(完整版)3.5算术平方根与平方根教案
算术平方根教学设计10篇

算术平方根教学设计10篇《平方根》教案篇一教学设计示例一.教学目标1.会用计算器求数的平方根;2.通过用计算器求值及近似值计算,提高学生的运算能力和动手能力;3.通过利用计算器求值体验现代科技产品迅速、精确的功能,激发学习知识的兴趣。
二.教学重点与难点教学重点:用计算器求一个正数的平方根的程序教学难点:准确用计算器求解一个正数的平方根三.教学方法讲练结合四.教学手段实物投影仪,计算器五.教学过程在前面我们已学过平方根的概念,现在已掌握了一些数的平方根,如4,25,0.01,等数的平方根,但对于如:2,3,,0.3的平方根就不能像前面的数那样容易求解了,只能用根号表示。
具体的值或近似值如何求解的?在乘方时曾讲过毅力计算器求解,今天我们来研究如何用计算器求解一个数的平方根。
复习提问学生有关乘方如何用计算器运算的步骤。
熟悉计算器基本键的功能。
现在讲计算器打开,按键,屏幕上显示“0”此时可以进行运算。
例1.用计算器求的值。
分析:首先要学生熟悉计算器基本键的功能,对于平方根运算尤其要掌握“2F”的功能。
解:用计算器求的步骤如下:小结:在求解的过程中,由于要用到这个键上方的功能,这就需要用上方标有“2F”的键来转换。
例2.用计算器求的值。
(保留4个有效数字)解:用计算器求的步骤如下:小结:由于计算器的结果较精确小数的位数较多,在遇到开方开不尽的情况下,如无特殊说明,计算结果一律保留四个有效数字。
例3.用计算器求的'值。
解:用计算器求的步骤如下:因为计算结果要求保留4个有效数字,例4.用计算器求1360.57的平方根。
解:用计算器求1360.57平方根的步骤如下:因为计算结果要求保留4个有效数字,小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。
例5.用计算器求值:分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。
平方根教学设计(教案)

平方根教学设计(教案)章节一:平方根的概念引入教学目标:1. 让学生理解平方根的定义。
2. 让学生掌握求一个数的平方根的方法。
教学内容:1. 引入平方根的概念,通过举例让学生感受平方根的实际意义。
2. 讲解平方根的性质,如正数的平方根有两个,零的平方根是零,负数的平方根不存在。
教学活动:1. 利用实际问题引入平方根的概念,如“一个正方形的边长是a,求它的面积”。
2. 引导学生思考,如何求一个数的平方根,学生可以通过计算、估算等方式尝试求解。
章节二:平方根的运算规则教学目标:1. 让学生掌握平方根的运算规则。
2. 让学生能够熟练地进行平方根的计算。
教学内容:1. 讲解平方根的运算规则,如加减乘除的运算规则。
2. 通过例题让学生理解平方根的运算规则,并进行练习。
教学活动:1. 通过例题讲解平方根的运算规则,如(√a)²= a,(√a)×(√b)= √(ab)等。
2. 让学生进行平方根的计算练习,教师可以提供一些练习题,让学生进行计算和解答。
章节三:平方根的应用教学目标:1. 让学生理解平方根在实际问题中的应用。
2. 让学生能够运用平方根解决实际问题。
教学内容:1. 通过实际问题讲解平方根的应用,如求解方程、求解不等式等。
2. 通过例题让学生理解平方根的应用,并进行练习。
教学活动:1. 通过实际问题引入平方根的应用,如求解方程x²= 9。
2. 引导学生思考,如何运用平方根解决实际问题,学生可以通过计算、估算等方式尝试求解。
章节四:平方根的拓展教学目标:1. 让学生了解平方根的拓展知识。
2. 让学生能够运用平方根的拓展知识解决实际问题。
教学内容:1. 讲解平方根的拓展知识,如平方根的乘积、平方根的倒数等。
2. 通过例题让学生理解平方根的拓展知识,并进行练习。
教学活动:1. 通过例题讲解平方根的拓展知识,如(√a)×(√b)= √(ab),(√a)⁻¹= √a⁻¹等。
平方根 优秀教案

平方根【教学目标】1.了解平方根的概念、开平方的概念。
平方根概念:如果一个数的平方等于a ,那么这个数叫做a 的平方根,也称为二次方根。
