3.32《旋转》全章复习与巩固--知识讲解(提高)

合集下载

旋转知识归纳及规律方法指导

旋转知识归纳及规律方法指导

旋转知识归纳及规律方法指导旋转是一个常见的运动形式,在几何学、物理学和其他科学领域中都有广泛的应用。

了解和掌握旋转的知识和规律对于解决各种问题和应用场景是非常重要的。

以下是一些关于旋转的归纳和规律方法的指导,希望能对您有所帮助。

1.旋转的定义和基本概念旋转是物体或几何图形绕一个固定点或轴进行的运动。

旋转可以是二维的,也可以是三维的。

固定点或轴称为旋转中心,物体或几何图形绕着旋转中心旋转的路径称为旋转轨迹。

旋转可以分为顺时针旋转和逆时针旋转两种。

顺时针旋转可以看成逆时针旋转的反方向。

2.旋转的基本规律和性质旋转具有以下基本规律和性质:-旋转角度:旋转角度是物体或几何图形旋转的度量。

旋转角度通常用角度或弧度表示。

-旋转方向:旋转方向可以是顺时针或逆时针。

正角度代表逆时针旋转,负角度代表顺时针旋转。

-旋转中心:旋转中心可以是一个点、一条轴或一个平面。

-旋转轨迹:旋转轨迹通常是一个曲线或曲面,取决于旋转的维度和形状。

-旋转角速度:旋转角速度是物体或几何图形单位时间内旋转的角度。

旋转角速度通常用弧度/秒或度/秒表示。

-旋转周期:旋转周期是物体或几何图形旋转一周所需要的时间。

3.旋转的常见问题和应用场景旋转知识的掌握可以帮助解决许多问题和应用场景,包括但不限于以下几个方面:-几何问题:旋转可以用来解决几何图形的位置和形状变化问题,如判断两个几何图形是否相似,求解旋转体的体积和表面积等。

-物理学问题:旋转在物理学中有广泛应用,如刚体的旋转运动、角动量与动能的关系等。

-工程问题:旋转可以帮助解决工程中的问题,如机械制造中的零件的旋转安装,机械臂的旋转运动控制等。

4.学习旋转知识的方法和技巧学习旋转知识需要掌握一些方法和技巧,以下是一些建议:-理论学习:首先要通过学习相关的理论知识和概念来建立旋转的基本框架和认识。

-实践操作:通过实际操作和练习,例如通过模型拼装、绘制旋转图形等进行实践,使抽象的概念更加具体。

-解决问题:通过解决一些与旋转相关的问题,例如解决一些几何问题或物理学问题,来加深对旋转的理解。

九年级(初三)《旋转》知识点及练习(带答案)

九年级(初三)《旋转》知识点及练习(带答案)

旋转一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。

这个定点叫做旋转中心,转动的角度叫做旋转角。

(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

)2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。

3.中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。

4.中心对称的性质:关于中心对称的两个图形是全等形。

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

一、精心选一选 (每小题3分,共30分)1.下面的图形中,是中心对称图形的是()A.B.C.D.2.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是 ( )A .(3,-2)B . (2,3)C .(-2,-3)D . (2,-3)3.3张扑克牌如图1所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)所示,则她所旋转的牌从左数起是( )A .第一张B .第二张C .第三张D .第四张 4.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )5.如图3的方格纸中,左边图形到右边图形的变换是( ) A .向右平移7格B .以AB 的垂直平分线为对称轴作轴对称,再以AB 为对称轴作轴对称C .绕AB 的中点旋转1800,再以AB 为对称轴作轴对称D .以AB 为对称轴作轴对称,再向右平移7格6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是( )A .A N E GB .K B X NC .X I H OD .Z D W H7.如图4,C 是线段BD 上一点,分别以BC 、CD 为边在BD 同侧作等边△ABC 和等边△CDE,AD 交CE 于F ,BE 交AC 于G ,则图中可通过旋转而相互得到的三角形对数有( ). A .1对B .2对C .3对D .4对8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是( )A ︒30B ︒45C ︒60D ︒909.如图5所示,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是( ) A .l 个B .2个C .3个D .4个ABCABCDCDE图4图5图图1210.如图6,ΔABC 和ΔADE 都是等腰直角三角形,∠C 和∠ADE 都是直角,点C 在AE 上,ΔABC 绕着A 点经过逆时针旋转后能 够与ΔADE 重合得到图7,再将图23—A —4作为“基本图形”绕 着A 点经过逆时针连续旋转得到图7.两次旋转的角度分别为( )A .45°,90°B .90°,45°C .60°,30°D .30°,60 二、耐心填一填(每小题3分,共24分)11.关于中心对称的两个图形,对称点所连线段都经过 ,而且被_____________平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形这五种图形中,既是轴对称图形,又是中心对称图形的是_____________.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是_____________. 14.如图8,△ABC 以点A 为旋转中心,按逆时针方向旋转60°,得△AB ′C ′,则△ABB ′是 三角形.15.已知a<0,则点P(a2,-a+3)关于原点的对称点P1在第___象限16.如图9,△COD 是△AOB 绕点O 顺时针方向旋转40°后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠D 的度数是 .17.如图10,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是___.18.如图,四边形ABCD 中,∠BAD=∠C=90º,AB=AD ,AE ⊥BC 于E ,若线段AE=5,则S 四边形ABCD= 。

