2020高考数学大一轮复习第八篇平面解析几何第5节抛物线习题理
高考数学一轮复习第8章平面解析几何8.7抛物线习题理

则 λ 的值为( )
3
3
A.4
B.2
C. 3
D.3
解析 设 A(x1,y1),B(x2,y2),C(-2,y3), 则 x1+2=6,解得 x1=4,y1=±4 2,点 A(4,4 2), 则直线 AB 的方程为 y=2 2(x-2), 令 x=-2,得 C(-2,-8 2), 联立方程组yy2==28x2,x-2, 解得 B(1,-2 2), 所以|BF|=1+2=3,|BC2018·北京东城区期末)已知抛物线 C1:y=21px2(p>0) 的焦点与双曲线 C2:x32-y2=1 的右焦点的连线交 C1 于第一
象限的点 M,若 C1 在点 M 处的切线平行于 C2 的一条渐近 线,则 p=( )
3 A. 16
3 B. 8
23 C. 3
43 D. 3
解析 由题意可知,抛物线开口向上且焦点坐标为 0,p2,双曲线焦点坐标为(2,0),所以两个焦点连线的直线 方程为 y=-p4(x-2).设 M(x0,y0),则有 y′=1px0= 33⇒x0 = 33p.因为 y0=21px20,所以 y0=p6.又 M 点在直线 y=-p4(x- 2)上,即有p6=-p4 33p-2⇒p=4 3 3,故选 D.
3.(2018·广东广州模拟)如果 P1,P2,…,Pn 是抛物线 C:y2=4x 上的点,它们的横坐标依次为 x1,x2,…,xn,F 是抛物线 C 的焦点,若 x1+x2+…+xn=10,则|P1F|+|P2F| +…+|PnF|=( )
A.n+10 B.n+20 C.2n+10 D.2n+20
8.(2018·河北邯郸调研) 已知 M(x0,y0)是曲线 C:x22- y=0 上的一点,F 是曲线 C 的焦点,过 M 作 x 轴的垂线, 垂足为 N,若M→F·M→N<0,则 x0 的取值范围是( )
2020届高考数学一轮复习第八章平面解析几何8

第八章⎪⎪⎪平面解析几何第八节抛物线1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等; (3)定点不在定直线上.2.抛物线的标准方程和几何性质1.(2018·杭州七校联考)抛物线C :y =ax 2的准线方程为y =-14,则其焦点坐标为________,实数a 的值为________.解析:由题意得焦点坐标为⎝⎛⎭⎫0,14,抛物线C 的方程可化为x 2=1a y ,由题意得-14a =-14,解得a =1. 答案:⎝⎛⎭⎫0,14 1 2.焦点在直线2x +y +2=0上的抛物线的标准方程为________. 答案:y 2=-4x 或x 2=-8y3.(教材习题改编)抛物线y =4x 2的焦点坐标为__________;准线方程为____________. 解析:抛物线的标准方程为x 2=14y ,所以焦点坐标为⎝⎛⎭⎫0,116,准线方程为y =-116. 答案:⎝⎛⎭⎫0,116 y =-1161.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p 易忽视,只有p >0才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.3.抛物线的标准方程的形式要注意,根据方程求焦点坐标或准线方程时,要注意标准形式的确定.[小题纠偏]1.平面内到点(1,1)与到直线x +2y -3=0的距离相等的点的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .一条直线答案:D2.抛物线8x 2+y =0的焦点坐标为________. 解析:由8x 2+y =0,得x 2=-18y .∴2p =18,p =116,∴焦点为⎝⎛⎭⎫0,-132. 答案:⎝⎛⎭⎫0,-132考点一 抛物线定义及应用(重点保分型考点——师生共研)[典例引领]1.(2019·温州十校联考)设抛物线C :y =14x 2的焦点为F ,直线l 交抛物线C 于A ,B 两点,|AF |=3,线段AB 的中点到抛物线C 的准线的距离为4,则|BF |=( )A.72 B .5 C .4D .3解析:选B 抛物线C 的方程可化为x 2=4y ,由线段AB 的中点到抛物线C 的准线的距离为4,可得|AF |+|BF |=8,又|AF |=3,所以|BF |=5.2.已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是( )A .4B .5C .6D .7解析:选B 依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1(图略),则有|MA |+|MF |=|MA |+|MM 1|,结合图形可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即等于6-1=5,因此|MA |+|MF |的最小值是5,故选B.[由题悟法]应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x ,y )到焦点F 的距离|PF |=|x |+p 2或|PF |=|y |+p 2.[即时应用]1.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1解析:选A 由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知其焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1. 2.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A.355B .2 C.115D .3解析:选B 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点为F (1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值,即焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.考点二 抛物线的标准方程与几何性质(题点多变型考点——多角探明) [锁定考向]抛物线的标准方程及性质是高考的热点,多以选择题、填空题形式出现. 常见的命题角度有: (1)求抛物线方程;(2)抛物线的对称性.[题点全练]角度一:求抛物线方程1.(2019·台州重点校联考)已知直线l 过抛物线y 2=-2px (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=-12xB .y 2=-8xC .y 2=-6xD .y 2=-4x解析:选B 过A ,B 分别作抛物线的准线的垂线,垂足分别为A 1,B 1,由抛物线定义知|AF |=|AA 1|,|BF |=|BB 1|,则|AA 1|+|BB 1|=2⎝⎛⎭⎫2+p2=8,解得p =4,所以此抛物线的方程是y 2=-8x .角度二:抛物线的对称性2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32C .2D .3解析:选B 双曲线的渐近线方程为y =±ba x , 因为双曲线的离心率为2, 所以1+b 2a 2=2,ba = 3.由⎩⎨⎧y =3x ,y 2=2px , 解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎨⎧x =2p 3,y =23p 3.由曲线的对称性及△AOB 的面积得, 2×12×23p 3×2p 3=3, 解得p 2=94,即p =32⎝⎛⎭⎫p =-32舍去. [通法在握]求抛物线方程的3个注意点(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种; (2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系; (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.