也就是说,如果2x a =,那么x 就叫做a 的平方根。
开平方概念:求一个数a 的平方根的运算,叫做开平方。
2.明确算术平方根与平方根的区别与联系。
算术平方根的定义:一个非负数的正的平方根叫做它的算术平方根 ,特别的,0的算术平方根为0整数a 有两个平方根,其中正的平方根,也叫做a 的算术平方根。
0只有一个平方根,0的平方根也叫做0的算术平方根,即00=。
3.进一步明确平方与开方是互为逆运算。
开平方与平方互为逆运算。
因此,我们可以通过平方运算来求一个数的平方根。
a 的负平方根a 的平方根被开方数根号【教学重难点】平方根与算术平方根的联系与区别1.联系:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种。
(2)存在条件相同:平方根和算术平方根都是只有非负数才有。
(3)0的平方根,算术平方根都是0.2.区别:(1)定义不同:“如果一个数的平方等于a ,这个数就叫做a 的平方根”;“非负数a 的非负平方根叫a 的算术平方根”。
(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个。
(3)表示法不同:正数a 的平方根表示为±a ,正数a 的算术平方根表示为a 。
(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个。
【教学过程】一、自学指导什么样的数有平方根?算术平方根与平方根的区别与联系是什么?谈谈你的看法?负数为什么没有平方根,即负数不能进行开平方运算的原因是什么?什么叫开平方呢?我们共学了几种运算呢,这几种运算之间有怎样的联系呢?一个正数有几个平方根?0有几个平方根?二、自学检测:1.(1)一个正数有 个平方根。
(2)0有 个平方根,是(3)负数有 个平方根 (4)25的平方根是_________;(5)2)5(- =_________; (6)(5)2=_________。
教案名称平方根

教案名称平方根教案名称:平方根一、教学目标通过本节课的学习,学生应能够:1. 掌握平方根的概念及求解方法;2. 熟练运用平方根求解实际问题;3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学准备1. 教学课件;2. 白板、黑板笔;3. 学生练习册。
三、教学过程1. 导入(展示一幅世界著名建筑的图片)教师:同学们,请看这幢建筑,你们知道它叫什么名字吗?学生:(回答)教师:对,这是埃菲尔铁塔,它是法国巴黎的一个标志性建筑。
在建造这座铁塔的过程中,工程师们需要计算铁塔的高度,请问他们会用到什么数学知识?学生:平方根。
教师:非常好!今天我们就来学习一下平方根。
2. 讲解平方根的概念及求解方法教师:平方根是什么意思呢?谁能给大家解释一下?学生:平方根是指一个数的平方等于另一个数,那么这个数就是原数的平方根。
教师:很好!下面我们来看一个例子,计算√16等于多少?(教师用黑板上的图示进行讲解,介绍平方根的计算方法)3. 平方根的运算练习教师:现在,请你们打开练习册第三页,完成下列习题。
(教师在黑板上做示范,学生们在练习册上完成习题)4. 实际问题的应用教师:现在我们来看一个实际问题,张三以8米每秒的速度向前跑了5秒钟,那么他共跑了多远的距离?学生:(思考)教师:对,我们可以用平方根来求解这个问题。
你们先尝试一下,然后我们一起讨论。
5. 拓展练习教师:同学们,现在请你们打开练习册第四页,完成下列练习。
(学生们在练习册上独立完成练习,教师巡回指导,鼓励学生积极思考)6. 总结与反思教师:同学们,今天我们学习了平方根的概念及求解方法,并且运用平方根解决了实际问题。
你们觉得这节课对你们有帮助吗?学生:有帮助。
教师:请同学们谈谈你们的体会和收获。
(学生发表自己的意见和感受)7. 课堂作业教师:请同学们回家后,完成练习册第五页的作业,复习今天学习的内容。
四、教学反思通过本节课的教学活动,学生们掌握了平方根的概念及求解方法,并且成功运用平方根解决了实际问题。
算术平方根学案