初中旋转知识点归纳总结

初中旋转知识点归纳总结

初中旋转知识点归纳总结一、旋转概念1. 旋转的定义旋转是物体围绕某一固定轴线或固定点,按照一定规律旋转。

在数学中,旋转通常是指平面内或空间内一个点围绕一个中心点旋转。

2. 旋转的要素旋转有固定轴线或固定点、旋转方向以及旋转的角度等要素。

3. 旋转的表现形式旋转可以通过旋转图形、旋转坐标轴等形式来表现。

4. 旋转的应用旋转在日常生活中有着广泛的应用,比如舞蹈中的旋转动作、工程中的旋转零件等。

二、旋转的基本性质1. 旋转的不变性旋转操作不改变原图形的大小和形状,这是旋转的基本性质之一。

2. 旋转的对称性旋转是一种对称操作,旋转后的图形与原图形是对称的。

3. 旋转的交换律两次旋转操作是可以交换顺序的,即先旋转图形A再旋转图形B,与先旋转图形B再旋转图形A是等价的。

4. 旋转的倍数问题同一图像旋转180°、360°等倍数角度后,它们之间是等价的。

三、旋转的基本步骤1. 旋转的基本步骤a. 确定旋转中心和旋转方向。

b. 以旋转中心为原点,旋转方向为正方向,建立新的坐标系。

c. 利用坐标系的变换规则进行计算,得到旋转后的新坐标。

2. 旋转坐标点的计算公式a. 绕原点旋转:新的坐标(x', y') = (x*cosθ - y*sinθ, x*sinθ + y*cosθ)b. 绕其他点旋转:新的坐标(x', y') = (x0 + (x - x0)*cosθ - (y - y0)*sinθ, y0 + (x - x0)*sinθ + (y - y0)*cosθ)四、旋转的常见图形1. 点的旋转点围绕旋转中心旋转后,它的位置由原来的坐标经过旋转计算公式得到新的坐标。

2. 直线的旋转直线围绕旋转中心旋转后,它变成一条新的直线,其方程可以通过旋转坐标点的方法来得到。

3. 图形的旋转不规则图形围绕旋转中心旋转后,保持图形的大小和形状不变。

五、旋转的应用1. 图像处理中的旋转在图像处理中,旋转可以改变图像的朝向和方位,使得图像更加美观。

九年级旋转知识点归纳总结

九年级旋转知识点归纳总结

九年级旋转知识点归纳总结旋转是数学中的一个重要概念,也是九年级数学课程中的一个重点知识点。

本文将对九年级旋转知识点进行归纳总结,包括旋转的基本定义、旋转图形的性质以及旋转的应用。

一、旋转的基本定义旋转是指将一个点或一幅图形绕着某一点旋转一定角度后,得到的新点或新图形。

在数学中,通常将绕着坐标平面上的原点旋转作为基本定义。

二、旋转图形的性质1. 旋转图形的对应点在一个图形经过旋转后,每一个点都与原来图形上的某一点存在对应关系。

这个对应关系可以通过旋转角度和旋转方向来确定。

2. 旋转图形的对称性绕着一个点旋转的图形在旋转前后保持对称。

如果旋转角度是360度的整数倍,那么旋转后的图形与旋转前的图形完全重合。

3. 旋转图形的角度关系在一个旋转图形中,旋转前后每两个相对的角度之和为360度。

这就是旋转图形中角度的平分原理。

三、旋转的应用旋转在几何图形的变换中有着广泛应用,并且在实际生活中也有一些实际的应用场景。

1. 图形的旋转变换通过旋转变换可以将图形按一定角度旋转,从而使得原本无规律的图形变得有规律,更美观。

例如,一个正方形可以通过旋转变换成一个六边形。

2. 游戏和艺术中的旋转在游戏和艺术领域中,旋转被广泛运用。

例如,电子游戏中的3D 模型,通过旋转操作可以让玩家从不同角度观察模型;绘画和雕塑中的旋转是非常常见的手段,可以展示更多的细节和视角。

3. 旋转的几何证明旋转在几何证明中也有非常重要的地位。

通过旋转变换可以使得一些几何命题的证明更加简洁、明了。

例如,可以通过旋转证明两条平行线之间的角度关系、相似三角形之间的角度关系等。

综上所述,旋转是九年级数学课程中的一个重要知识点。

掌握旋转的基本定义和性质,了解旋转的应用场景,将有助于深入理解几何变换的概念,提高数学解题和几何证明的能力。

希望本文对九年级学生们的数学学习有所启发和帮助。

3.32《旋转》全章复习与巩固-知识讲解(提高)