[演练冲关]1.(2019·宁波质检)已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,MF 的中点坐标是(2,2),则p 的值为( )A .1B .2C .3D .4解析:选D 抛物线C :y 2=2px (p >0)的焦点为F ⎝⎛⎭⎫p 2,0,设M ⎝⎛⎭⎫y 212p ,y 1,由中点坐标公式可知p 2+y 212p=2×2,y 1+0=2×2,解得p =4.2.(2019·丽水高三质检)过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线C 交于P ,Q 两点,与抛物线准线交于M ,且FM =3FP ,则|FP |=( )A.32B.23C.43D.34解析:选C 设直线l 的倾斜角为θ,如图所示,过点P 作PN 垂直准线于点N ,由抛物线定义知|PN |=|PF |.∵FM =3FP ,∴|FM |=3|FP |,即|PM |=2|PN |.在Rt △MNP 中,cos ∠MPN =12,∵PN ∥x 轴,∴cos θ=12,由抛物线焦半径的性质可得|PF |=p 1+cos θ=21+12=43,即|FP |=43. 考点三 直线与抛物线的位置关系(重点保分型考点——师生共研)[典例引领](2018·长兴中学模拟)已知抛物线C 1:y 2=2px (p >0)的焦点为F ,P 为C 1上一点,|PF |=4,点P 到y 轴的距离等于3.(1)求抛物线C 1的标准方程;(2)设A ,B 为抛物线C 1上的两个动点,且使得线段AB 的中点D 在直线y =x 上,P (0,2)为定点,求△PAB 面积的最大值.解:(1)由题意,p2+3=4,∴p =2,所以抛物线C 1的标准方程为y 2=4x .(2)设直线AB :x =ty +b ,A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧x =ty +b ,y 2=4x消元化简得y 2-4ty -4b =0, Δ=16t 2+16b >0.且y 1+y 2=4t ,x 1+x 2=t (y 1+y 2)+2b =4t 2+2b , 所以D (2t 2+b,2t ),2t 2+b =2t . 由Δ>0得0<t <2.所以点P 到直线AB 的距离d =|-2t -b |1+t 2=|2t 2-4t |1+t 2, 所以|AB |=1+t 216t 2+16b =41+t 22t -t 2,所以S △ABP =12|AB |d =12×41+t 22t -t 2|2t 2-4t |1+t2=22t -t 2·|2t 2-4t |. 令m =2t -t 2,则m ∈(0,1],且S △ABP =4m 3. 由函数单调性可知,(S △ABP )max =4.[由题悟法]解决直线与抛物线位置关系问题的2种常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用弦长公式.[即时应用]如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程; (2)若线段|AB |=20,求直线l 的方程. 解:(1)由已知,得抛物线的焦点为F (1,0). 因为线段AB 的中点在直线y =2上, 所以直线l 的斜率存在,设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以2y 0k =4.又y 0=2,所以k =1,故直线l 的方程是y =x -1.(2)设直线l 的方程为x =my +1,与抛物线方程联立得⎩⎪⎨⎪⎧x =my +1,y 2=4x ,消去x ,得y 2-4my-4=0,所以y 1+y 2=4m ,y 1y 2=-4,Δ=16(m 2+1)>0. |AB |=m 2+1|y 1-y 2| =m 2+1·(y 1+y 2)2-4y 1y 2 =m 2+1·(4m )2-4×(-4) =4(m 2+1).所以4(m 2+1)=20,解得m =±2,所以直线l 的方程是x =±2y +1,即x ±2y -1=0.一抓基础,多练小题做到眼疾手快1.(2019·湖州质检)已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( )A .y 2=4xB .y 2=-4xC .y 2=8xD .y 2=-8x解析:选D ∵AB ⊥x 轴,且AB 过点F ,∴AB 是焦点弦,∴|AB |=2p ,∴S △CAB =12×2p ×⎝⎛⎭⎫p 2+4=24,解得p =4或p =-12(舍去),∴直线AB 的方程为x =2,∴以直线AB 为准线的抛物线的标准方程是y 2=-8x ,故选D.2.(2018·江山质检)在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则p 的值为( )A.12 B .1 C .2D .3解析:选C 由抛物线的定义可知,4+p2=5,解得p =2.3.(2018·珠海模拟)已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,PA ⊥l ,垂足为A ,|PF |=4,则直线AF 的倾斜角等于( )A.7π12B.2π3C.3π4D.5π6解析:选B 由抛物线y 2=4x 知焦点F (1,0),准线l 的方程为x =-1,由抛物线定义知|PA |=|PF |=4,所以点P 的坐标为(3,23),因此点A 的坐标为(-1,23),所以k AF =23-0-1-1=-3,所以直线AF 的倾斜角为2π3.4.(2019·宁波六校联考)已知抛物线C :y 2=23x ,过焦点F 且斜率为3的直线与C 相交于P ,Q 两点,且P ,Q 两点在准线上的投影分别为M ,N 两点,则S △MFN =( )A .8B .2 3C .4 3D .8 3解析:选B 法一:由题意可得p =3,F⎝⎛⎭⎫32,0.不妨设点P 在x 轴上方,由抛物线定义可知|PF |=|PM |,|Q F |=|Q N |,设直线P Q 的倾斜角为θ,则tan θ=3,∴θ=π3,由抛物线焦半径的性质可知,|PF |=p 1-cos θ=31-cos π3=23,|Q F |=p 1+cos θ=31+cosπ3=233,∴|MN |=|P Q |sin θ=(|PF |+|Q F |)·sin π3=833×32=4,∴S △MFN =12|MN |·p =12×4×3=2 3.法二:由题意可得F⎝⎛⎭⎫32,0,直线P Q 的方程为y =3⎝⎛⎭⎫x -32=3x -32,与抛物线方程y 2=23x 联立,得⎝⎛⎭⎫3x -322=23x ,即3x 2-53x +94=0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=533,∴|P Q |=x 1+x 2+p =533+3=833,∵直线P Q 的斜率为3,∴直线P Q 的倾斜角为π3.∴|MN |=|P Q |sinπ3=833×32=4,∴S △MFN =12×4×3=2 3. 5.已知点P 在抛物线y 2=4x 上,且点P 到y 轴的距离与其到焦点的距离之比为12,则点P 到x 轴的距离为________.解析:设点P 的坐标为(x P ,y P ),抛物线y 2=4x 的准线方程为x =-1,根据抛物线的定义,点P 到焦点的距离等于点P 到准线的距离,故x P x P -(-1)=12,解得x P =1,所以y 2P =4,所以|y P |=2. 答案:2二保高考,全练题型做到高考达标1.(2018·临海期初)动圆过点(0,1),且与直线y =-1相切,则动圆圆心的轨迹方程为( ) A .y =0 B .x 2+y 2=1 C .x 2=4yD .y 2=4x解析:选C 设动圆圆心M (x ,y ),则x 2+(y -1)2=|y +1|,解得x 2=4y .2.