第二章 赋范线性空间

合集下载

泛函分析第四讲

泛函分析第四讲
T是X的线性子空间DT 到 Y中的线性算子. 如果存在M 0,使得对于任意的 x DT 都有
Tx M x ,
则称 T是 DT Y 中的有界线性算子.
当 DT X时,称 T 是 X Y 中的有界线性算子.
第二章 泛函分析
第二节 赋范线性空间及Banach空间
二、有界线性算子和连续线性泛函
泛函分析
2.2 赋范线性空间及Banach空间
第二章 泛函分析
一、赋范线性空间
1. 赋范线性空间的定义
定义1 设 X 是复(或实)的线性空间,
如果对于 X 中的每个 x ,对应于一个实数 x ,
且满足 (1) x 0,x 0 x 0;
(2) x x , R 或 C;
(非负性) (齐次性)
第二章 泛函分析
第二节 赋范线性空间及Banach空间
三、线性算子空间和共轭空间
定理5 ƁX Y 按通常的线性运算及算子范数
构成一个赋范线性空间. 证Ax sup Ax
x 1
x 1
x 1
A
(3)A B sup A Bx sup Ax Bx
x D, x 0
第二章 泛函分析
第二节 赋范线性空间及Banach空间
二、有界线性算子和连续线性泛函
定理3 设 X ,Y 是两个赋范线性空间, T : X Y 的线性算子,则T连续的充要条件是 T有界.
证明 必要性 若T连续但无界
xn X,xn 0n 1,2, 使 Txn n xn

yn
定理2 设 X ,Y 是两个赋范线性空间,T是定义在 X 的子空间D上而值域含在 Y 中的线性算子,则 T 是有界的充要条件是 T将D中任一有界集映成 Y 中有界集.
证明 必要性

第二章 赋范线性空间2

第二章 赋范线性空间2
对于 f ∈ X * , f ≠ 0 , Mαf = {x ∈ X | f (x) = α } , 则
1)
M
0 f

X
的一个闭子空间;
2) 取 x0 ∈ X 使 f (x0 ) ≠ 0 , 则
X
=
M
0 f
+ {λ x0
|λ ∈ R};
3)

f (x0 ) = α
,

M
α f
=
x0
+
M
0 f
.
M
α f
i =1
||2 ,
所以
||
f
||≥
⎛ ⎜⎝
n
| αi
i =1
|2
⎞1/ ⎟⎠
2
.
∑ 这样就有 ||
f
||=
⎛ ⎜⎝
n
| αi
i =1
|2
⎞1/ ⎟⎠
2
.
f → (α1,α2 ,
,αn) .
n
∑ 反过来, 任取一个 (α1,α2 , ,αn ) ∈ R n ,对于 x = αiei ∈ Rn ,定义 i =1
例3 设用 l∞ 作为离散信号空间,取 h = (hi ) ∈ l1 为一个滤波器的单位脉冲响应,

∑ y = Hx , yn = hi xn−i i = −∞
H : l∞ → l∞ 为一个有界(稳定)线性算子。事实上,



∑ ∑ ∑ ||
y
||∞
=
max n
|
i = −∞
hi xn−i
|≤
|
i = −∞
||xn+1-xn|| ≤ α n||x1-x0|| 。

应用泛函分析教案

应用泛函分析教案

应用泛函分析教案第一章:泛函分析引言1.1 泛函分析的概念介绍泛函分析的基本概念,例如赋范线性空间、内积空间、巴拿赫空间等。

解释泛函分析与其他数学分支的关系,例如微积分、线性代数等。

1.2 泛函分析的应用探讨泛函分析在数学物理中的重要作用,例如偏微分方程、量子力学等。

介绍泛函分析在工程和计算机科学中的应用,例如信号处理、机器学习等。

第二章:赋范线性空间2.1 赋范线性空间的基本概念定义赋范线性空间,介绍范数的性质和例子。

解释赋范线性空间中的距离和角度概念。

2.2 赋范线性空间的主要结果介绍赋范线性空间中的基本定理,例如三角不等式、平行四边形法则等。

探讨赋范线性空间中的极限和连续性概念。

第三章:内积空间3.1 内积空间的基本概念定义内积空间,介绍内积的性质和例子。

解释内积空间中的正交性和角度概念。

3.2 内积空间的主要结果介绍内积空间中的基本定理,例如帕施-柯尔莫哥洛夫定理、正交基等。

探讨内积空间中的谱理论和量子力学中的应用。

第四章:巴拿赫空间4.1 巴拿赫空间的基本概念定义巴拿赫空间,介绍巴拿赫空间的特点和例子。

解释巴拿赫空间中的弱收敛和紧性概念。

4.2 巴拿赫空间的主要结果介绍巴拿赫空间中的主要定理,例如巴拿赫-魏尔斯特拉斯定理、Riesz表示定理等。

探讨巴拿赫空间在函数逼近论和泛函积分中的应用。

第五章:泛函分析的应用实例5.1 信号处理中的应用介绍泛函分析在信号处理中的应用,例如希尔伯特空间、正交函数等。

探讨泛函分析在信号滤波和去噪等问题的解决中的作用。

5.2 机器学习中的应用介绍泛函分析在机器学习中的应用,例如核函数、支持向量机等。

探讨泛函分析在特征选择和优化算法中的作用。

第六章:赋范线性空间的operators6.1 算子概念定义算子和赋范线性空间中的算子,例如线性映射、紧算子、有界算子等。

解释算子的性质和例子,例如线性、连续、可逆等。

6.2 算子的基本理论介绍算子的基本定理,例如谱定理、弗雷德孙定理、盖尔丹定理等。

数值分析(02)线性空间与赋范线性空间

数值分析(02)线性空间与赋范线性空间

Rm×n(Cm×n):实数域(复数域)上所有m×n矩
阵的集合。按矩阵的加法和数乘矩阵定义加法和数乘, 构成线性空间;
P[x]n:实数域上所有次数≤n的多项式。按多项式加法和 数乘多项式定义加法和数乘,构成线性空间。但次数=n 的多项式全体不能构成线性空间; P[x]:实数域上多项式全体.按多项式加法和数乘多项式法 则构成线性空间;
代数运算的八条规则 设 , , V ; , F (1) ; ( 2) ;
( 3) 在V中存在零元素 0, 对任何 V , 都有 0 ; (4)对任何 V , 都有的负元素 V , 使 0; (5) 1 ; (6) ;
验证:R
mn
中任意两个矩阵定义矩阵的“加法”
和“数乘”运算,且封闭
即:A (aij )mn R mn , B (bij )mn R mn 加法 A B (aij bij )mn R mn 数乘 A ( aij )mn R mn , R mn 所以R 是线性空间。
C[a,b]:区间[a,b]上一元连续函数的全体。是 R上的线性空间,因为两个连 续函数之和以及实数k与连续函数乘积仍是连续函数; Cn[a,b]:类似于C[a,b],在区间[a,b]上 n阶连续可微的一元函数全体.构成R上的线性空间。
线性空间的判定方法
(1)一个集合,如果定义的加法和数乘运算是通常的 实数间的加乘运算,则只需检验对运算的封闭性. 例1 实数域上的全体 m n矩阵,对矩阵的加法 n 和数乘运算构成实数域上的线性空间,记作 R m.
x 为行向量 , 向量的“维”是指向量 所含 分量的个数 .
T
线性空间是为了解决实际问题而引入的,它是某一类 事物从量的方面的一个抽象,即把实际问题看作线性空间, 进而通过研究线性空间来解决实际问题.