3.32《旋转》全章复习与巩固-知识讲解(提高)

3.32《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△A B C''').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转3.如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC.求证:222=BD AB BC.ABCD【思路点拨】由求证可知应该建立一个直角三角形,再由已知知道有30°,60°的角,有等线段,可以构想通过旋转构建直角三角形. 【答案与解析】∵AD=CD ,∠ADC=60°∴△ABD 绕点D 顺时针旋转60°,得到△ECD , ∴∠ADC=∠BDE=60°,△BAD ≌△ECD . ∴BD=DE ,∴△BDE 为等边三角形. ∴BE=BD .∵在四边形ABCD 中,∠ABC =30°,∠ADC =60°, ∴∠DCB+∠DAB=270°,即∠DCB +∠DCE=270°. ∴∠BCE=90°.∵在Rt △BCE 中,222BE BC CE =+, ∴222BD BC AB =+.【总结升华】利用旋转构造直角三角形,再用勾股定理是解决此类问题的捷径. 举一反三:【变式】如图,△ABC 中,∠BAC=90°,AC=2,AB=23,△ACD 是等边三角形. (1)求∠ABC 的度数.(2)以点A 为中心,把△ABD 顺时针旋转60°,画出旋转后的图形. (3)求BD 的长度.【答案】(1)Rt △ABC 中,AC=2,AB=23, ∴BC=4,∴∠ABC=30° (2)如图所示:(3)连接BE .由(2)知:△ACE ≌△ADB ,∴AE=AB ,∠BAE=60°,BD=EC , ∴BE=AE=AB=23,∠EBA=60°, ∴∠EBC=90°, 又BC=2AC=4,∴Rt △EBC 中,EC=2223+4=27()4. 如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF ,分别交AB 、AC 于点E 、F ,给出以下五个结论:①AE=CF ;②∠APE=∠CPF ;③△EPF 是等腰直角三角形;④EF=AP ;⑤;当∠EPF 在△ABC 内绕顶点P 旋转时,(点E 不与A ,B 重合),上述结论中始终正确的序号有_____. 【思路点拨】可以考虑运用全等三角形的知识证明,也可以考虑运用旋转来证明. 【答案与解析】 ①②③⑤方法一:这个问题的题目原型,我们在初二学习全等三角形时已经处理过 ∵P 为BC 中点 ∴易证于P 且在△AEP 与△CFP 中,∴△AEP ≌△CFP(ASA)方法二:现在学习了旋转后,我们可以从一个新的角度去看旧问题.我们可以看到△AEP 可以看作是由△CPF 旋转后得到的,因而易知AE=CF ∠APE=∠CPF又EP=FP ,可知△EPF 为等腰直角三角形而由旋转也可知S 四边形AEPF =S △AEP +S △AFP =S △CFP +S △AFP =S △APC而对于④来说,只有在EF ∥BC 时,,是特殊情况.【总结升华】运用旋转思路解题的前提是要有公共顶点的相等的线段. 5.已知:点P 是正方形ABCD 内的一点,连结PA 、PB 、PC , (1)若PA=2,PB=4,∠APB=135°,求PC 的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.【思路点拨】通过旋转,把PA 、PB 、PC 或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APD . 【答案与解析】(1)∵AB=BC,∠ABC=90°,∴△CBP 绕点B 逆时针旋转90°,得到△ABE, ∵BC=BA,BP=BE,∠CBP=∠ABE ∴△CBP ≌△ABE ∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=42 又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:PE=2BP,PC=AE ∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90° 又∵由(1)证得∠BAE=∠BCP ∴∠PAB+∠BCP=90 又∵∠ABC=90° ∴点A,P,C 三点共线, 即P 必在对角线AC 上.【总结升华】注意勾股定理及逆定理的灵活运用. 举一反三:【变式】如图,在四边形ABCD 中,AB=BC ,,K 为AB 上一点,N 为BC 上一点.若的周长等于AB 的2倍,求的度数.【答案】显然,绕点D 顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm ,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B 、C 、F 、D 在同一条直线上,且点C 与点F 重合(在图3~图6中统一用F 表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF 沿BD 向右平移到图4的位置,使点B 与点F 重合,请你求出平移的距离; ⑵将图3中的△ABF 绕点F 顺时针方向旋转30°到图5的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;⑶将图3中的△ABF 沿直线AF 翻折到图6的位置,AB 1交DE 于点H ,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm (即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.【巩固练习】一、选择题1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( ).2. 时钟钟面上的分针从12时开始绕中心旋转120°,则下列说法正确的是( ).A.此时分针指向的数字为3B.此时分针指向的数字为6C.此时分针指向的数字为4D.分针转动3,但时针却未改变3.如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是().A.M或O或N B.E或O或C C.E或O或N D.M或O或C4.如图,菱形OABC的一边OA在x 轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为().A.(3,)B.(3,)C.(,)D.(,)第3题第4题第5题5.如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为().A.30,2 B.60,2 C.60, D.60,6.如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90转三次得到右边的图形.