(2018·绍兴二模)已知抛物线C :y 2=4x 的焦点为F ,直线y =3(x -1)与抛物线C 交于A ,B 两点(A 在x 轴上方).若AF =mFB ,则m 的值为( )A. 3B.32C .2D .3解析:选D 直线方程为x =33y +1,代入y 2=4x 可得y 2-433y -4=0,则y A =23,y B =-233,所以|y A |=3|y B |,因为AF =mFB ,所以m =3.3.(2018·宁波十校联考)已知抛物线x 2=4y ,过焦点F 的直线l 交抛物线于A ,B 两点(点A 在第一象限),若直线l 的倾斜角为30°,则|AF ||BF |的值等于( )A .3B.52C .2D.32解析:选A 由题可得,F (0,1),设l :y =33x +1,A (x 1,y 1),B (x 2,y 2).将直线方程与抛物线方程联立,消去x ,化简得3y 2-10y +3=0,解得y 1=3,y 2=13.由抛物线的定义可知|AF ||BF |=y 1+1y 2+1=3+113+1=3. 4.已知P 为抛物线y =12x 2上的动点,点P 在x 轴上的射影为点M ,点A 的坐标是⎝⎛⎭⎫6,172,则|PA |+|PM |的最小值是( )A .8 B.192C .10D.212解析:选B 依题意可知焦点F ⎝⎛⎭⎫0,12,准线方程为y =-12,延长PM 交准线于点H (图略).则|PF |=|PH |,|PM |=|PF |-12,|PM |+|PA |=|PF |+|PA |-12,即求|PF |+|PA |的最小值. 因为|PF |+|PA |≥|FA |, 又|FA |=62+⎝⎛⎭⎫172-122=10.所以|PM |+|PA |≥10-12=192,故选B.5.(2019·嘉兴六校联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,且|MO |=|MF |=32(O 为坐标原点),则OM ·MF =( )A .-74B.74C.94D .-94解析:选A 设M (m ,2pm ),抛物线C 的焦点F 的坐标为⎝⎛⎭⎫p 2,0,因为|MO |=|MF |=32,所以m 2+2pm =94 ①,m +p 2=32 ②,由①②解得m =12,p =2,所以M ⎝⎛⎭⎫12,2,F (1,0),所以OM =⎝⎛⎭⎫12,2,MF =⎝⎛⎭⎫12,-2,故OM ·MF =14-2=-74.6.(2018·宁波期初)已知抛物线x 2=4y 的焦点为F ,若点M 在抛物线上,|MF |=4,O 为坐标原点,则∠MFO =________.解析:由题可得,p =2,焦点在y 轴正半轴,所以F (0,1). 因为|MF |=4,所以M (±23,3).所以tan ∠MFO =-tan(π-∠MFO )=-233-1=-3,所以∠MFO =2π3. 答案:2π37.设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为________.解析:如图,由题可知F ⎝⎛⎭⎫p 2,0,设P 点坐标为⎝⎛⎭⎫y 202p ,y 0(y 0>0),则OM ―→=OF ―→+FM ―→=OF ―→+13FP ―→=OF ―→+13(OP ―→-OF ―→)=13OP ―→+23OF ―→=⎝⎛⎭⎫y 206p +p 3,y 03,k OM =y 03y 206p +p 3=2y 0p +2p y 0≤222=22,当且仅当y 2=2p 2时等号成立,所以直线OM 的斜率的最大值为22. 答案:228.(2018·嵊州一模)设抛物线y 2=4x 的焦点为F ,过点M (5,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C 点,|BF |=3,则△BCF 与△ACF 的面积之比S △BCFS △ACF=________.解析:设点A 在第一象限,B 在第四象限,A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my + 5.由y 2=4x ,得p =2,因为|BF |=3=x 2+p2=x 2+1,所以x 2=2,则y 22=4x 2=4×2=8,所以y 2=-22,由⎩⎨⎧y 2=4x ,x =my +5,得y 2-4my -45=0,则y 1y 2=-45,所以y 1=10,由y 21=4x 1,得x 1=52.过点A 作AA ′垂直于准线x =-1,垂足为A ′,过点B 作BB ′垂直于准线x =-1,垂足为B ′,易知△CBB ′∽△CAA ′,所以S △BCF S △ACF =|BC ||AC |=|BB ′||AA ′|.又|BB ′|=|BF |=3,|AA ′|=x 1+p 2=52+1=72,所以S △BCF S △ACF =372=67.答案:679.(2018·杭州高三检测)如图,过抛物线M :y =x 2上一点A (点A 不与原点O 重合)作抛物线M 的切线AB 交y 轴于点B ,点C 是抛物线M 上异于点A 的点,设G 为△ABC 的重心(三条中线的交点),直线CG 交y 轴于点D .(1)设A (x 0,x 20)(x 0≠0),求直线AB 的方程; (2)求|OB ||OD |的值. 解:(1)因为y ′=2x ,所以直线AB 的斜率k =y ′|x =x 0=2x 0, 所以直线AB 的方程为y -x 20=2x 0(x -x 0), 即y =2x 0x -x 20.(2)由(1)得,点B 的纵坐标y B =-x 20, 所以AB 的中点坐标为⎝⎛⎭⎫x 02,0.设C (x 1,y 1),G (x 2,y 2),直线CG 的方程为x =my +x 02.由⎩⎪⎨⎪⎧x =my +x 02,y =x 2,得m 2y 2+(mx 0-1)y +x 204=0.因为G 为△ABC 的重心,所以y 1=3y 2. 由根与系数的关系,得y 1+y 2=4y 2=1-mx 0m 2,y 1y 2=3y 22=x 204m 2. 所以y 22=(1-mx 0)216m4=x 2012m 2, 解得mx 0=-3±2 3.所以点D 的纵坐标y D =-x 02m =x 206±43,故|OB ||OD |=⎪⎪⎪⎪y B y D =43±6. 10.(2018·台州模拟)已知抛物线C 1:y 2=4x 和C 2:x 2=2py (p >0)的焦点分别为F 1,F 2,点P (-1,-1),且F 1F 2⊥OP (O 为坐标原点).(1)求抛物线C 2的方程;(2)过点O 的直线交C 1的下半部分于点M ,交C 2的左半部分于点N ,求△PMN 面积的最小值.解:(1)由题意知F 1(1,0),F 2⎝⎛⎭⎫0,p 2,则F 1F 2―→=⎝⎛⎭⎫-1,p 2, ∵F 1F 2⊥OP ,∴F 1F 2―→·OP ―→=⎝⎛⎭⎫-1,p 2·(-1,-1)=1-p 2=0, ∴p =2,∴抛物线C 2的方程为x 2=4y . (2)设过点O 的直线为y =kx (k <0),联立⎩⎪⎨⎪⎧ y =kx ,y 2=4x 得M ⎝⎛⎭⎫4k 2,4k , 联立⎩⎪⎨⎪⎧y =kx ,x 2=4y得N (4k,4k 2),从而|MN |=1+k 2·⎪⎪⎪⎪4k 2-4k =1+k 2·⎝⎛⎭⎫4k 2-4k , 又点P 到直线MN 的距离d =|k -1|1+k 2,故S △PMN =12·|k -1|1+k 2·1+k 2·⎝⎛⎭⎫4k 2-4k =2(1-k )(1-k 3)k 2=2(1-k )2(1+k +k 2)k 2=2⎝⎛⎭⎫k +1k -2⎝⎛⎭⎫k +1k +1, 令t =k +1k (t ≤-2), 则S △PMN =2(t -2)(t +1)≥8,当t =-2,即k =-1时,S △PMN 取得最小值.即当过点O 的直线为y =-x 时,△PMN 面积的最小值为8. 三上台阶,自主选做志在冲刺名校1.