泛函分析第2章度量空间与赋范线性空间

泛函分析第2章度量空间与赋范线性空间

泛函分析第2章度量空间与赋范线性空间泛函分析是数学中的一个重要分支,研究函数空间上的函数和运算的性质。

在泛函分析中,度量空间和赋范线性空间是两个基本的概念。

本文将介绍这两个概念以及它们的性质。

度量空间是一个集合X,其中定义了一个度量函数d:X×X→R,满足以下条件:1.非负性:对于任意的x,y∈X,有d(x,y)≥0,且当且仅当x=y时,d(x,y)=0;2.对称性:对于任意的x,y∈X,有d(x,y)=d(y,x);3.三角不等式:对于任意的x,y,z∈X,有d(x,y)≤d(x,z)+d(z,y)。

度量函数d可以看作是度量空间X中点之间的距离,由其性质可以推导出许多重要结论。

例如,由三角不等式的性质可以得出X中点列的收敛性质,即对于度量空间X中的点列{x_n},如果存在x∈X,使得对于任意的ε>0,存在正整数N,当n≥N时,有d(x_n,x)<ε,那么称{x_n}收敛于x。

赋范线性空间是一个向量空间V,其中定义了一个范数函数∥·∥:V→R,满足以下条件:1.非负性:对于任意的x∈V,有∥x∥≥0,且当且仅当x=0时,∥x∥=0;2. 齐次性:对于任意的x∈V和实数a,有∥ax∥=,a,∥x∥;3.三角不等式:对于任意的x,y∈V,有∥x+y∥≤∥x∥+∥y∥。