在图乙中,四边形OABC绕O点每次旋转120旋转二次得到右边的图形.下列图形中,不能通过上述方式得到的是 ( ).7.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是().A.30° B.45° C.60° D.90°8.在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为( ).A.(-2,1)B.(1,1)C.(-1,1)D.(5,1)二. 填空题9. 如图所示,过正方形的中心C和边上一点A随意连一条曲线,将所画的曲线绕C点,按同一方向连续旋转三次,每次的旋转角度都是90°,这样就将四边形分成四部分,这四部分之间的关系是_______.10.如图,直线与双曲线交于A、C两点,将直线绕点O顺时针旋转度角(0°<≤45°),与双曲线交于B、D两点,则四边形ABCD的形状一定是_________.11.绕一定点旋转180°后与原来图形重合的图形是中心对称图形,正六边形就是这样的图形.小明发现将正六边形绕着它的中心旋转一个小于180°的角,也可以使它与原来的正六边形重合,请你写出小明发现的一个旋转角的度数:_____________________.12.如图所示,在Rt△ABC中,∠A=90°,AB=AC=4cm,以斜边BC上距离B点cm的H为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是___cm2.13.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为_________.14. 如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于________.15.如图,在直角坐标系中,已知点P0的坐标为(1,0),进行如下操作:将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2,如此重复操作下去,得到线段OP3,OP4,…,则:(1)点P5的坐标为__________;(2)落在x轴正半轴上的点P n坐标是_________,其中n满足的条件是________.16.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是__________.三综合题17. 如图,已知,点P是正方ABCD内一点,且AP∶BP∶CP=1∶2∶3.求证:∠APB=135°.18.如图,已知点D是△ABC的BC边的中点,E、F分别是AB、AC上的点,且DE⊥DF.求证: BE + CF>EF19.如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.20.如图14―1,14―2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.⑴如图14―1,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;③请证明你的上述两猜想.⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF ,进而猜想此时DE 与EF 有怎样的数量关系.【答案与解析】 一、选择题 1.【答案】C. 2.【答案】 C.【解析】分针每5分钟转动30.3.【答案】A.【解析】 因为以M 或O 或N 为旋转中心两个图形能够完全重合. 4.【答案】D. 【解析】因为是菱形,所以可得为等腰直角三角形.5.【答案】C.【解析】△BDC 为正三角形,所以△FDC 为直角三角形,∠DCF=30°,DF=1,FC=,即求得.6.【答案】D.【解析】图形应该首先是旋转图形,选项D 不是旋转图形. 7.【答案】D. 8.【答案】C.【解析】232,1),A (2,4),A (即旋转90°后3A 坐标为(-1,1).二、填空题9.【答案】全等形.10.【答案】平行四边形. 【解析】对角线互相平分. 11.【答案】60°或120°.【解析】正六边形的中心角是60°. 12.【答案】1.【解析】证明△FHC 和△FHG 是等腰直角三角形,且腰长为,即得.13.【答案】5.【解析】做DF ⊥BC,EG ⊥AD,交AD 的延长线于点G ,则AD=BF,可证得△DEG ≌△DCF,即EG=FC,又因为3ADEs△,所以EG=3,即BC=BF+FC=AD+EG=5. 14.【答案】32.【解析】由旋转可知△APP ′是等腰直角三角形,所以PP ′=32.15.【答案】(1) ,(2)落在x 轴正半轴上的点P n 坐标是,其中n 满足的条件是n=8k (k=0,1,2,…)16.【答案】(-1,).【解析】首先求得12,P P 的坐标,即可求得3P 坐标.三.解答题17.【解析】证明:将△APB 绕点B 沿顺时针方向旋转90°至△CP′B 位置(如图),则有△APB ≌△CP′B.∴BP′= BP,CP′=AP , ∠PBP′= 90°,∠APB=∠CP′B. 设CP′= AP= k,则BP′= BP=2k,CP= 3k ,在Rt △BP′P 中,BP′= BP= 2k ,∴∠BP′P=45°.=(3k)2= CP2, ∴∠CP′P=90°,∴∠CP′B=∠CP′P+∠BP′P=90°+45°=135°, 即∠APB=135°.18.【解析】证明:将△BDE 绕点D 沿顺时针方向旋转180°至△CDG 位置,则有△BDE ≌△CDG . ∴BE=CG ,ED=DG .∵DE ⊥DF ,即 DF ⊥EG .∴EF=FG ,在△FCG 中CG+CF >FG , 即BE+CF >EF .19.【解析】(1)猜想:AF=BD 且AF ⊥BD. 证明:设AF 与DC 交点为G.∵FC=DC ,AC=BC ,∠BCD=∠BCA+∠ACD , ∠ACF=∠DCF+∠ACD ,∠BCA=∠DCF=90°, ∴∠BCD=∠ACF. ∴△ACF ≌△BCD. ∴AF=BD.∴∠AFC=∠BDC.∵∠AFC+∠FGC=90°, ∠FGC=DGA , ∴∠BDC+∠DGA=90°. ∴AF ⊥BD.∴AF=BD 且AF ⊥BD. (2)结论:AF=BD 且AF ⊥BD.图形不唯一,只要符合要求即可.如:①CD 边在△ABC 的内部时; ②CF 边在△ABC 的内部时.20.【解析】⑴①DE=EF;②NE=BF.③证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,∴DN=EB∵BF平分∠CBM,AN=AE,∴∠DNE=∠EBF=90°+45°=135°∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF∴△DNE≌△EBF∴ DE=EF,NE=BF⑵在DA边上截取DN=EB(或截取AN=AE),连结NE,点N就使得NE=BF成立(图略)此时, DE=EF.。