(2018·台州高三模拟)已知抛物线x 2=2py (p >0),点M 是抛物线的准线与y 轴的交点,过点A (0,λp )(λ∈R)的动直线l 交抛物线于B ,C 两点.(1)求证:MB ·MC ≥0,并求等号成立时实数λ的值;(2)当λ=2时,设分别以OB ,OC (O 为坐标原点)为直径的两圆相交于另一点D ,求|DO |+|DA |的最大值.解:(1)由题意知动直线l 的斜率存在,且过点A (0,λp ), 则可设动直线l 的方程为y =kx +λp ,代入x 2=2py (p >0),消去y 并整理得x 2-2pkx -2λp 2=0, Δ=4p 2(k 2+2λ)>0, 设B (x 1,y 1),C (x 2,y 2), 则x 1+x 2=2pk ,x 1x 2=-2λp 2,y 1y 2=(kx 1+λp )(kx 2+λp )=k 2x 1x 2+λpk (x 1+x 2)+λ2p 2=λ2p 2,y 1+y 2=k (x 1+x 2)+2λp =2pk 2+2λp =2p (k 2+λ). 因为抛物线x 2=2py 的准线方程为y =-p2,所以点M 的坐标为⎝⎛⎭⎫0,-p 2, 所以MB =⎝⎛⎭⎫x 1,y 1+p 2,MC =⎝⎛⎭⎫x 2,y 2+p2, 所以MB ·MC =x 1x 2+⎝⎛⎭⎫y 1+p 2⎝⎛⎭⎫y 2+p2 =x 1x 2+y 1y 2+p 2(y 1+y 2)+p 24=-2λp 2+λ2p 2+p 2[2p (k 2+λ)]+p 24=p 2⎣⎡⎦⎤k 2+⎝⎛⎭⎫λ-122≥0, 当且仅当k =0,λ=12时等号成立.(2)由(1)知,当λ=2时,x 1x 2=-4p 2,y 1y 2=4p 2, 所以OB ·OC =x 1x 2+y 1y 2=0, 所以OB ⊥OC .设直线OB 的方程为y =mx (m ≠0),与抛物线的方程x 2=2py 联立可得B (2pm,2pm 2), 所以以OB 为直径的圆的方程为x 2+y 2-2pmx -2pm 2y =0. 因为OB ⊥OC ,所以直线OC 的方程为y =-1m x .同理可得以OC 为直径的圆的方程为 x 2+y 2+2p m x -2pm2y =0, 即m 2x 2+m 2y 2+2pmx -2py =0,将两圆的方程相加消去m ,得x 2+y 2-2py =0, 即x 2+(y -p )2=p 2,所以点D 的轨迹是以OA 为直径的圆, 所以|DA |2+|DO |2=4p 2, 由|DA |2+|DO |22≥⎝⎛⎭⎫|DA |+|DO |22, 得|DA |+|DO |≤22p ,当且仅当|DA |=|DO |=2p 时,等号成立. 故(|DA |+|DO |)max =22p .2.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程.(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.解:(1)由已知条件,可设抛物线的方程为y 2=2px (p >0). 因为点P (1,2)在抛物线上, 所以22=2p ×1, 解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB . 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1), 因为PA 与PB 的斜率存在且倾斜角互补, 所以k PA =-k PB .由A (x 1,y 1),B (x 2,y 2)均在抛物线上,得⎩⎪⎨⎪⎧y 21=4x 1, ①y 22=4x 2, ②所以y 1-214y 21-1=-y 2-214y 22-1,所以y 1+2=-(y 2+2). 所以y 1+y 2=-4.由①-②得,y 21-y 22=4(x 1-x 2),所以k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1(x 1≠x 2).。
2020高考数学一轮总复习第8章平面解析几何8-7抛物线模拟演练理

【2019最新】精选高考数学一轮总复习第8章平面解析几何8-7抛物线模拟演练理[A级基础达标](时间:40分钟)1.[2017·江西九校联考]若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P的轨迹为( )B.椭圆A.圆D.抛物线C.双曲线答案D解析依题意,点P到直线x=-2的距离等于它到点(2,0)的距离,故点P的轨迹是抛物线.2.[2017·陕西质检]设抛物线y2=2px的焦点在直线2x+3y-8=0上,则该抛物线的准线方程为( )B.x=-2A.x=-1D.x=-4C.x=-3答案D解析因为抛物线y2=2px的焦点在2x+3y-8=0上,所以p=8,所以抛物线的准线方程为x=-4,故选D. 3.[2016·全国卷Ⅰ]以抛物线C的顶点为圆心的圆交C于A,B两点,交C的准线于D,E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为( )B.4A.2D.8C.6答案B解析由题意,不妨设抛物线方程为y2=2px(p>0),由|AB|=4,|DE|=2,可取A,D,设O为坐标原点,由|OA|=|OD|,得+8=+5,得p=4,所以选B. 4.[2017·福建模拟]设抛物线y2=6x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,垂足为A,如果△APF为正三角形,那么|PF|等于( )B.6A.4C .6D .12 答案 C解析 设点P 的坐标为(xP ,yP),则|PF|=xP +.过点P 作x 轴的垂线交x 轴于点M ,则∠PFM=∠APF=60°,所以|PF|=2|MF|,即xP +=2,解得xP =,所以|PF|=6.5.已知直线l1:4x -3y +6=0和直线l2:x =-1,抛物线y2=4x 上一动点P到直线l1和直线l2的距离之和的最小值是( )A.B .2 C.D .3 答案 B解析 由题可知l2:x =-1是抛物线y2=4x 的准线,设抛物线的焦点为F(1,0),则动点P 到l2的距离等于|PF|,则动点P 到直线l1和直线l2的距离之和的最小值,即焦点F 到直线l1:4x -3y +6=0的距离,所以最小值是=2.6.[2017·延安模拟]在平面直角坐标系xOy 中,有一定点A(2,1),若线段OA 的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的准线方程是________.54=-x 答案 解析 如图所示,线段OA 所在的直线方程为y =x ,其中垂线方程为2x +y -=0,∴令y =0,得x =,即F ,∴p =,y2=5x ,其准线方程为x =-.7.[2017·长春模拟]过抛物线y2=4x 的焦点作倾斜角为45°的直线l 交抛物线于A ,B 两点,O 为坐标原点,则△OAB 的面积为________. 22 答案 解析 由题意知抛物线焦点为(1,0),直线l 的方程为y =x -1,与抛物线方程联立,得消去x ,得y2-4y -4=0,设A ,B 的坐标分别为(x1,y1),(x2,y2),则y1+y2=4,y1y2=-4,两交点纵坐标差的绝对值为4,从而△OAB 的面积为2.8.[2017·邯郸模拟]设点P 在圆C :x2+(y -6)2=5上,点Q 在抛物线x2=4y上,则|PQ|的最小值为________. 5答案 解析 设Q(x ,y),其中x2=4y.又圆心C(0,6),则|QC|===(y≥0).当y =4时,|QC|min =2,所以|PQ|min =|QC|min -r =2-=.9.[2016·全国卷Ⅰ]在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.(1)求;(2)除H以外,直线MH与C是否有其他公共点?说明理由.解(1)由已知得M(0,t),P.又N为M关于点P的对称点,故N,ON的方程为y=x,代入y2=2px,整理得px2-2t2x=0,解得x1=0,x2=.