拉深模具的设计

合集下载

拉深工艺与拉深模具设计与辅助工序

拉深工艺与拉深模具设计与辅助工序
D 1(d13t2r2d)
4)拉深件底部孔距:
dd12r1t
拉深工艺与拉深模具设计和辅助工 序
4.2.3 拉深件的精度等级 主要指其横断面的尺寸精度;一般在IT13级
以下,不宜高于IT11级,高于IT13级的应增加整 形工序。
4.2.4 拉深件的材料 1)具有较大的硬化指数; 2)具有较低的径向比例应力σr/σb峰值; 3)具有较小的屈强比σs/σb; 4)具有较大的厚向异性指数r。
课后思考
1、阐述拉深模设计程序,与冲裁模设计程 序比较,在确定工艺方案时有什么区别?
拉深工艺与拉深模具设计和辅助工 序
4.2 审图与拉深工艺性分析
学习目标: 掌握拉深件的结构工艺性要求,了解拉深件在
公差、材料上的要求,掌握拉深件工序安排的一般 原则。
教学要求: 根据弯曲件的结构工艺性要求改善拉深件的结
拉深工艺与拉深模具设计和辅 助工序
拉深工艺与拉深模具设计和辅助工 序
概述 4.1 拉深模设计程序 4.2 审图与拉深工艺性分析 4.3 拉深件毛坯尺寸计算 4.4 圆筒形件拉深计算 4.5 拉深凸、凹模结构设计 4.6 拉深件成形模具总体结构设计 4.7 其它旋转体件的拉深 4.8 盒形件的拉深 4.9 其它拉深方法 4.10拉深次品分析拉深及工艺拉与拉深深模中具设的计和辅辅助助工 工序
拉深工艺与拉深模具设计和辅助工 序
拉深工艺与拉深模具设计和辅助工 序
案例分析: 带凸缘制件
壁厚成形零件的拉深工艺。
拉深工艺与拉深模具设计和辅助工 序
拉深件
拉深工艺与拉深模具设计和辅助工 序
拉深模
拉深工艺与拉深模具设计和辅助工 序
播放动画
4.1
拉深模设计程序
审图 拉深工艺性分析 拉深工艺方案制定

拉深模具的设计拉深模具的分类及典型结构拉深模按其工序顺序可分...

拉深模具的设计拉深模具的分类及典型结构拉深模按其工序顺序可分...

拉深模具的设计拉深模具的分类及典型结构拉深模按其工序顺序可分为首次拉深模和后续各工序拉深模,它们之间的本质区别是压边圈的结构和定位方式上的差异。

按拉伸模使用的冲压设备又可分为单动压力机用拉深模、双动压力机用拉深模及三动压力机用拉深模,它们的本质区别在于压边装置的不同(弹性压边和刚性压边)。

按工序的组合来分,又可分为单工序拉深模、复合模和级进式拉深模。

此外还可按有无压边装置分为无压边装置拉深模和有压边装置拉深模等。

下面将介绍几种常见的拉深模典型结构。

1一凸模;2一定位板;3一凹模;4一下模座图 1 无压边装置的首次拉深模1.首次拉深模(1)无压边装置的首次拉深模(图1)此模具结构简单,常用于板料塑性好,相对厚度时的拉深。

