 (3)
169
4、我们再回到“正方形的面积是10 dm2,它的边长是多少?”现在学习了算术平方根,你能说出10的算术平方根吗?
(1)同桌交流讨论;
(2)根据讨论结果,说出下列各数的算术平方根:
2 5 15 38 1
5、思考:负数有算术平方根吗?为什么?
(学生思考后,抽几名学生回答,再根据回答的情况进行讲解。


6、教学例
求下列各式的值: (1) 81 (2)100 (3)25
9
的值,实际上是求81的什么?怎样计算?
(根据学生的回答,指导学生解答 解 :81=9)
②指导学生余下的两题。

三、反馈与练习
1、求下列各数的算术平方根。

(1)0.0025 (2)144 (3)32
2、求下列各式的值。

(1)1 (2(3)22 (4) -81
4 3、下列式是否有意义,为什么?
(1)121- (2)-5 (3)22- (4) 221⎪⎭
⎫ ⎝⎛- 4、根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:
_______,=_______,=_______,
=_______,_______,_______,
_______,_______,_______.
四、小结:
这节课我们学习了“算术平方根”,你有哪些收获,能总结一下吗? 学生自由发表对本节课的理解,教师归纳如下:
(1)算术平方根是非负数;
(2)被开方数是非负数;
(3)规定:零的算术平方根是零;
五、作业:
课本P47习题6.1第1、2题.。

相关文档
最新文档