因此H.所以N为OH的中点,即=2.(2)直线MH与C除H以外没有其他公共点.理由如下:直线MH的方程为y-t=x,即x=(y-t).代入y2=2px,得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.10.已知抛物线y2=2px(p>0),过点C(-2,0)的直线l交抛物线于A、B两点,坐标原点为O,·=12.(1)求抛物线的方程;(2)当以AB为直径的圆与y轴相切时,求直线l的方程.解(1)设l:x=my-2,代入y2=2px中,得y2-2pmy+4p=0.(*)设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=4p,则x1x2==4.因为·=12,所以x1x2+y1y2=12,即4+4p=12,得p=2,抛物线的方程为y2=4x.(2)(1)中(*)式可化为y2-4my+8=0.y1+y2=4m,y1y2=8.设AB的中点为M,则|AB|=2xM=x1+x2=m(y1+y2)-4=4m2-4,①又|AB|= |y1-y2|=,②由①②得(1+m2)(16m2-32)=(4m2-4)2,解得m2=3,m=±.所以,直线l的方程为x+y+2=0或x-y+2=0.[B级知能提升](时间:20分钟)11.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=( )B.A.D.2C.3答案C解析过点Q作QQ′⊥l交l于点Q′,因为=4,所以|PQ|∶|PF|=3∶4,又焦点F到准线l的距离为4,所以|QF|=|QQ′|=3. 12.[2016·四川高考]设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且|PM|=2|MF|,则直线OM的斜率的最大值为( )B.A.C.D.1答案C解析设P,易知F,则由|PM|=2|MF|,得M,,当t=0时,直线OM的斜率k=0,当t≠0时,直线OM的斜率k==,所以|k|=≤=,当且仅当=时取等号,于是直线OM的斜率的最大值为,故选C. 13.已知抛物线y2=2px(p>0),过其焦点且斜率为-1的直线交抛物线于A,B 两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为________.答案x=-1解析由题意可设直线方程为y=-,设A(x1,y1),B(x2,y2),联立方程消参得4x2-12px+p2=0,∴x1+x2=3p.∴p=2,即抛物线方程为y2=4x,其准线方程为x=-1.14.圆P恒过点F(0,1),且与直线y=-1相切.(1)求圆心P的轨迹方程T;(2)与圆x2+(y+1)2=1相切的直线l:y=kx+t交曲线T于不同的两点M,N,若曲线T上存在点C满足=λ(+)(λ>0),求λ的取值范围.解(1)由题意可得点P到点F的距离等于到定直线y=-1的距离,∴点P的轨迹是以点F为焦点,直线y=-1为准线的抛物线,其方程为x2=4y.(2)如图,由直线l:y=kx+t与圆x2+(y+1)2=1相切,得圆心(0,-1)到直线l的距离d==1⇒k2=t2+2t.设交点M(x1,y1),N(x2,y2),由⇒x2-4kx-4t=0,其中Δ=16k2+16t>0⇒t2+3t>0⇒t>0或t<-3,⇒y1+y2=4k2+2t,∴=λ(+)=λ(x1+x2,y1+y2)=λ(4k,4k2+2t),即C(4kλ,(4k2+2t)λ).代入x2=4y,得(4kλ)2=4λ(4k2+2t),即λ==1+=1+·.∵t>0或t<-3,在(-∞,-3),(0,+∞)都是单调递减函数,∴λ∈∪.。
2020版高考数学一轮复习第8章平面解析几何第5讲课后作业理含解析

第8章 平面解析几何 第5讲A 组 基础关1.已知椭圆的标准方程为x 2+y 210=1,则椭圆的焦点坐标为( )A .(10,0),(-10,0)B .(0,10),(0,-10)C .(0,3),(0,-3)D .(3,0),(-3,0)答案 C解析 椭圆x 2+y 210=1的焦点在y 轴上,a 2=10,b 2=1,故c 2=a 2-b 2=9,c =3.所以椭圆的焦点坐标为(0,3),(0,-3).2.(2018·合肥三模)已知椭圆E :y 2a 2+x 2b2=1(a >b >0)经过点A (5,0),B (0,3),则椭圆E 的离心率为( )A.23 B .53C .49D .59答案 A解析 由题意得a =3,b =5,所以c =a 2-b 2=9-5=2,离心率e =c a =23.3.设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( )A .8B .10C .12D .15答案 D解析 由椭圆方程x 216+y 212=1,可得c 2=4,所以|F 1F 2|=2c =4,而F 1F 2→=PF 2→-PF 1→,所以|F 1F 2→|=|PF 2→-PF 1→|,两边同时平方,得|F 1F 2→|2=|PF 1→|2-2PF 1→·PF 2→+|PF 2→|2,所以|PF 1→|2+|PF 2→|2=|F 1F 2→|2+2PF 1→·PF 2→=16+18=34,根据椭圆定义得|PF 1|+|PF 2|=2a =8,所以34+2|PF 1||PF 2|=64,所以|PF 1|·|PF 2|=15.故选D.4.(2018·武汉调研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)及点B (0,a ),过点B 与椭圆相切的直线交x 轴的负半轴于点A ,F 为椭圆的右焦点,则∠ABF =( )A .60°B .90°C .120°D .150°答案 B解析 由题意知,切线的斜率存在,设切线方程y =kx +a (k >0),与椭圆方程联立,⎩⎪⎨⎪⎧y =kx +a ,x 2a 2+y2b2=1,消去y 整理得(b 2+a 2k 2)x 2+2ka 3x +a 4-a 2b 2=0,由Δ=(2ka 3)2-4(b 2+a 2k 2)(a 4-a 2b 2)=0,得k =c a ,从而y =c a x +a 交x 轴于点A ⎝ ⎛⎭⎪⎫-a 2c ,0,又F (c,0),易知BA →·BF →=0,故∠ABF =90°.5.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.43 B .53 C .54 D .103答案 B解析 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点(0,-2),⎝ ⎛⎭⎪⎫53,43,∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪⎪⎪-2-43=53.故选B.6.(2018·南宁模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是( )A.12 B .22 C .32D .55答案 C解析 设直线x -y +5=0与椭圆x 2a 2+y 2b2=1相交于A (x 1,y 1),B (x 2,y 2)两点,因为AB 的中点M (-4,1),所以x 1+x 2=-8,y 1+y 2=2.易知直线AB 的斜率k =y 2-y 1x 2-x 1=1.⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y 22b 2=1,两式相减得,x 1+x 2x 1-x 2a 2+y 1+y 2y 1-y 2b 2=0,所以y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2,所以b 2a 2=14,于是椭圆的离心率e =ca=1-b 2a 2=32.故选C.7.