工件以定位板 2 定位,拉深结束后的卸件工作由凹模底部的台阶完成,拉深凸模要深入到凹模下面,所以该模具只适合于浅拉深。

(2)具有弹性压边装置的首次拉深模这是最广泛采用的首次拉深模结构形式(图2)压边力由弹性元件的压缩产生。

这种装置可装在上模部分(即为上压边),也可装在下模部分(即为下压边)。

上压边的特征是由于上模空间位置受到限制,不可能使用很大的弹簧或橡皮,因此上压边装置的压边力小,这种装置主要用在压边力不大的场合。

相反,下压边装置的压边力可以较大,所以拉深模具常采用下压边装置。

(3)落料首次拉深复合模图 3 为在通用压力机上使用的落斜首次拉深复合模。

它一般采用条料为坯料,故需设置导料板与卸料板。

拉深凸模 9 的顶面稍低于落料凹模 10 ,刃面约一个料厚,使落料完毕后才进行拉深。

拉深时由压力机气垫通过顶杆 7 和压边圈 8 进行压边。

拉深完毕后靠顶杆 7 顶件,卸料则由刚性卸料板 2 承担。

1一凸模;2一上模座;3一打料杆;4一推件块;5一凹模;6一定位板;7一压边圈;8一下模座;9一卸料螺钉图 2 有压边装置的首次拉深模(4)双动压力机上使用的首次拉滦模(图4)因双动压力机有两个滑块,其凸模 1 与拉深滑块(内滑块)相连接,而上模座2(上模座上装有压边圈3)与压边滑块(外滑块)相连。

第四讲拉深模工作部分计算和拉深工艺设计

第四讲拉深模工作部分计算和拉深工艺设计
思考题
1、无凸缘和有凸缘拉深工艺的主要区别是什么? 2、多次拉深中每次的拉深高度在实际生产中如何控制?
3.在保证装配要求的前提下,应允许拉深件侧壁有一定的 斜度。
第四章 拉深工艺与拉深模设计
4.拉深件的底或凸缘上的孔边到侧壁的距离应满足: a≥R+0.5t(或 rd + 0.5t)。
5.拉深件的底与壁、凸缘与壁、矩形件四 角的圆角半径应满足: rd ≥t,R≥2t,r≥3t。 否则,应增加整形工序。
第四章 拉深工艺与拉深模设计
五、拉深件工序安排原则
1、每次拉深的拉深系数必须大于极限拉深系数。 2、大批量生产可采用落料拉深复合模具。 3、底部孔若精度不高,可在拉深前冲出。 4、凸缘或侧壁孔,必须在拉深后冲出。 5、拉深件精度高或圆角半径较小,需增加整形工序。 6、多次拉深硬化严重的零件,需进行中间退火。
第四章 拉深工艺与拉深模设计
复习上次课的内容
1、有凸缘圆筒形件的拉深变形程度表示。 2、有凸缘圆筒形件的拉深次数和拉深系数的确定。 3、压边形式的选择条件以及拉深力和压边力的计算。
第四章 拉深工艺与拉深模设计
第五节 拉深模工作部分的设计计算
一、凸、凹模的圆角半径
1.凹模圆角半径 首次拉深(包括一次拉深)凹模圆角半径可按下式计算:
最后拉深工序凸模底部的设计
第四章 拉深工艺与拉深模设计
四、凸、凹模工作部分尺寸及公差
最后一次的拉深凸模和凹模的尺寸和精度根据零件要求而定。
当零件尺寸标注在外形时( D0 ),以凹模为基准:
Dd
(D 0.75)d 0
Dp
(D
0.75
2Z
)
0 p
当零件尺寸标注在内形时(
d

模具设计与制造第7章拉深工艺与模具设计

模具设计与制造第7章拉深工艺与模具设计
有无明显缺陷。
尺寸测量
使用测量工具对拉深制品的尺 寸进行测量,以检查其是否符 合设计要求。
壁厚测量
使用壁厚测量仪对拉深制品的 壁厚进行测量,以检查其是否 均匀。
强度测试
对拉深制品进行拉伸或压缩试 验,以检测其力学性能是否满
足要求。
提高拉深制品质量的措施
选用优质材料
选用质量稳定、性能良好的材料,以提高拉深制品的基 本质量。
的强度和刚度等因素。
压力过大会导致工件破裂或模 具损坏,而压力过小则会导致
工件起皱或形状不规整。
压力控制需要与速度控制和温 度控制等参数进行协调,以确 保整个拉深过程的稳定性和可
靠性。
拉深工艺的速度控制
速度控制是拉深工艺中的另一 个重要参数,它直接影响到工
件的表面质量和尺寸精度。
速度控制需要考虑到工件的材 质、厚度、润滑条件以及模具
拉深工艺的应用领域
汽车行业
汽车覆盖件、油箱、仪 表盘等部件的制造。
家用电器行业
电子行业
航空航天行业
空调、冰箱、洗衣机等 产品的外壳和内部零件
的制造。
手机、电脑等产品的外 壳和内部结构件的制造。
飞机蒙皮、机身部件等 高精度、高质量要求的
零件的制造。
拉深工艺的发展趋势
高精度、高质量
柔性化、个性化
随着科技的发展,对拉深工艺的精度和 产品质量要求越来越高,高精度、高质 量的模具和加工设备成为发展的趋势。
破裂。
凸模设计
凸模的作用是将材料拉入凹模, 因此需要具有足够的刚性和强度。 凸模的直径应与凹模相匹配,以
保持适当的间隙。
压边圈设计
压边圈的作用是控制材料流动, 防止材料起皱。压边圈的宽度和 重量应适中,以确保压力均匀。