九年级数学上册知识点总结旋转

九年级数学上册知识点总结旋转

九年级数学上册知识点总结旋转一、内容概览九年级数学上册的知识点总结中,关于旋转的内容是个特别有意思的部分。

在这里我们为大家梳理一下这个章节的主要内容,让大家有个整体的把握。

首先旋转是个啥?简单来说旋转就是物体围绕一个点转动,在数学里这个点叫做旋转中心,转动的角度就是旋转角。

旋转不仅让图形有了动态美,还帮助我们理解很多生活中物体的运动规律。

比如门开关、风车的转动,都是旋转的例子。

那么在九年级数学上册中,我们主要学习哪些旋转相关的知识点呢?首先是旋转的基本性质,就像我们旋转一个物体时,它的每个点都会围绕旋转中心转动,形成一个固定的轨迹。

这个轨迹就是圆,所以旋转的一个重要性质就是点与圆的关系。

了解这一点,可以帮助我们更好地理解和计算旋转问题。

接下来我们会学习如何在平面内将一个图形旋转,这其中涉及到的知识点包括图形的变换和坐标系的应用。

学会了这些,我们就能轻松地画出旋转后的图形了。

还有关于旋转对称的知识也非常重要,一些图形在旋转后能够重合,这就是旋转对称。

了解这些知识,可以帮助我们更好地欣赏图形的美丽和数学中的对称美。

我们还会学习如何利用旋转来解决一些实际问题,比如几何图形的位置关系等。

这些都是需要我们掌握的重点内容,总之掌握了这些知识点不仅能更好地理解数学知识,也能在实际生活中灵活应用哦!那就让我们深入了解下每个具体的知识点吧!1. 旋转知识点在数学学习中的重要性九年级数学上册的知识点中,旋转是一个相当重要的部分。

你可能已经意识到,旋转在我们日常生活中无处不在,它不仅在数学学习中占据一席之地,更与我们生活的世界紧密相连。

想象一下你在玩转魔方的时候,每一个小方块都是在做旋转动作。

学习旋转知识点,就像是在学习如何“读懂”这个世界的一个小窍门。

不仅如此旋转知识点的学习还能帮助你培养空间想象能力,通过学习旋转,你可以更好地理解和想象一个物体在空间中的运动轨迹和位置变化。

这种能力不仅在解决数学问题时会派上用场,更能帮助你理解日常生活中的许多事物。

人教版九年级数学上册《旋转》知识点及复习题

人教版九年级数学上册《旋转》知识点及复习题

人教版九年级数学上册《旋转》知识点及复习题一、旋转1、定义把一个图形绕某一点O转动一个角度的图形变换叫做旋转;其中O叫做旋转中心;转动的角叫做旋转角。

2、性质(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

二、中心对称1、定义把一个图形绕着某一个点旋转180°;如果旋转后的图形能够和原来的图形互相重合;那么这个图形叫做中心对称图形;这个点就是它的对称中心。

2、性质(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形;对称点连线都经过对称中心;并且被对称中心平分。