算术平方根学案一、学习目标1、理解算术平方根的概念,掌握算术平方根的性质和运算方法。
2、学会运用算术平方根解决实际问题。
二、重点难点1、重点:算术平方根的概念和性质。
2、难点:算术平方根的运算方法和应用。
三、学习过程1、导入新课通过回顾平方根的概念,引出算术平方根的概念。
2、学习新课(1)算术平方根的概念:如果一个正数x的平方等于a,即x²=a,那么这个正数x叫做a的算术平方根。
(2)算术平方根的性质:正数的算术平方根只有一个,并且是非负数。
(3)算术平方根的运算方法:根据算术平方根的定义,通过开方运算求出算术平方根。
(4)算术平方根的应用:利用算术平方根解决实际问题,如计算面积、体积等。
3、练习巩固(1)判断题:4、一个正数的算术平方根有两个。
()5、所有正数的算术平方根都是非负数。
()6、a的算术平方根就是√a。
()(2)填空题:7、如果一个正数的平方等于4,那么这个正数是()的算术平方根。
8、一个正数的算术平方根等于它本身,这个正数是()。
(3)计算题:9、求下列各数的算术平方根:5、12、0.5、81、0.01、49、100、0.25。
10、求下列各式的值:9、√16、√25、√36、√49、√64。
11、解决实际问题:如果一个长方形的长和宽分别为6cm和4cm,求这个长方形的面积是多少?八年级算术平方根课件一、教学目标1、理解算术平方根的概念。
2、掌握算术平方根的计算方法。
3、运用算术平方根解决实际问题。
二、教学内容及过程1、引入:什么是算术平方根?算术平方根是指一个正数的正的平方根,也就是这个正的平方根和它的原数的关系是互为相反数。
例如,4的算术平方根是2,-4没有算术平方根。
2、讲解算术平方根的计算方法算术平方根可以通过查表、开方等方法来计算。
例如,求4的算术平方根,可以通过查表得到2,也可以通过开方得到2。
3、讲解算术平方根的应用算术平方根可以用于解决实际问题,例如,求一个矩形的面积,可以用长和宽的算术平方根之积来表示。
平方根和算术平方根教案

一、教学目标1.理解一个数平方根和算术平方根的意义;2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;3.通过本节的训练,提高学生的逻辑思维能力;4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.二、教学重点和难点教学重点:平方根和算术平方根的概念及求法.教学难点:平方根与算术平方根联系与区别.三、教学方法讲练结合.五、教学过程(一)提问这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空1.()2=9;2.()2=0.25;3.5.()2=0.0081.学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.由练习引出平方根的概念.(二)平方根概念如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).用数学语言表达即为:若x2=a,则x叫做a的平方根.由练习知:±3是9的平方根;±0.5是0.25的平方根;0的平方根是0;±0.09是0.0081的平方根.由此我们看到+3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:()2=-4学生思考后,得到结论此题无答案.反问学生为什么?因为正数、0、负数的平方为非负数.由此我们可以得到结论,负数是没有平方根的.下面总结一下平方根的性质(可由学生总结,教师整理).(三)平方根性质1.一个正数有两个平方根,它们互为相反数.2.0有一个平方根,它是0本身.3.负数没有平方根.(四)开平方求一个数a的平方根的运算,叫做开平方的运算.由练习我们看到+3与-3的平方是9,9的平方根是+3和-3,可见平方运算与开平方运算互为逆运算.根据这种关系,我们可以通过平方运算来求一个数的平方根.与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法一个正数a的正的平方根,用符号“”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“-”表示,a的平方根合起来记作,其中读作“二次根号”,读作“二次根号下a”.根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“”读作“正、负根号a”.练习:1.用正确的符号表示下列各数的平方根:①26 ②247 ③0.2 ④3 ⑤解:①26 的平方根是②247的平方根是③0.2的平方根是④3的平方根是⑤的平方根是由学生说出上式的读法.。