拉深模具设计要点

拉深模具设计要点

8 拉深模具设计
本章内容:各种拉深模具结构与工作原理,单动压力机拉深模、双动压力机拉深模;首次拉深模、以后各次
拉深用拉深模(后次拉深模);单工序拉深模、落
料拉深模、落料拉深冲孔模、落料正反拉深冲
孔翻边模等。

本章难点:单动压力机拉深复合模的工作原理、结构。

8.1 单动压力机首次拉深模
单动压力机首次拉深模所用的毛坯一般为平面形状,模具结构相对简单。

根据拉深工作情况的不同,可以分为几种不同的类型。

8.1.1 无压边圈的拉深模
适用于底部平整、拉深变形程度不大、相对厚度(t/D)较大和拉深高度较小的零件。

图8.1 无压边圈有顶出装置的拉深模

图8.2 无压边圈落件拉深模。

落料拉深复合模具设计

落料拉深复合模具设计

落料拉深复合模具设计落料拉深复合模具是一种常用的成形工艺,广泛应用于金属冲压、塑料注塑等行业。

由于带有拉深工艺,其设计需要结合该工艺的特点,才能满足产品的要求并提高生产效率。

落料拉深复合模具采用一次成形工艺,将拉杆首先拉伸成形,然后在工件上产生凹陷,从而使工件的深度增加。

具有一次成形、成本低等优点,因此在制造业中得到了广泛应用。

其所采用的复合模具结构,使得一台机器能够同时生产多种不同的零部件,大大提高了生产效率和经济效益。

复合模具的成功设计,与模具结构设计和材料的选择密切相关。

一般而言,落料拉深模具的结构设计分为四个部分:拉杆、固定板、移动板和凸模。

通过不同部位的设计,我们可以使得整个成形过程更加合理、顺畅,从而提高成品的质量。

首先是拉杆的设计。

拉杆是实现拉深工艺的关键部件,它的材料、强度以及表面质量直接影响到成品的质量。

在设计拉杆时,应该考虑到拉杆的表面质量,选择耐磨、高强度、不易变形的导杆作为拉杆,以保证拉深的精度和质量。

其次是固定板和移动板的设计。

固定板和移动板的结构设计,在复合模具中占据着非常重要的地位。

两者之间应避免轴向移动,应保证垂直度和平面度,并要考虑补正加工工艺的问题。

此外,固定板和移动板的加工精度也应当高,以便使得成形过程更加稳定。

最后是凸模的设计。

在落料拉深的过程中,凸模在工件上产生凹陷,从而完成了拉深的过程。

凸模与零件可通过套装设计实现。

在凸模的设计中,应注意一次成形、加工难易度、产品尺寸和表面光滑度的问题。

总之,落料拉深复合模具设计是一个涉及多个领域的复杂问题,需要工程师和技术人员多方面的投入和努力。

在成功设计出一款优秀的落料拉深复合模具之后,生产出来的制品不仅可以减轻企业的人力和成本压力,而且为社会提供了更优质的产品质量和服务。

4.5拉深模具设计

4.5拉深模具设计
式中:F——拉深时的最大工序力(最大拉深 力、压边力和其它力的总和),KN;