范数函数∥·∥可以看作是赋范线性空间V中向量的长度或大小,具有度量空间的部分性质,如非负性和齐次性。

范数函数还满足一条重要的性质,即∥x+y∥≥,∥x∥-∥y∥,这被称为三角不等式强化定理。

度量空间和赋范线性空间都具有一些不同的性质和概念。

例如,度量空间中存在序列的收敛性质,而赋范线性空间中存在序列的收敛性质以及序列的Cauchy性质。

同时,度量空间和赋范线性空间都可以构建拓扑结构,使其成为一个拓扑空间。

在拓扑空间中,点列的收敛性质和序列的Cauchy性质是等价的。

此外,度量空间和赋范线性空间都是完备的,即满足序列的Cauchy 性质的序列都收敛于空间中的一些点。

第二章赋范线性空间-黎永锦

第二章赋范线性空间-黎永锦

第2章 赋范线性空间虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能 发生这样的情形:一定的虚构假设足以解释许多现象.Eurler L .(欧拉)(1707-1783,瑞士数学家)Schmidt E .在1908 年讨论由复数列组成的空间}||:){(12∞<∑∞=i i i z z 时引入记号||||z 来表示211)(∑∞=i ii z z ,||||z 后来就称为z 的范数.赋范空间的公理出现在Riesz F .在 1918 年关于],[b a C 上关于紧算子的工作中,但赋范空间的定义是在 1920到1922年间由 BanachS .(1892—1945)、H a h n H .(1879—1934)、H e l l y E .(1884—1943)和 Wiener N .(1894—1964)给出的,其中以Banach S .的工作最具影响.2.1赋范空间的基本概念线性空间是Pea n o Giu sep p e 在1888年出版的书Geometrical Calculus 中引进的.Banach S .在1922年的工作主要是建立具有范数的完备空间,以后为了纪念他称之为Banach 空间.他定义的空间满足三组公理,第一组公理定义了线性空间,第二组定义了范数,第三组给出了空间的完备性.定义K R C ,X 是数域K 上的线性空间,若||||⋅是X 到R 的映射,且满足下列条件: (1) 0||||≥x 且0||||=x 当且仅当0=x ; (2) ||||||||||x x λλ=,对任意X x ∈和任意K ∈λ ; (3) ||||||||||||y x y x +≤+,对任意X y x ∈, .则称||||⋅为X 上的范数,而||||x 称为x 的范数,这时称||)||,(⋅X 为赋范线性空间.明显地,若||)||,(⋅X 为赋范线性空间,则对任意X y x ∈,,定义||||),(y x y x d -=时,),(d X 为度量空间,但对一般的度量空间),(d X ,当X 为线性空间时,若定义)0,(||||x d x =,则||||x 不一定就是X 上的范数.例s ,则明显地,s 为线性空间,对任意的s y x ∈,, 定义 则 但取)0,,0,1(0 =x ,210=λ,则 而 因此所以,)0,(0x d 不是s 上的范数.问题X d , 它满足什么条件时,)0,(||||x d x =才能成为范数?定理X ,d 是X 上的度量,在X 上规定)0,(||||x d x =,则X 成为赋范线性空间的条件是:(1))0,(),(y x d y x d -=,对任意X y x ∈, ;(2) )0,(||)0,(x d x d λλ=,对任意X x ∈和任意K ∈λ.下面举出赋范线性空间的一些例子.例}||,|){(11∞<∈=∑∞=i ii i xK x x l ,∑∞==1||||||i i x x 是1l 的范数, 即||)||,(1⋅l 是赋范线性空间.例∞<≤p 1,}||,|){(1∞<∈=∑∞=i p ii i p xK x x l 在范数下是赋范线性空间.例}||sup ,|){(∞<∈=∞i i i x K x x l ||sup ||||i x x = 例}0lim ,|){(0=∈=∞→i i i i x K x x c ||sup ||||i x x =例2.1.7}],[)(|)({],[上的连续函数为b a t x t x b a C =,在范数|)(|sup ||||t x x =下是赋范线性空间.由于赋范线性空间在度量||||),(y x y x d -=下是度量空间,因此,在度量所引入的序列收敛,开(闭)集、稠密和紧集等概念都可以在赋范线性空间中使用.定义X X x X x n ∈⊂0,}{, 若n x 依度量||||),(y x y x d -=收敛于0x , 即0||||lim 0=-∞→x x n n ,则称n x 依范数||||⋅收敛于0x ,记为在赋范线性空间中,仍然用}|||||{),(00r x x X x r x U <-∈=记以0x 为球心,r 为半径的开球,用}|||||{),(00r x x X x r x B ≤-∈=记以0x 为球心,r 为半径的闭球.为了方便,用}1|||||{=∈=x X x S X 记以0为球心,1为半径的闭单位球面. 用}1|||||{≤∈=x X x B X 记以0为球心,1为半径的闭单位球. 用}1|||||{<∈=x X x U X 记以0为球心,1为半径的开单位球.例Euclid 2R ,对于),(21x x x =可以定义几种不同的范数: 则对1),0,0(0==r x , 闭球)1,(0x B 在不同范数下的形状为:思考题||)||,(⋅X ,问开球),(0r x U 的闭包是否一定是闭),(0r x B ? 思考题||)||,(⋅X ,问闭球),(0r x B 内部是否一定是开球),(0r x U ? 在赋范线性空间中,加法与范数都是连续的.定理||)||,(⋅X 00,y y x x n n →→,则00y x y x n n +→+.证明 由||||||||||)()(||0000y y x x y x y x n n n n -+-≤+-+可知定理成立. 定理2.1.9 若||)||,(⋅X 是赋范空间,0x x n →,则||||||||0x x n →. 证明 由||||||||||||00x x x x n n +-≤和||||||||||||00n n x x x x +-≤,可知||||||||||||||00x x x x n n -≤-,因此||||||||0x x n →.定义||)||,(⋅X ,若),(0||||,}{∞→→-⊂n m x x X x n m n 时, 必有X x ∈,使0||||→-x x n , 则称||)||,(⋅X 为完备的赋范线性空间.根据M.]1928,,,[Paris Villars Gauthier abstraits Espaces Frechet -的建议,完备的赋范线性空间称为Banach 空间.不难证明,∞∞<≤l p l c R p o n),1(,,都是Banach 空间.在数学分析中,曾讨论过数项级数,函数项级数,类似地,在赋范线性空间中,也可定义无穷级数.定义||)||,(⋅X ,若序列}{}{21n n x x x S +++= 收敛于某个X x ∈时,则称级数∑∞=1n nx收敛,记为∑∞==1n nxx .定义||)||,(⋅X ,若数列||}||||||||{||21n x x x +++ 收敛时, 则称级数∑∞=1n nx绝对收敛.在数学分析中绝对收敛的级数一定是收敛的,但在赋范空间上却不一定成立,先来看看下面一个定理.定理||)||,(⋅X ,则||)||,(⋅X 是Banach 空间的充要条件为X 的每一绝对收敛级数都收敛.证明 设||)||,(⋅X 是Banach 空间,且∑∞=1n nx绝对收敛,则由∞<∑∞=1||||n nx可知,对于n n x x x S +++= 21,有)(0||||||||||||||||11∞→→++≤++=-+++++n x x x x S S p n n p n n n p n ,因此n S 是X 的Cauchy 列,由||)||,(⋅X 的完备性可知,存在X x ∈使x S n n =∞→lim ,即x xn n=∑∞=1反之,设X 的每一个绝对收敛级数都收敛,则对于X 的Cauchy 列n x ,对k k 21=ε,有 <<<<<+121k k n n n n , 使得因而+∞<-∑∞=+1||||1n n n k k x x.由假设可知+∞<-∑∞=+1)(1n n n k k x x收敛于某个X x ∈,即}{k n x 收敛x ,所以n x 必收敛于x ,从而||)||,(⋅X 完备.事实上,在实数空间R 中,正是由于R 的完备性才保证了绝对收敛级数一定是收敛的.定义||)||,(⋅X ,若X M ⊂是X 的线性子空间,则称||)||,(⋅M 为||)||,(⋅X 的子空间,若M 还是||)||,(⋅X 的闭集, 则称||)||,(⋅M 为||)||,(⋅X 的闭子空间.明显地,若||)||,(⋅X 是Banach 空间,M 为||)||,(⋅X 的闭子空间,则||)||,(⋅M 是Banach 空间,反之亦然.定理||)||,(⋅X Banach ,M 为||)||,(⋅X 的子空间,则||)||,(⋅M 是Banach 空间当且仅当M 是X 的闭集.证明 设||)||,(⋅X 是Banach 空间,当M x n ∈,且x x n →时,则}{n x 为M 的Cauchy 列,因而}{n x 收敛于 M 上的一点,故M x ∈,即M M ∈',所以M 是闭集.反之,设M x n ⊂}{为Cauchy 列,则}{n x 为 ||)||,(⋅X 的Cauchy 列,由于||)||,(⋅X 是Banach 空间,因此}{n x 是收敛列, 即存在X x ∈使x x n →,又由于M 是||)||,(⋅X 的闭子空间,因此M x ∈,即n x 在M 中收敛于x ,所以||)||,(⋅M 是Banach 空间.定义X ,p 为X 上的一个实值函数,且满足: (1) 0)0(=p ;(2) )()()(y p x p y x p +≤+,对任意X y x ∈,; (3) )(||)(x p x p λλ=,对任意X x ∈,任意K ∈λ.