过椭圆x 225+y 216=1的中心任意作一条直线交椭圆于P ,Q 两点,F 是椭圆的一个焦点,则△PQF 周长的最小值是( )A .14B .16C .18D .20答案 C解析 如图,设F 1为椭圆的左焦点,右焦点为F 2,根据椭圆的对称性可知|F 1Q |=|PF 2|,|OP |=|OQ |,所以△PQF 1的周长为|PF 1|+|F 1Q |+|PQ |=|PF 1|+|PF 2|+2|PO |=2a +2|PO |=10+2|PO |,易知2|OP |的最小值为椭圆的短轴长,即点P ,Q 为椭圆的上、下顶点时,△PQF 1即△PQF 的周长取得最小值为10+2×4=18.8.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P (-5,4),则椭圆的标准方程为________.答案x 245+y 236=1 解析 由题意设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由离心率e =55可得a 2=5c 2,所以b 2=4c 2,故椭圆的方程为x 25c 2+y 24c 2=1,将P (-5,4)代入可得c 2=9,故椭圆的方程为x 245+y 236=1.9.设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是________.答案733解析 根据已知条件作出如图所示的图形.记圆x 2+(y -1)2=3的圆心为M ,由三角形的性质可得|PQ |≤|PM |+|MQ |=3+|MQ |,设点Q 坐标为(x ,y ),那么x 24+y 2=1,所以|QM |2=x 2+(y -1)2=4(1-y 2)+(y -1)2=-3y 2-2y +5,y ∈[-1,1],因此|QM |2≤163,即|QM |≤433,所以|PQ |≤433+3=733,所以P ,Q 两点间的最大距离为733. 10.(2018·厦门模拟)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 在椭圆上,且PF 2垂直于x 轴,若直线PF 1的斜率为33,则该椭圆的离心率为________. 答案33解析 因为点P 在椭圆上,且PF 2垂直于x 轴,所以点P 的坐标为⎝ ⎛⎭⎪⎫c ,b 2a . 又因为直线PF 1的斜率为33,所以在Rt △PF 1F 2中, PF 2F 1F 2=33,即b 2a 2c =33.所以3b 2=2ac . 3(a 2-c 2)=2ac ,3(1-e 2)=2e , 整理得3e 2+2e -3=0, 又0<e <1,解得e =33. B 组 能力关1.如果椭圆x 236+y 29=1的弦AB 被点M (x 0,y 0)平分,设直线AB 的斜率为k 1,直线OM (O 为坐标原点)的斜率为k 2,则k 1k 2的值为( )A .4B .14C .-1D .-14答案 D解析 解法一:设A (x 1,y 1),B (x 2,y 2),因为弦AB 被点M (x 0,y 0)平分,所以x 1+x 2=2x 0,y 1+y 2=2y 0.易知k 1=y 1-y 2x 1-x 2,k 2=y 0x 0. ⎩⎪⎨⎪⎧x 2136+y 219=1,x 2236+y 229=1,两式相减得,x 1+x 2x 1-x 236+y 1+y 2y 1-y 29=0,所以y 1-y 2x 1-x 2=-14·x 1+x 2y 1+y 2=-14·x 0y 0, ∴k 1k 2=-14.解法二:设直线AB 的方程为y =k 1x +m ,A (x 1,y 1),B (x 2,y 2).代入椭圆方程并整理得,(1+4k 21)x 2+8k 1mx +4m 2-36=0,x 1+x 2=-8k 1m 1+4k 21,又中点M (x 0,y 0)在直线AB 上,所以y 1+y 22=k 1⎝ ⎛⎭⎪⎫x 1+x 22+m =m1+4k 21,从而得弦中点M 的坐标为⎝ ⎛⎭⎪⎫-4k 1m 1+4k 21,m 1+4k 21,∴k 2=m1+4k 21-4k 1m 1+4k 21=-14k 1,∴k 1k 2=-14. 2.(2018·昆明诊断)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________.答案 (-3,0)或(3,0)解析 记椭圆的两个焦点分别为F 1,F 2,有|PF 1|+|PF 2|=2a =10. 则m =|PF 1|·|PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=25,当且仅当|PF 1|=|PF 2|=5,即点P 位于椭圆的短轴的顶点处时,m 取得最大值25.∴点P 的坐标为(-3,0)或(3,0).3.(2018·内江三模)设P 是椭圆x 29+y 24=1第一象限弧上任意一点,过P 作x 轴的平行线与y轴和直线y =-23x 分别交于点M ,N .过P 作y 轴的平行线与x 轴和直线y =-23x 分别交于点R ,Q ,设O 为坐标原点,则△OMN 和△ORQ 的面积之和为________.答案 3解析 设P (x 0,y 0)(0<x 0<3,0<y 0<2),则M (0,y 0),联立⎩⎪⎨⎪⎧y =y 0,y =-23x ,解得y =y 0,x =-32y 0,所以N ⎝ ⎛⎭⎪⎫-32y 0,y 0, 所以S △OMN =12y 0×32y 0=34y 20.同理可得R (x 0,0),联立⎩⎪⎨⎪⎧x =x 0,y =-23x ,解得x =x 0,y =-23x 0,可得Q ⎝ ⎛⎭⎪⎫x 0,-23x 0.所以S △ORQ =12x 0×23x 0=13x 20.又x 209+y 204=1,所以△OMN 和△ORQ 的面积之和为34y 20+13x 20=3⎝ ⎛⎭⎪⎫x 209+y 204=3. 4.在平面直角坐标系xOy 中,点P 到两点(0,-3),(0,3)的距离之和等于4,设点P 的轨迹为C .(1)写出C 的方程;(2)设直线y =kx +1与C 交于A ,B 两点,k 为何值时O A →⊥O B →?此时|AB |的值是多少? 解 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆.它的短半轴长b = 22-32=1,故曲线C 的方程为x 2+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),其坐标满足⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1,消去y ,并整理得(k 2+4)x 2+2kx -3=0, 故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. ∵OA →⊥OB →,∴x 1x 2+y 1y 2=0. ∵y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=-4k 2+1k 2+4.又x 1x 2+y 1y 2=0,∴k =±12.当k =±12时,x 1+x 2=∓417,x 1x 2=-1217.|AB |=x 2-x 12+y 2-y 12=1+k 2x 2-x 12,而(x 2-x 1)2=(x 2+x 1)2-4x 1x 2 =42172+4×1217=43×13172, ∴|AB |=54×43×13172=46517. C 组 素养关1.(2018·东北三省四市教研联合体模拟)在平面直角坐标系中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为12,点M ⎝ ⎛⎭⎪⎫1,32在椭圆C 上. (1)求椭圆C 的方程;(2)已知P (-2,0)与Q (2,0)为平面内的两个定点,过(1,0)点的直线l 与椭圆C 交于A ,B 两点,求四边形APBQ 面积的最大值.解 (1)∵c a =12,∴a =2c ,椭圆的方程为x 24c 2+y 23c2=1,将⎝ ⎛⎭⎪⎫1,32代入得14c 2+912c 2=1,∴c 2=1.