深度拉深件或落料拉深复合模:
应使工艺力曲线位于压力机滑块 的许用压力曲线之下,还需对压力机 的电机功率进行校核
三. 压力机的选择

深度拉深件或落料拉深复合模:
1 F1 max h1
1000
① 计算拉深功A
首次拉深:
以后各次拉深:
凸、凹模工作部分形状
带压边圈的拉深

a:用于直径d≤100mm的拉深件
b:用于直径d>100mm的拉深件
五. 拉深工艺的辅助工序

润滑
热处理
目的:消除加工硬化及残余应力

对于普通硬化金属(如08钢、10钢、15钢等), 若工艺过程正确,模具设计合理,一般可不要进行中 间热处理。 对高度硬化金属(如不锈钢、耐热钢等),一般 一、二道工序后就要进行中间热处理。
凸模圆角的影响

凸模圆角rp↓↓→rp处弯曲变形程度 ↑→“危险断面”受拉力大→工件易产生局部变薄; 凸模圆角rp↑↑→凸模与毛坯的接触面↓→ 易产生底部变薄和内皱
四. 凸、凹模工作部分的尺寸设计
凹模圆角半径rd的计算

首次拉深: d r
1
0.8 ( D d )t
以后各次拉深: d n
r (0.6 ~ 0.8)rdn1
式中:rd1、rdn-1、rdn——首次、第(n-1)次和第n 次拉深模的凹模圆角半径 D——毛坯直径;d——中径;t——工件厚度。
有平面凸缘拉深件,最后一次拉深时:
凹模圆角半径应和拉深件的一致,即rdn=r。
四. 凸、凹模工作部分的尺寸设计
凸模圆角半径rd的计算
四. 凸、凹模工作部分的尺寸设计

模具设计5拉深工艺与模具

模具设计5拉深工艺与模具

•(二)有压边圈装置的简单拉深模

正装拉深模
•凸模较长,行程不大。
PPT文档演模板

倒装拉深模
•锥形压边圈将毛坯压成锥形有 利于拉深变形。
模具设计5拉深工艺与模具
•(三)压边圈装置分析 •1、弹性压边装置(用于普通单动压力机)
•a)橡皮压边装置
b)弹簧压边装置
c)气垫压边装置
PPT文档演模板
模具设计5拉深工艺与模具
模具设计5拉深工艺与模 具
PPT文档演模板
2020/11/20
模具设计5拉深工艺与模具
概述
• 拉深是将平面板料变成各种开口空心件的冲压工序。
•拉深件的分类:
• 圆筒形零件 • 曲面形零件 • 盒形零件 • 复杂形零件
•拉深件特点:
•效率高,精度高,材料消 耗少,强度刚度高。
•拉深压力机:
•单动、双动、三动压力机 和液压压力机。
模具设计5拉深工艺与模具
二、阶梯形件的拉深特点
• 1、判断能否一(t/D×100>1),而阶梯
之间直径之差和零件的高度较
小时,可一次拉出。
•判断条件:
• 上式中h/d是表6-9中拉深次数为1时的值
PPT文档演模板
模具设计5拉深工艺与模具
• 2、多次拉深时的拉深方法
PPT文档演模板
•负间隙拉深
模具设计5拉深工艺与模具
三、拉深凸凹模工作部分的尺寸及其制造公差
•1、最后一道工序: •拉深模工作部分尺寸及公差应按工件要求确定。
•工件要求外形尺寸时:
•工件要求内形尺寸时:
•2、中间各道工序:•凸凹模尺寸取毛坯过渡尺寸
•若以凹模为基准:
PPT文档演模板
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉深模具的设计拉深模具的分类及典型结构拉深模按其工序顺序可分为首次拉深模和后续各工序拉深模,它们之间的本质区别是压边圈的结构和定位方式上的差异。

按拉伸模使用的冲压设备又可分为单动压力机用拉深模、双动压力机用拉深模及三动压力机用拉深模,它们的本质区别在于压边装置的不同(弹性压边和刚性压边)。

按工序的组合来分,又可分为单工序拉深模、复合模和级进式拉深模。

此外还可按有无压边装置分为无压边装置拉深模和有压边装置拉深模等。

下面将介绍几种常见的拉深模典型结构。

1一凸模; 2一定位板; 3一凹模; 4一下模座图 1 无压边装置的首次拉深模1.首次拉深模(1) 无压边装置的首次拉深模(图1)此模具结构简单,常用于板料塑性好,相对厚度时的拉深。