(3)关于中心对称的两个图形;对应线段平行(或在同一直线上)且相等。

3、判定如果两个图形的对应点连线都经过某一点;并且被这一点平分;那么这两个图形关于这一点对称。

4、中心对称图形把一个图形绕某一个点旋转180°;如果旋转后的图形能够和原来的图形互相重合;那么这个图形叫做中心对称图形;这个店就是它的对称中心。

考点五、坐标系中对称点的特征(3分)1、关于原点对称的点的特征两个点关于原点对称时;它们的坐标的符号相反;即点P(x;y)关于原点的对称点为P’(-x;-y)2、关于x轴对称的点的特征两个点关于x轴对称时;它们的坐标中;x相等;y的符号相反;即点P(x;y)关于x轴的对称点为P’(x;-y)3、关于y轴对称的点的特征两个点关于y轴对称时;它们的坐标中;y相等;x的符号相反;即点P(x;y)关于y轴的对称点为P’(-x;y)单元测试1.下列正确描述旋转特征的说法是()A.旋转后得到的图形与原图形形状与大小都发生变化.B.旋转后得到的图形与原图形形状不变;大小发生变化.C.旋转后得到的图形与原图形形状发生变化;大小不变.D.旋转后得到的图形与原图形形状与大小都没有变化.2.下列描述中心对称的特征的语句中;其中正确的是()A.成中心对称的两个图形中;连接对称点的线段不一定经过对称中心B.成中心对称的两个图形中;对称中心不一定平分连接对称点的线段C.成中心对称的两个图形中;对称点的连线一定经过对称中心;但不一定被对称中心平分D.成中心对称的两个图形中;对称点的连线一定经过对称中心;且被对称中心平分3.4.下列图形中即是轴对称图形;又是旋转对称图形的是()A.(l)(2)B.(l)(2)(3)C.(2)(3)(4)D.(1)(2)(3(4)5.下列图形中;是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤角;⑥平行四边形。

旋转的单元复习

旋转的单元复习

问题2、中心对称图形有什么特点?你能举出一些中心对称图形的例子吗?中心对称图形有哪些应用价值?中心对称图形指绕着中心点旋转180度后能与自身重合的图形叫做中心对称图形,这个中心点叫做对称中心。

常见的中心对称图形有平行四边形,菱形,正方形,圆等。

问题3、什么是中心对称?中心对称与中心对称图形有什么区别?中心对称:在平面内,一个图形绕某个点旋转180度,如果它能够与另一个图形互相重合,那么这两个图形叫做关于这个点中心对称,这个点叫做它的对称中心。

这两个图形中的对应点叫关于中心的对称点。

区别:中心对称是指两个图形可完全重合,对称点在两个图形上;中心对称图形是一个特殊的图形,对称点在一个图形上。

问题4、在平面直角坐标系中,关于原点对称的点的坐标有什么关系?两个点关于原点对称时,它们的横、纵坐标的符号相反,即点P(x,y)关于原点O的对称点P′的坐标为(-x,-y)【师生活动】:教师引导学生思考以上问题,师生共同回顾本章的知识要点。

学生独自构建知识结构图。

【设计意图】:通过以上问题的解决,使学生对本章所涉及的知识点有了系统的认识,构建了知识体系。

同时也培养学生归纳总结的能力。

我们通过知识回顾,已经明确了相关的知识要点,灵活应用知识是检验是否学扎实学透彻的关键,现在让我们一起来研究下面的问题。

三、新知研学,重组建构【思路点拨】追问: 哪个角是旋转角?旋转角是多少度?答:∠ACA1 或∠BCB1 是旋转角。

旋转角是150°【解答过程】准确的找到对应角,利用三角形的内角和性质得:∠A1CB=∠B1CB-∠A1CB1=150°-30°=120°【小结归纳】应用旋转的性质计算角度。