∵椭圆的方程为x 24+y 23=1. (2)设l 的方程为x =my +1,联立⎩⎪⎨⎪⎧x 24+y 23=1,x =my +1,消去x ,得(3m 2+4)y 2+6my -9=0, 设点A (x 1,y 1),B (x 2,y 2), 有y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4,有|AB |=1+m 2·121+m 23m 2+4=121+m23m 2+4,点P (-2,0)到直线l 的距离为31+m2,点Q (2,0)到直线l 的距离为11+m2,从而四边形APBQ 的面积S =12×121+m23m 2+4×41+m2=241+m 23m 2+4(或S =12|PQ ||y 1-y 2|). 令t =1+m 2,t ≥1,有S =24t 3t 2+1=243t +1t,设函数f (t )=3t +1t ,f ′(t )=3-1t2>0,所以f (t )在[1,+∞)上单调递增,有3t +1t ≥4,故S =24t 3t 2+1=243t +1t≤6,所以当t =1,即m =0时,四边形APBQ 面积的最大值为6.2.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点.线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.解 (1)证明:设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得m < ⎝ ⎛⎭⎪⎫1-14×3=32,且m >0,即0<m <32, 故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则由(1)及题设得(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0),x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝⎛⎭⎪⎫1,-32,|FP →|=32. 于是|FA →|=x 1-12+y 21= x 1-12+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12.同理| FB →|=2-x 22. 所以| FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则 2|d |=||FB →|-|FA →||=12|x 1-x 2|=12x 1+x 22-4x 1x 2. ②将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.。
专题8.8 抛物线及其几何性质-2020届高考数学一轮复习学霸提分秘籍(原卷版)

第八篇 平面解析几何 专题8.08 抛物线及其几何性质【考试要求】1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质. 【知识梳理】 1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:{M ||MF |=d }(d 为点M 到准线l 的距离). 2.抛物线的标准方程与几何性质【微点提醒】1.通径:过焦点且垂直于对称轴的弦长等于2p ,通径是过焦点最短的弦.2.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( ) (3)抛物线既是中心对称图形,又是轴对称图形.( )(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( )【教材衍化】2.(选修2-1P72A1改编)顶点在原点,且过点P (-2,3)的抛物线的标准方程是________________.3. (选修2-1P67A3改编)抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.【真题体验】4.(2019·黄冈联考)已知方程y 2=4x 表示抛物线,且该抛物线的焦点到直线x =m 的距离为4,则m 的值为( ) A.5 B.-3或5 C.-2或6 D.65.(2019·北京海淀区检测)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A.4 B.6 C.8 D.126.(2019·宁波调研)已知抛物线方程为y 2=8x ,若过点Q (-2,0)的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________.【考点聚焦】考点一 抛物线的定义及应用【例1】 (1)(2019·厦门外国语模拟)已知抛物线x 2=2y 的焦点为F ,其上有两点A (x 1,y 1),B (x 2,y 2)满足|AF |-|BF |=2,则y 1+x 21-y 2-x 22=( )A.4B.6C.8D.10(2)若抛物线y 2=4x 的准线为l ,P 是抛物线上任意一点,则P 到准线l 的距离与P 到直线3x +4y +7=0的距离之和的最小值是( ) A.2 B.135C.145D.3【规律方法】 应用抛物线定义的两个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x 0,y 0)到焦点F 的距离|PF |=|x 0|+p 2或|PF |=|y 0|+p2.【训练1】 (1)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.(2)(2017·全国Ⅱ卷)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.考点二 抛物线的标准方程及其性质【例2】 (1)(2018·晋城模拟)抛物线C :y 2=4x 的焦点为F ,其准线l 与x 轴交于点A ,点M 在抛物线C 上,当|MA ||MF |=2时,△AMF 的面积为( ) A.1B. 2C.2D.2 2(2)已知圆C 1:x 2+(y -2)2=4,抛物线C 2:y 2=2px (p >0),C 1与C 2相交于A ,B 两点,且|AB |=855,则抛物线C 2的方程为( ) A.y 2=85xB.y 2=165xC.y 2=325xD.y 2=645x【规律方法】 1.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程. 2.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【训练2】 (1)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为________.(2)(2019·济宁调研)已知点A (3,0),过抛物线y 2=4x 上一点P 的直线与直线x =-1垂直相交于点B ,若|PB |=|PA |,则P 的横坐标为( ) A.1 B.32C.2D.52考点三 直线与抛物线的综合问题【例3】(2019·武汉调研)已知抛物线C:x2=2py(p>0)和定点M(0,1),设过点M的动直线交抛物线C于A,B两点,抛物线C在A,B处的切线交点为N.(1)若N在以AB为直径的圆上,求p的值;(2)若△ABN面积的最小值为4,求抛物线C的方程.【规律方法】 1.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.2.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.【提醒】:涉及弦的中点、斜率时一般用“点差法”求解.【训练3】(2017·全国Ⅰ卷)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为()A.16B.14C.12D.10【反思与感悟】1.抛物线定义的实质可归结为“一动三定”:一个动点M ,一个定点F (抛物线的焦点),一条定直线l (抛物线的准线),一个定值1(抛物线的离心率).2.