工件以定位板 2 定位,拉深结束后的卸件工作由凹模底部的台阶完成,拉深凸模要深入到凹模下面,所以该模具只适合于浅拉深。

(2) 具有弹性压边装置的首次拉深模这是最广泛采用的首次拉深模结构形式(图2)压边力由弹性元件的压缩产生。

这种装置可装在上模部分( 即为上压边 ) ,也可装在下模部分( 即为下压边 ) 。

上压边的特征是由于上模空间位置受到限制,不可能使用很大的弹簧或橡皮,因此上压边装置的压边力小,这种装置主要用在压边力不大的场合。

相反,下压边装置的压边力可以较大,所以拉深模具常采用下压边装置。

(3) 落料首次拉深复合模图 3 为在通用压力机上使用的落斜首次拉深复合模。

它一般采用条料为坯料,故需设置导料板与卸料板。

拉深凸模 9 的顶面稍低于落料凹模 10 ,刃面约一个料厚,使落料完毕后才进行拉深。

拉深时由压力机气垫通过顶杆 7 和压边圈 8 进行压边。

拉深完毕后靠顶杆 7 顶件,卸料则由刚性卸料板 2 承担。

1一凸模; 2一上模座; 3一打料杆; 4一推件块; 5一凹模;6一定位板; 7一压边圈; 8一下模座; 9一卸料螺钉图 2 有压边装置的首次拉深模(4) 双动压力机上使用的首次拉滦模(图 4) 因双动压力机有两个滑块,其凸模1 与拉深滑块( 内滑块 ) 相连接,而上模座 2(上模座上装有压边圈3) 与压边滑块(外滑块)相连。

拉深时压边滑块首先带动压边圈压住毛坯,然后拉深滑块带动拉深凸模下行进行拉深。

此模具因装有刚性压边装置,所以模具结构显得很简单,制造周期也短,成本也低,但压力机设备投资较高。

2.后续各工序拉深模后续拉深用的毛坯是已经过首次拉深的半成品筒形件,而不再是平板毛坯。

因此其定位装置、压边装置与首次拉深模是完全不同的。

后续各工序拉深模的定位方法常用的有三种:第一种采用特定的定位板(图5) ;第二种是凹模上加工出供半成品定位的凹窝;第三种为利用半成品内孔,用凸模外形或压边圈的外形来定位(图6) 。

此时所用压边装置已不再是平板结构,而应是圆筒形结构。

1-导料板;2-卸料板;3-打料杆;4-凸凹模;5-上模座;6-下模座;7-顶杆;8-压边圈;9-拉深凸模;10-落料凹模图 3 落料拉深复合模1-凸模;2-上模座;3-压边圈;4-凹模;5-上模座;6-顶件块图 4 双动压力机上使用的首次拉深模图 5 无压边装置的后续工序拉深模图 6 有压边装置的后续各工序拉深模(1) 无压边装置的后续各工序拉深模(图 5)此拉深模因无压边圈,故不能进行严格的多次拉深,用于直径缩小较少的拉深或整形等,要求侧壁料厚一致或要求尺寸精度高时采用该模具。

(2) 带压料装置的后续各工序拉深模(图 6)此结构是广泛采用的形式。

压边圈兼作毛坯的定位圈。

由于再次拉深工件一般较深,为了防止弹性压边力随行程的增加而不断增加,可以在压边圈上安装限位销来控制压边力的增长(参见图4.5.8)。

拉深模工作部分的结构和尺寸拉深模工作部分的尺寸指的是凹模圆角半径凸模圆角半径,凸、凹模的间隙c ,凸模直径,凹模直径等,如图 7 所示。

图 7 拉深模工作部分的尺寸1.凹模圆角半径拉深时,材料在经过凹模圆角时不仅因为发生弯曲变形需要克服弯曲阻力,还要克服因相对流动引起的摩擦阻力,所以的大小对拉深工作的影响非常大。