则称p 为X 上的半范数.明显地,X 上的范数一定是半范数,但对X 上的半范数p ,由于0)(=x p 时不一定有0=x ,因此半范数不一定是范数.例∞l ,定义||)(11x x p =,易证)(1x p 是∞l 中的半范数,但对于),,,,0(2 n x x x =,都有0)(1=x p ,因此p 不是∞l 的范数.有什么办法能使),(p X 中的问题转化为赋范空间中来解决呢?定义X ,M 是X 的线性子空间,若M x x ∈-21,则称1x 与2x 关于M 等价,记为)(~21M x x易知,等价具有下面的三个性质(1) x x ~(反射性);(2) y x ~推出 x y ~(对称性); (3) y x ~, z y ~ 推出z x ~(传递性).明显地,若M 是线性空间X 的线性子空间,记}),(~|{~M y M x y y x ∈=, 则~x 的全体在加法~~~y x y x +=+和数乘~~x x αα=下是线性空间,称为X 对模M 的商空间,记为M X /.在商空间M X /中,对M X =∈~0,0,即0是M X /的零元,而对M X /的每一元素~x ,~x 都是唯一确定的,并且对于加法和数乘都是唯一确定的.例}||sup |){(+∞<=∞i i x x l ,取}||sup ,0|){(1+∞<==i i x x x M ,则M 为∞l 的子空间,对M l y x /,∞∈,当~~y x =时有M y x ∈-,即011=-y x , 这时R M l ~/∞当||)||,(⋅X 为赋范线性空间,M 为X 的闭线性子空间时,在M X /商空间中还可以定义范数,使M X /成为赋范线性空间.定理||)||,(⋅X ,M 为X 的闭线性子空间,在M X /上定义范数}|||inf {||||||~~x y y x ∈=,则||)||,/(⋅M X 是赋范线性空间.利用上面的技巧,不难证明,当)(x p 为X 上的一个半范数时,取}|||inf{||||||},0)(|{~~x y y x x p x M ∈===,则||)||,/(⋅M X 是一个赋范线性空间,且对任意X x ∈有,)(||||~x p x =. 当X 是空备赋范线性空间,M 为X 的闭子空间的,M X /还具有完备性. 定理X Banach ,M 为X 的闭子空间,则M X /是Banach 空间.2.2 范数的等价性与有限维赋范空间在同一线性空间上,可以定义几种不同的范数,使之成为不同的赋泛线性空间,但有时X 上的几种不同范数诱导出的拓扑空间是一样的,有时却很不相同,这主要是X 上的序列依范数收敛的不同引起的.定义X ,1||||⋅和|2||||⋅是X 上的两个不同范数,若对X 中的序列}{n x ,当0||||10→-x x n 时,必有0||||20→-x x n ,则称范数1||||⋅比范数2||||⋅强,亦称2||||⋅比1||||⋅弱.若对X 中的序列}{n x ,0||||10→-x x n 当且仅当0||||20→-x x n 则称范数1||||⋅与2||||⋅等价.定理1||||⋅2||||⋅X ,则范数1||||⋅比2||||⋅强当且仅当存在常数0>C ,使得对任意X x ∈都有12||||||||x C x ≤.证明 若存在0>C ,使12||||||||x C x ≤,则明显地0||||1→-x x n 时,有0||||||||12→-≤-x x C x x n n ,因而1||||⋅比2||||⋅强.反过来,若范数1||||⋅比2||||⋅强,则必有0>C ,使12||||||||x C x ≤.若不然,则对任意自然数n ,存在X x n ∈,使12||||||||n n x n x >. 令2||||n nn x x y =,则故0||0||1→-n y ,因而0||0||2→-n y ,但这与1||||||||||0||222==-n n n x x y 矛盾,所以必存在0>C ,使12||||||||x C x ≤,对任意X x ∈成立.推论1||||⋅2||||⋅X ,则范数1||||⋅与2||||⋅等价当且仅当存在常数0,021>>C C ,使得对任意X x ∈,有推论1||||⋅2||||⋅X ,则)||||,(1⋅X 是Banach 空间当且仅当)||||,(2⋅X 是Banach 空间. 思考题1||||⋅2||||⋅X ,且)||||,(1⋅X 和)||||,(2⋅X 都是Banach 空间,是否就一定有1||||⋅与2||||⋅等价呢?定义X n ,||||⋅是X 上的范数,则称||)||,(⋅X 为n 维赋范线性空间.有限维赋范线性空间是Minkowski 在1896年引入的,因此有限维赋范线性空间也称为Minkowski 空间.若||)||,(⋅X 为n 维线性空间,n e e e ,,,21 为X 的一组线性无关组,则称n e e e ,,,21 为||)||,(⋅X 的Hamel 基,此时对任意X x ∈,x 都可以唯一地表示成∑==nn i i e x 1α定理||)||,(⋅X n n e e e ,,,21 X Hamel ,则存在常数1C 及02>C 使得 对任意∑==nn i i e x 1α都成立.证明 对于任意ni K ∈=)(αα,定义函数 则对任意ni K ∈=)(αα,ni K ∈=)(ββ,有 这里2121)||||(∑==nn ieM ,因此f 是n K 到R 的连续函数.由于n K 的单位球面}1)||(|){(2112=∈=∑=ni ini K S αα是紧集,因此f 在S 上达到上下确界,即存在S i i ∈==)(),()0(0)0(0ββαα,使得 因此对任n i K ∈=)(αα,有 故 即下面证明01>C ,容易知道02>C 的证法是类似的.假设01=C ,则有0||||)(1)0(0==∑=nn i i e f αα,故 由}{i e 是X 的Hamel 基可知,0)0(=i α,从而00=α,但这与S ∈0α矛盾.定理X ,1||||⋅与2||||⋅是X 上的两个范数,则存在常数01>C ,02>C 使得 定理Banach证明 若}{m x 为n 维赋范线性空间||)||,(⋅X 的Cauchy 列,则对于X 的Hamel 基n e e e ,,,21 有i ni m im e x ∑==1)(α,由可知}{)(m i α亦为Cauchy 列,故存在R i ∈α,使得i m iαα→)(,因而有)(i αα=,使得令i ni ie x ∑==1α,则0||||→-x x m ,因此}{m x 是收敛序列,所以X 是完备的.在nR 中,M 是列紧的当且仅当M 是有界闭集,在有限维赋范空间中是否成立呢?下面就来讨论有限维赋范线性空间||)||,(⋅X 中紧集与有界闭集的关系.定理||)||,(⋅X ,则X M ⊂是紧的当且仅当M 是有界闭集.证明 设n e e e ,,,21 为||)||,(⋅X 的Hamel 基,则对任意X x ∈,有i ni ie x ∑==1α定义nK 到X 的算子T : 则存在0,021>>C C ,使得从而T 是nK 到X 的连续算子,且是一一对应的.由||)(||)||(21121ααT C ni i≤∑=可知1-T 是X 到n K 的连续算子, 因此T 是n K 到X 的拓扑同构.所以M 的紧集当且仅当)(1M T -为nK 的紧集,从而M 是X 的紧集当且仅当M 是有界闭集.问题||)||,(⋅X ,则X 是否一定为有限维的赋范线性空间?为了回答上面的问题,先来讨论Riesz 引理,这是Riesz F .在1918年得到的一个很漂亮的结果.引理Riesz M ||)||,(⋅X ,则对任意 10<<ε,存在1,=∈εεx X x ,使得 对任意M x ∈成立.证明 由于M 是X 的闭真子空间,因此≠M X \φ,故存在M X y \0∈,令}|||inf{||),(00M x x y M y d d ∈-==,则0>d .对任意10<<ε,由d 的定义可知,存在M x ∈0,使得令||||0000x y x y x --=ε,则1||||=εx ,且对任意M x ∈,有由M x ∈0,M x ∈和M 是线性子空间,可知 因此 故由Riesz 引理,容易得到有限维赋范线性空间特征的刻画.定理||)||,(⋅X X }1|||||{≤=x x B X证明 明显地,只须证明X B 是紧的时候,X 一定是有限维的.反证法,假设X B 是紧的,但X 不是有限维赋范线性空间,对于任意固定的,1X x ∈1||||1=x ,令}|{}{111K x x spanM ∈==λλ,则1M 是一维闭真子空间,取21=ε,由Riesz 引理可知,存在1||||,22=∈x X x 且21||||2≥-x x 对任意1M x ∈成立,从而21||||12≥-x x . 同样地,令},{212x x span M =,则2M 是二维闭真空子空间,因而存在1||||,33=∈x X x ,使21||||3≥-x x 对任意2M x ∈成立,从而21||||13≥-x x 且21||||23≥-x x . 利用归纳法,可得一个序列X n B x ⊂}{,对任意n m ≠,有因而}{n x 不存在任何收敛子序列,但这与X B 是紧集矛盾,由反证法原理可知X 是有限维赋范线性空间.推论X X对于无穷维赋范线性空间X 的紧集的刻画,就比较困难.在]1,0[C 中,容易看出]1,0[}1|)(||)({C x f x f A ⊂≤=是]1,0[C 的有界闭集,但不是紧集.为了讨论]1,0[C 子集的紧性,需要等度连续的概念,它是由Ascoli 和Arzelà同时引入的.定义]1,0[C A ⊂,若对任意的0>ε,都存在0>δ,使得对任意的A f ∈,任意的]1,0[,∈y x ,δ<-||y x 时,一定有ε<-|)()(|y f x f ,则称A 是等度连续的.Ascoli 给出了]1,0[C A ⊂是紧的充分条件,Arzelà在1895年给出了]1,0[C A ⊂是紧的必要条件,并给出了清楚的表达.