针对练习:1.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB'C',则等于()A.60°B.105°C.120°D.135°【解答过程】由题意可得∠BA B′=60°,∠BAC=45,所以=105°2.如图,在4×4的正方形网格中,每个小正方形的边长均为1,将三角形AOB绕点O逆时针旋转90°得到三角形COD,则旋转过程中形成的阴影部分的面积为________.【解答过程】阴影部分的面积为9π4例2 如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.【思路点拔】(1)根据题意,找准旋转中心,旋转方向及旋转角度,补全图形即可;(2)由旋转的性质得∠DCF为直角,由EF与CD平行,得到∠EFC为直角,利用SAS 得到△BDC与△EFC全等,利用全等三角形对应角相等即可得证.【师生活动】学生独立解决问题,小组内交流结果,教师参与学生活动,适当引导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.32《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△A B C''').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转3.如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC.求证:222=BD AB BC.ABCD【思路点拨】由求证可知应该建立一个直角三角形,再由已知知道有30°,60°的角,有等线段,可以构想通过旋转构建直角三角形. 【答案与解析】∵AD=CD ,∠ADC=60°∴△ABD 绕点D 顺时针旋转60°,得到△ECD , ∴∠ADC=∠BDE=60°,△BAD ≌△ECD . ∴BD=DE ,∴△BDE 为等边三角形. ∴BE=BD .∵在四边形ABCD 中,∠ABC =30°,∠ADC =60°, ∴∠DCB+∠DAB=270°,即∠DCB +∠DCE=270°. ∴∠BCE=90°.∵在Rt △BCE 中,222BE BC CE =+, ∴222BD BC AB =+.【总结升华】利用旋转构造直角三角形,再用勾股定理是解决此类问题的捷径. 举一反三:(1)求∠ABC 的度数.(2)以点A 为中心,把△ABD 顺时针旋转60°,画出旋转后的图形. (3)求BD 的长度.【答案】∴BC=4, ∴∠ABC=30° (2)如图所示:(3)连接BE .由(2)知:△ACE ≌△ADB ,∴AE=AB ,∠BAE=60°,BD=EC , ∴∠EBC=90°, 又BC=2AC=4,4. 如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF ,分别交AB 、AC于点E 、F ,给出以下五个结论:①AE=CF ;②∠APE=∠CPF ;③△EPF 是等腰直角三角形;④EF=AP ;⑤;当∠EPF 在△ABC 内绕顶点P 旋转时,(点E 不与A ,B 重合),上述结论中始终正确的序号有_____. 【思路点拨】可以考虑运用全等三角形的知识证明,也可以考虑运用旋转来证明. 【答案与解析】 ①②③⑤方法一:这个问题的题目原型,我们在初二学习全等三角形时已经处理过 ∵P 为BC 中点 ∴易证于P 且在△AEP 与△CFP 中,∴△AEP ≌△CFP(ASA)方法二:现在学习了旋转后,我们可以从一个新的角度去看旧问题.我们可以看到△AEP 可以看作是由△CPF 旋转后得到的,因而易知AE=CF ∠APE=∠CPF又EP=FP ,可知△EPF 为等腰直角三角形而由旋转也可知S 四边形AEPF =S △AEP +S △AFP =S △CFP +S △AFP =S △APC而对于④来说,只有在EF ∥BC 时,,是特殊情况.【总结升华】运用旋转思路解题的前提是要有公共顶点的相等的线段. 5.已知:点P 是正方形ABCD 内的一点,连结PA 、PB 、PC , (1)若PA=2,PB=4,∠APB=135°,求PC 的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.【思路点拨】通过旋转,把PA 、PB 、PC 或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APD . 【答案与解析】(1)∵AB=BC,∠ABC=90°,∴△CBP 绕点B 逆时针旋转90°,得到△ABE, ∵BC=BA,BP=BE,∠CBP=∠ABE ∴△CBP ≌△ABE ∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90° 又∵由(1)证得∠BAE=∠BCP ∴∠PAB+∠BCP=90 又∵∠ABC=90° ∴点A,P,C 三点共线, 即P 必在对角线AC 上.【总结升华】注意勾股定理及逆定理的灵活运用. 举一反三:【变式】如图,在四边形ABCD 中,AB=BC ,,K 为AB 上一点,N 为BC 上一点.若的周长等于AB 的2倍,求的度数.【答案】显然,绕点D 顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm ,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B 、C 、F 、D 在同一条直线上,且点C 与点F 重合(在图3~图6中统一用F 表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF 沿BD 向右平移到图4的位置,使点B 与点F 重合,请你求出平移的距离; ⑵将图3中的△ABF 绕点F 顺时针方向旋转30°到图5的位置,A 1F 交DE 于点G ,请你求出线段FG 的长度;⑶将图3中的△ABF 沿直线AF 翻折到图6的位置,AB 1交DE 于点H ,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm (即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.【巩固练习】一、选择题1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( ).2. 时钟钟面上的分针从12时开始绕中心旋转120°,则下列说法正确的是( ).A.此时分针指向的数字为3B.此时分针指向的数字为6C.此时分针指向的数字为4D.分针转动3,但时针却未改变3.如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是().A.M或O或N B.E或O或C C.E或O或N D.M或O或C4.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为().A.(3,)B.(3,)C.(,)D.(,)第3题第4题第5题5.如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为().A.30,2 B.60,2 C.60, D.60,6.