算术平方根教学设计(最新3篇)

算术平方根教学设计(最新3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!算术平方根教学设计(最新3篇)作为一位优秀的人·民教师,就不得不需要编写教案,教案是教学蓝图,可以有效提高教学效率。
(完整版)平方根和算术平方根教案

平方根与算术平方根概念辨析教学目标:通过此教学片段使学生掌握平方根与算术平方根的区别与联系。
教学重点:详尽辨析平方根与算术平方根的区别与联系。
教学难点:准确区分平方根与算术平方根的区别。
教学过程:平方根与算术平方根是初中数学中的两个重要概念,因为它们定义相近,联系紧密,所以初学的同学很容易混淆。
为帮助同学们正确理解和区分这两个概念,现将它们的区别与联系总结如下:一、区别:1.定义不同。
平方根:一般地,如果一个数x 的平方等于a ,即,那么这个数x 叫做a 的平方根。
例如,,2是4的平方根,,-2是4的平方根,即2和-2都是4的平方根。
算术平方根:一般地,如果一个正数x 的平方等于a ,即,那么这个正数x 叫做a 的算术平方根(特别规定:0的算术平方根是0)。
例如,,正数2是4的算术平方根。
虽然,但-2不是正数,所以-2不是4的算术平方根。
2.表示方法不同。
平方根:一个非负数a 的平方根记做。
例如,5的平方根记做。
算术平方根:一个非负数a 的算术平方根记作。
例如,5的算术平方根记作。
3.个数不同。
平方根:一个正数有两个平方根,它们互为相反数。
例如,16的平方根有两个,一个是4,另一个是-4。
算术平方根:一个正数的算术平方根只有一个,且这个数是正数。
例如,16的算术平方根只有一个,是4。
二、联系1.二者之间存在着从属关系。
一个正数的平方根包含了这个正数的算术平方根,算术平方根是平方根中的一个。
例如,9的两个平方根是 ,其中3是9的算术平方根。
2.二者被开方数的取值范围相同。
3只有非负数才有平方根,负数没有平方根。
只有非负数才有算术平方根,负数没有算术平方根。
一个数没有平方根,它一定也没有算术平方根。
课堂小结:区别平方根算术平方根定义不同如果一个数的平方等于a,这个数就叫做a的平方根非负数a的非负平方根叫a的算术平方根个数不同正数有两个平方根正数的算术平方根只有一个表示方法不同联系:(1)具有包含关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.若4x2=9,则x=____________.
18. 的算术平方根为_________. 的平方根是____________
19.(- )2的算术平方根为_____.
20.求下列各数的算术平方根,并用符号表示出来:
(1)(7.1)2;(2)(-3.5)2;(4)2 .
2.算数平方根:若一个正数x的平方等于a,即x2=a,则这个正数x就叫做a的算术平方根.记为“ ”读作“根号a”.这就是算术平方根的定义.特别地规定0的算术平方根是0,即 =0.9的算术平方根只有一个是3.即 .
3.平方根的性质:一个正数有两个平方根,且它们互为相反数;0有一个平方根是0,负数没有平方根.
四、课堂小结
同学们这节课我们主要学习了什么内容啊?
这节课我们主要复习了算术平方根与平方根的区别与联系。
五、课后作业
必做:报纸第6期第二版的1-11题
选做:报纸第6期第二版的12题
学生回答教师提问的问题
学生归纳总结平方根与算术平方根的区别与联系
学生口算后抢答
在练习本上动笔计算
找学生说说这节课都学习了什么,学会了什么?