定理 (Arzel à-Ascoli 定理) 设]1,0[C A ⊂,则是紧的当且仅当A 是有界闭集,且A 是等度连续的.2.3 Schauder 基与可分性一个Banach 空间,如果想把它看作序列空间来处理,最好的办法是引入坐标系,常用的方法是引入基的概念,Schauder 基是-Fun in stetiger Theorie Zur SchauderJ [. .]6547.)1927(26,,-pp t Zeitschrif che Mathematis men ktionalrau 引入的.定义Banach ||)||,(⋅X }{n x X Schauder ,若存在对于任意X x ∈,都存在唯一数列K a n ⊂}{,使得容易看到,有限维赋范线性空间一定具有Schauder 基.例1l ),0,1,0,,0( =n e ,则}{n e 为1l 的Schauder 基,明显地,在)01(,,0∞<<p l c c 中,}{n e 都是Schauder 基.Schauder J .在1928年还在]1,0[C 中构造一组基,因而]1,0[C 也具有Schauder 基.具有Schauder 基的Banach 空间具有许多较好的性质,它与Banach 空间的可分性有着密切联系.定义||)||,(⋅X ,若存在可数集X M ⊂,使得X M =,即可数集在X 中稠密,则称X 是可分的.若||)||,(⋅X 可分,则存在可数集X x n ⊂}{,使得对任意X x ∈及任意0>ε,都有某个}{n n x x ∈ε,满足εε<-||||x x n .例Q ,且R =,因此R 是可分的.类似地,nR 也是可分的赋范空间. 例p l p ,1+∞<≤,因为取时,使得存在N i N x M i >=,|){(},,0都是有理数时并且i i x N i x <=,则M 是可数集,并且p l M =.实际上,对任意p l x ∈,由+∞<∑∞=pi pi x 11)||(可知,对任意0>ε,存在N ,使得2||1pN i pix ε<∑∞+=, 取有理数N q q q ,,21,使2||1pNi pi i x q ε<-∑=,则M q q q x N ∈=)00,,,(21 ε,且εε<+-≤-∑∑∞+==pN i p iNi p i i xx q x x 111)||||(,因此p l M =,所以p l 是可分的.例],[b a C x ∈,必有多项式0→-x p n ,取M 为],[b a 上有理系数的多项式全体,则M 是可数集,且],[b a C M =,因而],[b a C 是可分的赋范线性空间.定理||)||,(⋅X Schauder ,则X 一定可分的. 证明 为了简明些,这里只证明||)||,(⋅X 为实的情形.设}{i e 为X 的Schauder 基,则任意X x ∈有∑∞==1i ii ea x ,这里R a i ∈.令},|{1Q q N n eq M i ni ii ∈∈=∑=,则M 是可数集,且对任意X x ∈及任意0>ε,存在M x ∈ε,使得εε<-x x ,因此X M =,所以M 为可分的赋范空间.对于复赋范空间||)||,(⋅X ,可令},,|)({1Q pq N n e ip q M iini iii∈∈+=∑=,证明是类似的.问题Schauder例∞l Schauder由于∞l 不可分,因而一定没有S c h a u d e r 基.事实上,假设∞l 可分,则存在∞∈=l x x m im )()(,使得}{m x X =.令则211||sup )0(=+≤i x ,即∞∈=l x x i)()0(0,并且所以}{m x 不存在任何收敛子列收敛于0x ,故}{0m x x ∉,从而}{m x X ≠,但这与假设}{m x l =∞矛盾,因此∞l 不可分.另外,还再进一考虑下面的问题:问题Schauder上面问题自从S. Banach 在1932年提出后,很多数学家为解决这一问题做了很多的努力,由于常见的可分Banach 空间,如10,l c 等都具有Schauder 基,因此大家都以为问题的答案是肯定的,但所有的努力都失败了,大家才倾向于问题的答案是否定的.Enflo P .在1972年举出了一个例子,它是可分的赋范空间,但不具有Schauder 基[A counterexample to the approximation problem in Banach spaces. Acta Math. 130(1973),309-317.]2.4线性连续泛函与Banach Hahn -定理Banach S .1929年引进共轭空间这一重要概念,这也就是赋范线性空间上的全体有界线性泛函组成的线性空间,在这个线性空间上取泛函在单位球面的上界为范数,则共轭空间是完备的赋范线性空间.Banach S .还证明了每一连续线性泛函是有界的,但最重要的是Banach S .和Hahn H .各自独立得到的一个定理,这就是泛函分析中最著名的基本定理,即Banach Hahn -定理,它保证了赋范线性空间上一定有足够多的连续线性泛函.泛函这名称属于Hadamard ,他是由于变分问题上的原因研究泛函.定义||)||,(⋅X ,f 为X 到K 的映射,且对于任意X y x ∈,及K ∈βα,,有 则称f 为X 的线性泛函.例∞l ,若定义1)(x x f =,则f 为∞l 上的线性泛函.由于线性泛函具有可加性,因此,线性泛函的连续性比较容易刻画.定理f ||)||,(⋅X ,且f 在某一点X x ∈0上连续,则f 在X 上每一点都连续.证明 对于任意X x ∈,若x x n →,则由f 在0x 点的连续性,因此所以)()(x f x f n →,即f 在x 点连续.这个定理说明,要验证泛函f 的连续性,只须验证f 在X 上某一点(例如零点)的连续性就行了.问题X ,X 上任意线性泛函都连续?例n R事实上令)0,0,1,0,0( =i e ,则任意nR x ∈,有∑==ni i i e x x 1,设0,→∈m nm x R x ,则∑==ni i m im e x x 1)(,且0)(→m ix 对任意i 都成立.因此)0(0)()()(1)(1)(f e f x e x f x f ni i m ini i m i m =→==∑∑==,所以f 在0点连续,从而f 在n R 上任意点都连续.定义X X K ,则称f 为有界线性泛函,否则f 为无界线性泛函.定理f ||)||,(⋅X ,则f 是有界的当且仅当存在0>M ,使|||||)(|x M x f ≤.证明 若存在0>M ,使得对任意|||||)(|,x M x f X x ≤∈,则对于X 中的任意有界集F ,有0>r ,使得对任意F x ∈,有r x ≤||||,因此,Mr x M x f ≤≤|||||)(|对所有F x ∈成立,所以)(F f 为K 的有界集,即f 为有界线性泛函.反之,若f 为有界线性泛函,则f 把X 的单位球面}1|||||{)(==x x X S 映为K 的有界集,因此存在0>M ,使得对一切1||||=x ,有 故对任意X x ∈,有 所以例)(|){(i i x x c =,范数||sup ||||i x x =,若定义f 为i i x x f ∞→=lim )(,则f 为c 上的线性泛函,由于||sup ||||i x x =,因此 所以f 为c 上的有界线性泛函.对于赋范线性空间的线性泛函而言,有界性与连续性是等价的,Banach S .在1929年证明了每一个连续可加泛函(线性连续泛函)都是有界的.定理X ,则X 上的线性泛函是连续的当且仅当f 是有界的.证明 若f 是有界的,则由上面定理可知存在0>M ,使得|||||)(|x M x f ≤,因此当x x n →时,有)()(x f x f n →,即f 为连续的.反之,假设f 为连续线性泛函,但f 是无界的,则对任意自然数n ,存在X x n ∈,使得 令0,||||0==y x n x y n nn ,则01||||0→=-ny y n ,由f 的连续性可知)()(0y f y f n →,但1||||)()(>=n n n x n x f y f ,0)(0=y f ,从而 1|)()(|0>-y f y f n ,但这与)()(0y f y f n →矛盾.所以f 为连续线性泛函时,f 一定是有界的.线性泛函的连续性还可以利用f 的零空间是闭集来刻画.定理X ,则X 上的线性泛函是连续的当且仅当}0)(|{)(==x f x f N 为X 的闭线性子空间.证明 明显地)(f N 为线性子空间,因此只须证)(f N 是闭的.若f 是连续线性泛函,则当x x f N x n n →∈),(时,必有)()(x f x f n →,因而0)(=x f ,即)(f N x ∈,所以)(f N 是闭子空间.反之,若)(f N 是闭的,但f 不是有界的,则对于任意正整数n ,有X x n ∈,使 令||||n nn x x y =,则1||||=n y ,且n y f n >|)(|. 取)(,)()(11011y f yz y f y y f y z n n n -=-=, 由于因而0z z n →,且0))()(()(11=-=y f yy f y f z f n n n ,即)(f N z n ∈,从而由)(f N 是闭集可知)(0f N z ∈,但这与1)(0-=z f 矛盾,因此当)(f N 是闭子空间时,f 一定是连续的. 从上面的讨论容易看出,X 上的全体连续线性泛函是一个线性空间,在这个线性空间上还可以定义其范数.定义f X ,则称 为f 的范数.明显地,若记X 上的全体线性连续泛函为*X ,则在范数||||f 下是一赋范空间,称之为X 的共轭空间.虽然Hahn H .在1927年就引起了共轭空间的概念,但Banach S .在1929年的工作更为完全些.容易看出,对于任意X f ∈,还有|)(|sup |)(|sup ||||1||||1||||x f x f f x x ≤===.但对于具体的赋范空间X ,要求出X 上的连续线性泛函的范数,有时是比较困难.例f 1l ,若取}{i e 为1l 上的S ch a u d er 基,则对任意)(i x x =,有∑∞==1i ii ex x , 故∑∞==1)()(i i i e f x x f ,因而从而|)(|sup ||||i e f f ≤.