如图所示,在图甲中,Rt△OAB绕其直角顶点O每次旋转90转三次得到右边的图形.在图乙中,四边形OABC绕O点每次旋转120旋转二次得到右边的图形.下列图形中,不能通过上述方式得到的是 ( ).7.下列图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本图案”通过连续旋转得来,旋转的角度是().A.30° B.45° C.60° D.90°8.在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为( ).A.(-2,1)B.(1,1)C.(-1,1)D.(5,1)二. 填空题9. 如图所示,过正方形的中心C和边上一点A随意连一条曲线,将所画的曲线绕C点,按同一方向连续旋转三次,每次的旋转角度都是90°,这样就将四边形分成四部分,这四部分之间的关系是_______.10.如图,直线与双曲线交于A、C 两点,将直线绕点O顺时针旋转度角(0°<≤45°),与双曲线交于B、D两点,则四边形ABCD的形状一定是_________.11.绕一定点旋转180°后与原来图形重合的图形是中心对称图形,正六边形就是这样的图形.小明发现将正六边形绕着它的中心旋转一个小于180°的角,也可以使它与原来的正六边形重合,请你写出小明发现的一个旋转角的度数:_____________________.12.如图所示,在Rt△ABC中,∠A=90°,AB=AC=4cm,以斜边BC上距离B点cm的H为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是___cm2.13.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为_________.14. 如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP绕点A逆时针旋转后与△ACP′重合,如果AP=3,那么线段PP′的长等于________.15.如图,在直角坐标系中,已知点P0的坐标为(1,0),进行如下操作:将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2,如此重复操作下去,得到线段OP3,OP4,…,则:(1)点P5的坐标为__________;(2)落在x轴正半轴上的点P n坐标是_________,其中n满足的条件是________.16.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是__________.三综合题17. 如图,已知,点P是正方ABCD内一点,且AP∶BP∶CP=1∶2∶3.求证:∠APB=135°.18.如图,已知点D是△ABC的BC边的中点,E、F分别是AB、AC上的点,且DE⊥DF.求证: BE + CF>EF19.如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.20.如图14―1,14―2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.⑴如图14―1,当点E在AB边的中点位置时:①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;③请证明你的上述两猜想.⑵如图14―2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF ,进而猜想此时DE 与EF 有怎样的数量关系.【答案与解析】 一、选择题 1.【答案】C. 2.【答案】C.【解析】分针每5分钟转动30.3.【答案】A.【解析】 因为以M 或O 或N 为旋转中心两个图形能够完全重合. 4.【答案】D. 【解析】因为是菱形,所以可得为等腰直角三角形.5.【答案】C.【解析】△BDC 为正三角形,所以△FDC 为直角三角形,∠DCF=30°,DF=1,FC=,即求得.6.【答案】D.【解析】图形应该首先是旋转图形,选项D 不是旋转图形. 7.【答案】D. 8.【答案】C.【解析】232,1),A (2,4),A (即旋转90°后3A 坐标为(-1,1).二、填空题9.【答案】全等形.10.【答案】平行四边形. 【解析】对角线互相平分. 11.【答案】60°或120°.【解析】正六边形的中心角是60°. 12.【答案】1.【解析】证明△FHC 和△FHG 是等腰直角三角形,且腰长为,即得.13.【答案】5.【解析】做DF ⊥BC,EG ⊥AD,交AD 的延长线于点G ,则AD=BF,可证得△DEG ≌△DCF,即EG=FC,又因为3ADEs△,所以EG=3,即BC=BF+FC=AD+EG=5. 14.【答案】【解析】由旋转可知△APP ′是等腰直角三角形,所以PP ′=15.【答案】(1) ,(2)落在x 轴正半轴上的点P n 坐标是,其中n 满足的条件是n=8k (k=0,1,2,…)16.【答案】(-1,).【解析】首先求得12,P P 的坐标,即可求得3P 坐标.三.解答题17.【解析】证明:将△APB 绕点B 沿顺时针方向旋转90°至△CP′B 位置(如图),则有△APB ≌△CP′B.∴BP′= BP,CP′=AP , ∠PBP′= 90°,∠APB=∠CP′B. 设CP′= AP= k,则BP′= BP=2k,CP= 3k ,在Rt △BP′P 中,BP′= BP= 2k ,∴∠BP′P=45°.=(3k)2= CP2, ∴∠CP′P=90°,∴∠CP′B=∠CP′P+∠BP′P=90°+45°=135°, 即∠APB=135°.18.【解析】证明:将△BDE 绕点D 沿顺时针方向旋转180°至△CDG 位置,则有△BDE ≌△CDG . ∴BE=CG ,ED=DG .∵DE ⊥DF ,即 DF ⊥EG .∴EF=FG ,在△FCG 中CG+CF >FG , 即BE+CF >EF .19.【解析】(1)猜想:AF=BD 且AF ⊥BD. 证明:设AF 与DC 交点为G.∵FC=DC ,AC=BC ,∠BCD=∠BCA+∠ACD , ∠ACF=∠DCF+∠ACD ,∠BCA=∠DCF=90°, ∴∠BCD=∠ACF. ∴△ACF ≌△BCD. ∴AF=BD.∴∠AFC=∠BDC.∵∠AFC+∠FGC=90°, ∠FGC=DGA , ∴∠BDC+∠DGA=90°. ∴AF ⊥BD.∴AF=BD 且AF ⊥BD. (2)结论:AF=BD 且AF ⊥BD.图形不唯一,只要符合要求即可.如:①CD 边在△ABC 的内部时; ②CF 边在△ABC 的内部时.20.【解析】⑴①DE=EF;②NE=BF.③证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,∴DN=EB∵BF平分∠CBM,AN=AE,∴∠DNE=∠EBF=90°+45°=135°∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF∴△DNE≌△EBF∴ DE=EF,NE=BF⑵在DA边上截取DN=EB(或截取AN=AE),连结NE,点N就使得NE=BF成立(图略)此时, DE=EF.。

相关文档
最新文档