主要有以下影响:(1) 拉深力的大小小时材料流过凹模时产生较大的弯曲变形,结果需承受较大的弯曲变形阻力,此时凹模圆角对板料施加的厚向压力加大,引起摩擦力增加。

当弯曲后的材料被拉入凸、凹模间隙进行校直时,又会使反向弯曲的校直力增加,从而使筒壁内总的变形抗力增大,拉深力增加,变薄严重,甚至在危险断面处拉破。

在这种情况下,材料变形受限制,必须采用较大的拉深系数。

(2) 拉深件的质量当过小时,坯料在滑过凹模圆角时容易被刮伤,结果使工件的表面质量受损。

而当太大时,拉深初期毛坯没有与模具表面接触的宽度加大(图8) ,由于这部分材料不受压边力的作用,因而容易起皱。

在拉深后期毛坯外边缘也会因过早脱离压边圈的作用而起皱,使拉深件质量不好,在侧壁下部和口部形成皱褶。

尤其当毛坯的相对厚度小时,这个现象更严重。

在这种情况下,也不宜采用大的变形程度。

(3) 拉深模的寿命小时,材料对凹模的压力增加,摩擦力增大,磨损加剧,使模具的寿命降低。

所以的值既不能太大也不能太小。

在生产上一般应尽量避免采用过小的凹模圆角半径,在保证工件质量的前提下尽量取大值,以满足模具寿命的要求。

通常可按经验公式计算:(1)式中 D 为毛坯直径或上道工序拉深件直径 (mm) ; d 为本道拉深后的直径(mm) 。

首次拉深的可按表 1 选取。

后续各次拉深时应逐步减小,其值可按关系式确定,但应大于或等于。

若其值小于,一般很难拉出,只能靠拉深后整形得到所需零件。

表 1 首次拉深的凹模圆角半径注:表中数据当材料性能好,且润滑好时可适当减小。

2.凸模圆角半径凸模圆角半径对拉深工序的影响没有凹模圆角半径大,但其值也必须合适.太小,拉深初期毛坯在处弯曲变形大,危险断面受拉力增大,工件易产生局部变薄或拉裂,且局部变薄和弯曲变形的痕迹在后续拉深时将会遗留在成品零件的侧壁上,影响零件的质量。

而且多工序拉深时,由于后继工序的压边圈圆角半径应等于前道工序的凸模圆角半径,所以当过小时,在以后的拉深工序中毛坯沿压边圈滑动的阻力会增大,这对拉深过程是不利的。

因而,凸模圆角半径不能太小。

若凸模圆角半径过大,会使处材料在拉深初期不与凸模表面接触,易产生底部变薄和内皱,如图 8 所示。

一般首次拉深时凸模的圆角半径为:以后各次可取为各次拉深中直径减小量的一半,即:(2)式中:为本道拉深的凸模圆角半径;为本道拉深直径;为下道拉深的工件直径。

图 8 拉深初期毛坯与凸模、凹模的位置关系最后一次拉深时应等于零件的内圆角半径值,即:但不得小于料厚。

如必须获得较小的圆角半径时,最后一次拉深时仍取,拉深结束后再增加一道整形工序,以得到。

3.凸模和凹模的间隙拉深模间隙是指单面间隙。

间隙的大小对拉深力、拉深件的质量、拉深模的寿命都有影响。

若值太小,凸缘区变厚的材料通过间隙时,校直与变形的阻力增加,与模具表面间的摩擦、磨损严重,使拉深力增加,零件变薄严重,甚至拉破,模具寿命降低。

间隙小时得到的零件侧壁平直而光滑,质量较好,精度较高。

间隙过大时,对毛坯的校直和挤压作用减小,拉深力降低,模具的寿命提高,但零件的质量变差,冲出的零件侧壁不直。

因此拉深模的间隙值也应合适,确定时要考虑压边状况、拉深次数和工件精度等。

其原则是:既要考虑板料本身的公差,又要考虑板料的增厚现象,间隙一般都比毛坯厚度略大一些。

采用压边拉深时其值可按下式计算:(3)式中μ为考虑材料变厚,为减少摩擦而增大间隙的系数,可查表 2 ;表 2 增大间隙的系数μ注:表中数值适用于一般精度(自由公差)零件的拉深。