2、区别:
(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”.
(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.
(3)表示法不同:正数a的平方根表示为± ,正数a的算术平方根表示为 .
(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个。
4.算数平方根的性质:非负数(正数和0)才有算术平方根,负数没有算术平方根.即用式子表示为 (a≥0)一定为非负数
二、归纳总结
平方根与算术包含关系:平方根包含算术平方根,算术平方根是平方根的一种.
(2)存在条件相同:平方根和算术平方根都是只有非负数才有.
(3)0的平方根,算术平方根都是0.
9.一个自然数的算术平方根是n,那么大于这个自然数且与它相邻的自然数是()
A.n+1B.n2+1C. D. +1
10.若x2=2,则x的准确值是多少?如何表示?请填写下列各空:
(1)∵42=16,∴16的算术平方根是,用符号表示出来为;
(2)∵ ,∴ 的算术平方根是;用符号表示出来为;
(3)∵()2=6,∴6的算术平方根是.
三、课堂检测
1. 的平方根是( )
A.3B.-3C.± D.
2.下列说法中正确的是( )
A.任何数都有平方根 B.一个正数的平方根的平方就是它的本身
C.只有正数才有算术平方根D.不是正数没有平方根
3.下列各式正确的是( )
A. = B. =2 C. =0.05D.- =-(-7)=7
4.下列说法正确的是()
(2)个数不同:一个正数有两个平方根,而一个正数的算术平方根只有一个.
(3)表示法不同:正数a的平方根表示为± ,正数a的算术平方根表示为 .
(4)取值范围不同:正数的平方根一正一负,互为相反数;正数的算术平方根只有一个。
教
学
反
思
板
书
设
计
平方根与算术平方根的区别与联系
1、联系:
(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种.
(2)存在条件相同:平方根和算术平方根都是只有非负数才有.
(3)0的平方根,算术平方根都是0.
2、区别:
(1)定义不同:“如果一个数的平方等于a,这个数就叫做a的平方根”;“非负数a的非负平方根叫a的算术平方根”.
课题
算术平方根与平方根
课型
复习课
教学
目标
具体
要求
1、知识与技能目标:了解平方根与算术平方根的区别与联系。
2、过程与方法目标:通过学生的自主归纳过程,培养学生归纳问题的能力。
3、情感态度与价值观目标:让学生自己归纳总结,激励学生积极参与教学活动,提高大家学习数学的热情。
教学
重点
难点
1、重点:平方根与算术平方根的区别与联系。
2、难点:平方根与算术平方根的区别与联系。
教学
方法
归纳总结与练习相结合
学习方法
自主学习法
教学
工具
多媒体课件
教
学
过
程
教
学
过
程
教师活动
学生活动
一、复习导入
教师提问学生回答算术平方根与平方根的概念与性质。
1.平方根:如果一个数x的平方等于a,即x2=a,那么这个x就叫a的平方根,表示为± ,也叫二次方根,3和-3的平方都等于9,由定义可知3和-3都是9的平方根,即9的平方根有两个3和-3,即± ±3.
11.若一个数的算术平方根是 ,则这个数是_________.
12. 的平方根是____________,( )2的算术平方根是____________.
13.y= +2,则x=__________,y=__________.
14.一个数的算术平方根是它本身,这个数是______________.
15.252-242的平方根是__________,0.04的负的平方根是____________.
A.5是25的算术平方根B.±4是16的算术平方根
C.-6是(-6)2的算术平方根
5.下列各式无意义的是( )
A.- B. C. D.
6.3-2的算术平方根是( )
A. B. C.3D.6
7.(-23)2的平方根是( )
A.±8B.8C.-8D.不存在
8.使 有意义的x的值是( )
A.正数B.负数C.0D.非正数