取1)0,0,1,0,0(l e i ∈= , 则1||||=i e , 且|)(|||||||||||||i i e f e f f ≥=, 故|)(|sup ||||i e f f ≥,所以|)(|sup ||||i e f f =.设M 是赋范线性空间X 的子空间,f 为M 上的连续线性泛函,且存在0>C ,使得|||||)(|x C x f ≤对任意M x ∈成立,则f 是否可以延拓到整个范空间X 上?这一问题起源于n 维欧氏空间nR 上的矩量问题.Banach S . 在1920年提交的博士论文中,用几何语言将它推广到无限维空间.1922年,Hahn H .发表的论文也独立地得出类似结果.Hahn H . 在1927年将结果更一般化,在完备的赋范线性空间研究了这一问题,并证明了在X 上f 存在连续延拓F ,使得|||||)(|x C x F ≤对一切M x ∈成立,且对一切M x ∈,有)()(x f x F =. 1929年,Banach S .独立地发表了与Hahn H .相近的定理和证明,并把一定理推广为一般的情形,这就是下面的Banach Hahn -延拓定理.定理M X ,f 为M 上的实线性泛函,且存在X 上的半范数)(x p 使得)(|)(|x p x f ≤, 对任意M x ∈成立则存在f 在X 上的延拓F ,使得(1) )(|)(|x p x F ≤, 对任意X x ∈成立; (2) )()(x f x F =, 对任意M x ∈成立.Bohnehbius F H ..与Sobczyk A . 在 1938 年还把Banach Hahn -定理推广到复线性空间.定理M X ,f 为M 上的线性泛函,p 是X 上半范数且满足)(|)(|x p x f ≤, 对任意M x ∈成立则存在f 在X 上的延拓F ,使得(1) )(|)(|x p x F ≤, 对任意X x ∈成立; (2) )()(x f x F =, 对任意M x ∈成立.利用线性空间的Banach Hahn -延拓定理,可以建立赋范线性空间上的保范延拓定理,它是Banach 空间理论的基本定理.定理M X ,f 为M 上的连续线性泛函,则存在X 上线性连续泛函F ,使得 (1)**=M X f F ||||||||;(2) )()(x f x F =, 对任意M x ∈成立.这里*X F ||||表示F 在*X 的范数,*M f ||||表示f 在*M 的范数.证明 由于f 为M 上的连续线性泛函,因此对任意M x ∈,有|||||||||)(|x f x f M *≤. 定义半范数||||||||)(x f x p M *=,则有)(|)(|x p x f ≤,对任意M x ∈.由线性空间的Banach Hahn -定理可知存在F ,使得)()(x f x F =,对任意M x ∈且)(|)(|x p x F ≤, 对任意X x ∈因此对于任意X x ∈,有|||||||||)(|x f x F M *≤,故F 为X 上的连续线性泛函,且**≤M X f F ||||||||.反过来,由可知**=M X f F ||||||||,且)()(x f x F =对任意M x ∈成立.在上面定理中,若X 是复赋范线性空间,则M 必须是复线性子空间.很有意思的是Bohnehbius F H ..和Sobczyk A .在1938年证明在任意无穷维复Banach 空间X 中,一定存在实线性子空间M ,在M 上有一复连续线性泛函不能保范延拓到X 上.问题Banach Hahn -,什么条件下保范延拓是唯一的?例},|),{(2121R x x x x X ∈=,定义范数||||||),(||||||2121x x x x x +==.令}|)0,{(11R x x M ∈=, 明显地,M 是赋线性空间X 的线性子空间,对M x y ∈=)0,(1,定义1)(x y f =,则故1||||≤*M f ,且对)0,1(0=x ,有1|)(|,1||||00==x f x ,因而1||||=*M f ,但对X 上的线性泛函这里X x x x ∈=),(21 在M 上,都有对任意的M x y ∈=)0,(1成立.在M 上有f F f F ==21,,且***==M X X f F F ||||||||||||21,因此21,F F 是f 的两个不同的保范延拓.定理||)||,(⋅X ,M 是X 的子空间,X x ∈0,),(0M x d d =0}|||inf{||0>∈-=M y y x ,则存在*∈X f ,使得(1)对任意0)(,=∈x f M x ; (2)d x f =)(0; (3)1||||=f .证明 令}}{{0x M span E ⋃=∆,则对任意E x ∈,x 有唯一的表达式0'tx x x +=,这里M x K t ∈∈',.在E 上定义泛函g : 则g 为E 上的线性泛函,且 (1)d x g =)(0;(2)对任意0)(,=∈x g M x . 对0'tx x x +=,不妨假设0≠t .由 可知||||||'||||'||||||'|||||||)(|000x tx x x tx t x t x t d t x g =+=+=--≤=. 因此g 是E 上的线性连续泛函,且1||||≤*M g .根据Banach Hahn -定理,有连续线性泛函*∈X f ,使得 (1)对任意)()(,x g x f E x =∈; (2)||||||||g f =.由0}|||inf{||0>∈-=M y y x d ,可知存在M x n ∈,使得d x x n →-||||0. 故因此1||||≥f ,所以1||||=f ,且对所有M x ∈,有0)(=x f .特别地,当}0{=M 时,对任意00≠x ,有||||),(00x M x d =,因此由上面定理可知下面推论成立.推论X ,则对任意0,00≠∈x X x ,有*∈X f ,使得||||)(00x x f =,且1||||=f .该结论的重要意义在于它指出了任意赋范线性空间X 上都存在足够多的线性连续泛函.由下面推论还可知道X 中两个元素y x ,,若对所有*∈X f ,都有)()(y f x f =,则一定有y x =.推论X ,X y x ∈,则y x ≠当且仅当对存在*∈X f 使得)()(y f x f ≠.证明 假设y x ≠,则对y x z -=,有0||||≠z ,因此Banach Hahn -定理的推论可知存在1||||=f ,使得0||||)(≠=z z f ,从而)()(y f x f ≠.例题X ,试证明对任意X x ∈0,有证明 对任意*∈X f ,1||||=f ,有因此另外, 但对0,00≠∈x X x ,存在*∈X f ,1||||=f ,使得 ||||)(00x x f =,故|)(|sup||||0,1||||0x f x Xf f *∈=≤, 所以|)(|sup||||0,1||||0x f x Xf f *∈==.例题||)||,(⋅X ,若对于任意1||||,1||||,,==∈y x X y x 且y x ≠都有2||||<+y x ,试证明对于任意)1,0(∈α,有1||)1(||<-+y x αα.证明 反证法. 假设存在1||||||||00==y x 和)1,0(0∈α,使得 由Banach Hahn -定理的推论,可知存在*∈X f ,1||||=f ,使得 即这时一定有1)()(00==y f x f . 否则的话,若1)(0<x f 或1)(0<y f ,则1)1()()1()(000000=-+<-+ααααy f x f ,矛盾.因此2)(|)(|sup||||0000,1||||00=+≥+=+*∈=y x f y x f y x Xf f ,又由可知2||||00=+y x ,但这与2||||00<+y x 的题设矛盾,因此由反证法原理可知对于任意)1,0(∈α,有1||)1(||<-+y x αα.2.5 严格凸空间Clarkson A J ..在1936年引入了一致凸的Banach 空间的概念,证明了取值一致凸的Banach 空间的向量测度Nikodym Radon -的定理成立,从而开创了从单位球的几何结构来研究Banach 空间性质的方法.Clarkson A J ..和Gkrein M . 独立地引进了严格凸空间,严格凸空间在最佳逼近和不动点理论上有着广泛的应用.定义X ,若对任意1||||,1||||,,==∈y x X y x ,y x ≠,都有 严格凸的几何意义是指单位球面X S 上任意两点y x ,的中点2yx +一定在开单位球}1|||||{<=x x U X 内.例Banach 0c000),0,0,1,0(),,0,1,1(c y x ∈== ,则1||||||||00==y x ,且对),0,0,1,21(200 =+y x ,明显地有1||2||00=+y x . 类似地,易验证,Banach 空间 ∞l l c ,,1都不是严格凸空间.例1||||,1||||,,2==∈y x l y x y x ≠,则 从而4||||4||||22<--=+y x y x ,即1||2||<+yx . 所以2l 是严格凸的.类似地,容易证明Banach 空间)1(∞<<p l p 是严格凸的.定理X ,则对任意非零线性泛函*∈X f ,f 最多只能在X S 上的一点达到它的范数||||f .证明 反证法.假设存在1||||||||,0000==≠y x y x ,使得 由于 因此 从而 明显地,12||||||||||2||0000=+≤+y x y x .因此1||2||00=+y x ,但这与X 的严格凸假设矛盾,所以由反证法原理可知定理成立.设X 是赋范空间,M 是X 的子空间,对*∈X f , f 在X 上可能有不同的保范延拓,不过,*X 的严格凸性能保证保范延拓的唯一性.Taylor A .在1939年证明了以下结果-function linear of extension The Taylor A ,.[ ].547538),1959(5..,-J Math Duke als .