具有分数的地方,分母的数值适用于精密零件( IT10--12 级)的拉深。

表 3 有压边时的单向间隙注: 1. ——材料厚度,取材料允许偏差的中间值。

2. 当拉深精密工件时,对最末一次拉深间隙取为材料的名义厚度;材料的最大厚度,其值位其中为材料的正偏差。

不用压边圈拉深时,考虑到起皱的可能性取间隙值为:式中较小的数值用于末次拉深或精密拉深件,较大的值用于中间拉深或精度要求不高的拉深件。

在用压边圈拉深时,间隙数值也可以按表 3 取值。

对精度要求高的零件,为了使拉深后回弹小,表面光洁,常采用负间隙拉深,其间隙值为,处于材料的名义厚度和最小厚度之间。

采用较小间隙时拉深力比一般情况要增大20%,故这时拉深系数应加大。

当拉深相对高度的工件时,为了克服回弹应采用负间隙。

4.凸模、凹模的尺寸及公差工件的尺寸精度由末次拉深的凸、凹模的尺寸及公差决定,因此除最后一道拉深模的尺寸公差需要考虑外,首次及中间各道次的模具尺寸公差和拉深半成品的尺寸公差没有必要作严格限制,这时模具的尺寸只要取等于毛坯的过渡尺寸即可。

若以凹模为基准时,凹模尺寸为:凸模尺寸为:对于最后一道拉深工序,拉深凹模及凸模的尺寸和公差应按零件的要求来确定。

当工件的外形尺寸及公差有要求时(如图 9a 所示) ,以凹模为基准。

先确定凹模尺寸因凹模尺寸在拉深中随磨损的增加而逐渐变大,故凹模尺寸开始时应取小些。

其值为:(4)凸模尺寸为:(5)当工件的内形尺寸及公差有要求时( 如图 9b 所示 ) ,以凸模为基准,先定凸模尺寸。

考虑到凸模基本不磨损,以及工件的回弹情况,凸模的开始尺寸不要取得过大。

其值为:(6)凹模尺寸为:(7)凸、凹模的制造公差和可根据工件的公差来选定。

工件公差为 ITl3 级以上时,和可按IT6~8 级取,工件公差在 ITl4 级以下时,和按 ITl0 级取。

图 9 拉深零件尺寸与模具尺寸a) 外形有要求时 ;b) 内形有要求时5.凸、凹模的结构形式拉深凸模与凹模的结构形式取决于工件的形状、尺寸以及拉深方法、拉深次数等工艺要求,不同的结构形式对拉深的变形情况、变形程度的大小及产品的质量均有不同的影响。

当毛坯的相对厚度较大,不易起皱,不需用压边圈压边时,应采用锥形凹模(参见图 4.2.4) 。

这种模具在拉深的初期就使毛坯呈曲面形状,因而较平端面拉深凹模具有更大的抗失稳能力,故可以采用更小的拉深系数进行拉深。

当毛坯的相对厚度较小,必须采用压边圈进行多次拉深时,应该采用图 10 所示的模具结构。

图 10a 中凸、凹模具有圆角结构,用于拉深直径的拉深件。

图10b中凸、凹模具有斜角结构,用于拉深直径 d ≥ 100mm 的拉深件。

图 10 拉深模工作部分的结构采用这种有斜角的凸模和凹模,除具有改善金属的流动,减少变形抗力,材料不易变薄等一般锥形凹模的特点外,还可减轻毛坯反复弯曲变形的程度,提高零件侧壁的质量,使毛坯在下次工序中容易定位。

不论采用哪种结构,均需注意前后两道工序的冲模在形状和尺寸上的协调,使前道工序得到的半成品形状有利于后道工序的成形。

比如压边圈的形状和尺寸应与前道工序凸模的相应部分相同,拉深凹模的锥面角度也要与前道工序凸模的斜角一致,前道工序凸模的锥顶径应比后续工序凸模的直径小,以避免毛坯在 A 部可能产生不必要的反复弯曲,使工件筒壁的质量变差等(图11) 。

相关文档
最新文档