定理*X ,M 是X 的子空间,则对任意*∈M f ,f 在X 上有唯一的保范延拓. 证明 反证法. 假设对*∈M f ,f 在X 上有两个不同的保范延拓1F 及2F ,即对任意M x ∈,都有)()()(21x F x F x f ==,且||||||||21F F =,则由于 因此1||2/)||||||||(||21=+f Ff F ,但这与*X 是严格凸矛盾. 所以f 在X 上只有唯一的保范延拓.思考题X M ,任意的*∈M f ,f 在X 上都只有唯一的保范延拓,则*X 是否一定为严格凸的?严格凸性还保证了最佳逼近元的唯一性.定义X X x X M ∈⊂,,若存在M y ∈0,使得则称0y 为M 中对x 的最佳逼近元.定理M ,则对任意X x ∈,存在M y ∈0,使得证明 令||||inf y x d My -=∈,由下确界的定义,存在M y n ∈,使得 因而}{n y 是有界序列,即存在0>C ,使得C y n ≤||||,对任意n 成立.事实上,若}{n y 不是有界序列,则对任意N k ∈有}{n n y y k ∈,使得k y k n >||||,故)(||||||||||||||||∞→∞→-≥-≥-k x k x y y x k k n n .但这与d y x k n →-||||矛盾,所以}{n y 为有界序列.由于M 是有限维,且}{n y 为M 中有界序列,因此}{n y 存在收敛子列0y y k n →,且M y ∈0.故d y x y x k n k =-=-∞→||||lim ||||0,所以存在M y ∈0.且||||inf ||||0y x y x My -=-∈. 问题例2R ,取范数|}||,max{|||||21x x x =,}|)0,{(11R x x M ∈=,则M 为2R 的一维子空间,取20)1,0(R x ∈=,对于任意M x x ∈=)0,(1,有故对于)0,1(0=w ,有1||||00=-w x .因此1}|||inf {||),(00=∈-=M x x x M x d .但对于)0,0(=u 及)0,1(-=v ,都有1||||||||00=-=-v x u x ,因此0x 在M 的最佳逼 元不唯一.既然上述定理中的最佳逼近元不唯一,那么什么时候才能保证唯一呢?定理X ,M 为X 的有限维子空间,X x ∈,则在M 中存在唯一的最佳逼近元,即存在M y ∈0,使得证明 令||||inf y x d My -=∈,假设存在M y y ∈21,, 使得 则由M y y ∈+221,可知d y y x ≥+-||2||21. 由于d y x y x y y x =-+-≤+-||2||||2||||2||2121,从而d y y x =+-||2||21. 因此1||||,1||||21=-=-d y x d y x ,且1||2/)(||21=-+-dy x d y x .但这与X 的严格凸性矛盾,所以由反证法原理可知x 在M 中存在唯一的最佳逼近元.最后,值得注意的是,严格凸性不是拓扑性质,它与范数的选取有关.例2R ,如果取范数212221)|||(|||||x x x +=,则||)||,(2⋅R 是严格凸的,但对于另一个范数||||||||211x x x +=,)||||,(12⋅R 不是严格凸的,并且范数1||||⋅和||||⋅等价.Istratescu V .还将严格凸性推广到复严格凸性,复严格凸性在取值于复Banach 空间的解析函数理论中有着重要应用convex strictly complex On Istratescu I Istratescu V ,.,.[习题二2.1 在n R ,对任意n n R x x x ∈=},,{1 ,定义上n R 的几个实值函数,使得它们都是nR 范数.2.2 设X 为赋范线性空间,||||⋅为X 上的范数,定义试证明),(d X 为度量空间,且不存在X 上的范数1||||⋅,使得1||||),(y x y x d -=.2.3在]1,0[C 中,定义p p p dt t x x /110)|)(|(||||⎰=)1(∞<≤p ,试证明||||⋅是]1,0[C 的范数. 2.4设M 是赋范空间X 的线性子空间,若M 是X 的开集,证明M X =.2.5试证明0c 是∞l 的闭线性子空间.2.6设X 是赋范线性空间,若λλλλ→∈∈n n n X x x K ,,,,且x x n →,试证明x x n n λλ→.2.7设X 是赋范线性空间,若y y x x n n →→,,试证明y x y x n n +→+.2.8 试证明n e 为)1(∞<<p l p 的Schauder 基.2.9 设)1,,1,1(0⋅⋅⋅=e ,试证明},,,,,{210⋅⋅⋅⋅⋅n e e e e 为c 的Schauder 基.2.10 在∞l 中,若M 是∞l 中只有有限个坐标不为零的数列全体,试证明M 是∞l 的线性子空间,但M 不是闭的.2.11 设1||||⋅和2||||⋅为线性空间X 上的两个等价范数,试证明)||||,(1⋅X 可分当且仅当 )||||,(2⋅X 可分.2.12 设R R f →:,满足)()()(y f x f y x f +=+对任意X y x ∈,成立,若f 在R 上连续,试证明f 是线性的.2.13设f 和g 为线性空间X 上的两个非零的线性泛函,试证明它们有相同的零空间当且仅当存在k ,使得kg f =.2.14设X 是有限维Banach 空间,n i i x 1}{=为X 的Schauder 基,试证明存在*∈X f i ,使得1)(=i i x f ,且0)(=j i x f ,对j i ≠成立.2.15设f 为赋范线性空间X 上的非零的线性泛函,试证明}1)(|{=∈=x f X x M 是X 的非空闭凸集.2.16设X 是赋范空间,M 为X 的闭线性子空间,M X x \0∈,试证明存在*∈X f ,使得),(1||||,1)(00M x d f x f ==,且0)(=x f ,对所有M x ∈成立. 2.17设X 是有限维空间,ni i x 1}{=为X 的Schauder 基,对任意∑==∈ni i i x x X x 1,α, 定义泛函i i x f α=)(,试证明*∈X f i .2.18设X 是严格凸空间,试证明对任意,0,0,,≠≠∈y x X y x 且||||||||||||y x y x +=+时,有0>λ 使得x y λ=.2.19试在1l 构造一个新范数1||||⋅,使得)||||,(11⋅l 是严格凸空间.2.20试证明1l 和∞l 都不是严格凸的赋范线性空间.2.21设*X 是严格凸的,试证明对于任意1||||,=∈x X x ,有且仅有唯一的1||||,=∈*x x f X f ,使得1)(=x f x .2.22举例说明在赋范线性空间中,绝对收敛的级数不一定是收敛级数.2.23设X F =,试证明对任意x X x ,∈都可以写成一个收敛级数∑∞=1i i x 的和,且每一项i x 都属于F .2.24 设是X 赋范线性空间,,,X x x n ∈x x n →,试证明对任意*∈X f ,有)||||()||||(x x f x x f n n →. 2.25 试证明赋范线性空间X 是完备的当且仅当度量空间),(d S 是完备的,这里单位球面}1|||||{=∈=x X x S ,度量||||),(y x y x d -=.2.26在]1,0[C 中,]},[),()(|)({b a C x b x a x t x M ∈==,试证明M 是]1,0[C 的完备线性子空间.2.27在]1,0[C 中,试证明]1,0[}1|)(||)({C t x t x A ⊂≤=是]1,0[C 的有界闭集,但不是等度连续的.2.28 在2R 中,取范数||||||||21x x x +=,}|)0,{(11R x x M ∈=,则M 为2R 的线性子空间,对20)1,0(R x ∈=,试求出M y ∈0,使得),(||||000M x d y x =-.巴拿赫Banach S .1892年3月30日生于波兰的一个叫Ostrowsko的小村庄,出身贫寒.Banach S .1916年结识SteinhausH .后,Steinhaus H .告诉Banach S .一个研究很久尚未解决的问题.几天后,Banach S .找到了答案,Banach S .就和S t e i n h a H .一起写了论文,联名发表在Kraków 科学院会报上.Stefan Banach (1892-1945)1920年, Lomnicki 教授破格将B a n a ch S .安排到Lvov 技术学院当他的助教.同年,Banach 提交了他的博士论文“关于抽象集合上的运算及其在积分方程上的应用”(Sur les opérations dans les ensembles abstraits etleur applicationaux équtions int égrales),并取得博士学位.该论文发表在1923年的《数学基础》)(ae Mathematic Fundamenta第3卷上,大家都将它看为泛函分析学科形成的标志之一.1922年,Banach S .通过讲师资格考核,1924年任该大学教授.1929年,Banach S .和Steinhaus H .创办了泛函分析的刊物a MathematicStudia . 1932 年,Banach S .出版了《线性算子理论》Théorie des óperations linéaires,这本书汇集了Banach S .的研究成果,对推动泛函分析的发展起了重要作用.1936年,在Oslo 召开的国际数学家大会邀请Banach S .在全体大会上作报告.在波兰国内,Banach 被授予多种科学奖金,1939年被选任波兰数学Banach S .会主席.Banach S .的主要工作是引进线性赋范空间概念,证明了很多赋范空间基本定理,很多重要的定理现在都以他的名字命名,他证明的三个基本定理(Banach Hahn -线性泛函延拓定理,Steinhaus Banach -定理和闭图像定理)概括了许多经典的分析结果,在理论上和应用上。

2.1赋范线性空间

2.1赋范线性空间
N 3 x x
N 4 x y x y
则称 x 为 x 的范数,称 X , . 简称赋范空间,也简记作 X 。

为赋范线性空间,
可以利用“范数”在 X 中定义距离
d x, y x y
称为由范数诱导的距离。 范数导出的距离具有平移不变性和绝对齐次性。 ⑴ d x a, y a d x, y (平移不变性) ; ⑵ d ax, ay a d x, y (绝对齐次性) 。

e 叫做关于基 e 的表达式或展开式,
i 1 i i
n
并记作
x i ei
i.5 设{x1, x2, ……, xn}是任意维赋
范空间X中的一个线性无关组,则对任意
选定的一组系数α1, α2,…… αn,必存在 一个常数 C > 0 , 使得
定义 2.1.4 (肖德基)
若赋范空间 X 包含一个序列 en ,
对每个 x X 都存在唯一的数列 n ,使得当 n 时, 有
x 1e1 2 e2 n en 0
则称 en 为 X 空间的一个肖德(Schauder)基,

而把其和为 x 的级数
1 x1 2 x2 .... n xn
C ( 1 2 ... n )
定理2.1.6(有限维赋范空间的完备性)
赋范空间X的每一个有限维子空间M
都是完备的,特别是每个有限维赋范空间
都是完备的。
2.1.6 赋范空间的同构性
定义2.1.7(同构线性空间)
设X、Y是同一数域K上的两个线性空
i 1

i
x1 x2 xn

D2 赋范线性空间

D2 赋范线性空间

f (Bδ (x0)) ⊂ Bε ( f (x0)) .
例2.9 设(X, d )为度量空间 , 固定 y0 ∈ X , 则d(� , y0): X→ 是连续泛函 .
2.1. 3 度量空间的映射
定理2.5 设(X, d ), (Y, ρ)是度量空间 , f : X →Y, 则 下列命题等价 : (1) f 连续; (2) 开集的原像是开集 ; (3) 闭集的原像是闭集 ; (4) ∀{xn}⊂ X, 若d(xn, x)→0, 则 ρ( f (xn), f (x))→0, 即若 lim xn = x , 则 lim f ( xn ) = f ( x) . n →∞
2.1.2 度量空间的收敛性和点集
定义2.5 设 ( X, d )为度量空间, A ⊂ X . 设 x ∈ A, 若∃ ε > 0, s.t. Bε (x) ⊂ A, 则称 x 是 A 的内点. . 若 A 的每个点都是内点, 则称 A 是开集 开集. . 闭集. (2) 若 AC为开集, 则称 A 为闭集 定理2.2 度量空间 X 中开集和闭集具有如下性质 : (1) 任意个开集之并是开集; (2) 有限个开集之交是开集; (3) 任意个闭集之交是闭集; (4) 有限个闭集之并是闭集.
2.1. 3 度量空间的映射
定义2.10 设( X, d )为度量空间 , T : X →X, 若存在
α ∈[0, 1), 使得 ∀ x, y ∈ X , d(Tx, Ty) ≤ α d(x, y), 则
压缩映射 . 称 T 是 X 上的一个 上的一个压缩映射 压缩映射是连续映射 . 定义2.11 设( X, d )为度量空间 , T : X →X , 如果有
lim xn = x, 或 xn → x (n→ ∞ ), 或 xn → x .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 < ∞ ,但 n2
yn = lim xn ∉ M 。
这说明空间的完备性必不可少。
5、依题意, ∀x ∈ X 1
∃x1 ∈ X 0, s.t. || x − x1 ||< 2 1
∃x2 ∈ X 0 , s.t. || ( x − x1 ) − x2 ||< 2 2 …
∑n−1
1
∃xn ∈ X 0 , s.t. || ( x − k=1 xk ) − xn ||< 2n
7、因为 c0 ⊂ l ∞ ,要证明 c0 是完备的,仅需证明 c0是闭集。 设{xn } ⊂ c0 ,且 xn → x 。
则 ∀ε > 0,
∃N,
∀n >
N 时, ||
xn

x ||=
sup
k
|
ξ
( k
n)

ξ
(0) k
|<
ε 3
。从而当 n

N 时,
lim
k →∞

( k
n)

ξ
( k
0)
)
第二章 赋范线性空间
3、反例:取 xn
=
(1,
1 ,… ,
2
1 ,0,0,…) ∈ M
n
,有
xn

x
1 11 = (1, ,… , , …) ∉ M
2 n n+1

4 、 反 例 : 在 第 3 题 的 空 间 M 中 , 取 yn = xn − xn−1( x0 = (0,0,…)) 。 有
∑ ∑ ∑ || yn || =
妨设 d
=
lim
n →∞
||
xn
|| 。
倘 d = 0 ,则|| xn ||→ 0 ,可有 xn → 0 。
倘d

0
,作
yn
=
||
xn xn
||
∈S
,显然 { yn }是 S
上的
Cauchy
列。又
S
是完备的,
故存在 y ∈ S ,使得 yn → y 。从而 xn →|| xn || yn = dy 。 综上, X 是 Banach 的。
∑ ∑ 如此取得{xn}∈ X 0 ,
s.t. ||
(x

n k =1
xk
) ||<
1 2n
。取极限得 x
=
∞ n=1
xn

∑∞
且 || xn
n=1
|| <||
1 x || +
2n
<∞。
6、 必要性:闭集 S ⊂ X ,其中 X 是 Banach 空间,则 S 也是 Banach 的。
充分性:设 {xn}是 X 中的任一 Cauchy 列,则{|| xn ||} 是个 Cauchy 数列。不
=
0。
又 xn
∈ c0 ,取定 n

N
,成立
lim
k →∞
ξ
( k
n
)
=
0。

lim
k →∞
→∞
(n) k

ξ (0) k
)
+
lim
k →∞
ξ (n) k
= 0 ,从而 x ∈ c0。此即证得 c0是闭集。
取 cn = {{ξk } : ∀k > n,ξk = 0} ⊂ c0 。对 x ∈ c0 ,取 xn = {ξ1 ,…,ξn ,0,0������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
相关文档
最新文档