抛物线的焦点弦:设过抛物线y 2=2px (p >0)的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ;|AB |=x 1+x 2+p ; (3)若F 为抛物线焦点,则有1|AF |+1|BF |=2p .【易错防范】1.认真区分四种形式的标准方程(1)区分y =ax 2(a ≠0)与y 2=2px (p >0),前者不是抛物线的标准方程.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx 或x 2=my (m ≠0). 2.直线与抛物线结合的问题,不要忘记验证判别式. 【核心素养提升】【数学抽象】——活用抛物线焦点弦的四个结论1.数学抽象素养水平表现为能够在关联的情境中抽象出一般的数学概念和规则,能够将已知数学命题推广到更一般情形.本课时中研究直线方程时常用到直线系方程就是其具体表现之一.2.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 (1)x 1·x 2=p 24.(2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α(α是直线AB 的倾斜角).(4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点).【例1】 过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A.4 B.92C.5D.6【一般解法】【应用结论】【例2】 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B.938C.6332D.94【一般解法】【应用结论】【例3】 (2019·益阳、湘潭调研)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( )A.5B.6C.163D.203【一般解法】【应用结论】【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.抛物线y =4x 2的焦点到准线的距离为( ) A.2 B.1C.14D.182.(2019·抚顺模拟)已知点F 是抛物线y 2=2x 的焦点,M ,N 是该抛物线上的两点,若|MF |+|NF |=4,则线段MN 的中点的横坐标为( ) A.32 B.2C.52D.33.设抛物线C :y 2=3x 的焦点为F ,点A 为C 上一点,若|FA |=3,则直线FA 的倾斜角为( ) A.π3 B.π4 C.π3或2π3D.π4或3π44.(2019·德州调研)已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过点F 的直线与抛物线C交于A ,B 两点,若OA →·OB →=-12,则抛物线C 的方程为( )A.x 2=8yB.x 2=4yC.y 2=8xD.y 2=4x5.(2019·河南中原联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,且l 过点(-2,3),M 在抛物线C 上,若点N (1,2),则|MN |+|MF |的最小值为( )A.2B.3C.4D.5二、填空题6.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.7.在平面直角坐标系xOy 中,抛物线y 2=6x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.若直线AF 的斜率k =-3,则线段PF 的长为________.8.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为________.三、解答题9.(2019·天津耀华中学模拟)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.10.(2017·全国Ⅰ卷)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【能力提升题组】(建议用时:20分钟)11.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点,|AF |+|BF |=233|AB |,则∠AFB 的最大值为( )A.π3B.3π4C.5π6D.2π312.(2019·武汉模拟)过点P (2,-1)作抛物线x 2=4y 的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则△PEF 与△OAB 的面积之比为( )A.32 B.33 C.12 D.3413.已知抛物线方程为y2=-4x,直线l的方程为2x+y-4=0,在抛物线上有一动点A,点A到y轴的距离为m,到直线l的距离为n,则m+n的最小值为________.14.(2019·泉州一模)在平面直角坐标系xOy中,抛物线C:x2=2py(p>0)的焦点为F,点A在C上,若|AO|=|AF|=3 2.(1)求抛物线C的方程;(2)设直线l与C交于P,Q,若线段PQ的中点的纵坐标为1,求△OPQ的面积的最大值.【新高考创新预测】15.(思维创新)已知点A(0,2),抛物线C:y2=2px(p>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM||MN|=55,则p的值等于()1A.4 B.2 C.4 D.8。
2019-2020年高考数学一轮总复习第8章平面解析几何8.7抛物线模拟演练理

2019-2020年⾼考数学⼀轮总复习第8章平⾯解析⼏何8.7抛物线模拟演练理2019-2020年⾼考数学⼀轮总复习第 8章平⾯解析⼏何8.7抛物线模拟演1. [xx ?江西九校联考]若点P 到直线x =— 1的距离⽐它到点(2,0)的距离⼩1,则点P 的轨迹为() A .圆 C.双曲线答案解析物线. D 依题意,点2. [xx 线⽅程为( A . x =— 1 -陕西质检 C. x =— 3 答案解析因为抛物线 B.椭圆 D.抛物线 P 到直线x =-2的距离等于它到点(2,0)的距离,故点 P 的轨迹是抛]设抛物线y 2= 2px 的焦点在直线2x + 3y - 8 = 0上,则该抛物线的准 B. x =- 2 D. x =— 4 o p y = 2px 的焦点^, 0在2x + 3y — 8= 0上,所以p = 8,所以抛物线的准线⽅程为3. [xx 两点.已知 A . 2 x = — 4,故选 D. ?全国卷I ]以抛物线C 的顶点为圆⼼的圆交 C 于A, B 两点,交C 的准线于D, E | AB | = 4^2, |DE = 2^5,则C 的焦点到准线的距离为() B. 4 C. 6答案 D. 8 解析A 4, 2⾎以选B. 由题意,不妨设抛物线⽅程为y 2= 2px (p >0),由|AB = 4 2 , |DE = 2 5,可取p ?- 16 p 2,D —⼠ 5,设O 为坐标原点,由|OA = |OD ,得P + 8=2+ 5,得p = 4,所 2 、 p 44. 垂⾜为 A . 2[XX ?福建模拟]设抛物线y = 6x 的焦点为F ,代如果△ APF 为正三⾓形,那么| PF 等于( 4 ,36B. C. 答案 C D. 准线为I , P 为抛物线上⼀点,PA 丄I , ) 6 3 123 解析设点P 的坐标为(X P , y p ),则| PF = X P + 2-过点P 作x 轴的垂线交x 轴于点M 则/ PFMk Z APF= 60°,所以 |PF | = 2| MF ,即 X P +|= 2 X P — 3,解得 X P = 2,所以 | PF = 6. 3 」■■和■ — ? "I 少、I ■■ i — 1 ,w|■ i ?"⼚⼋。
2020版高考数学一轮复习第八章解析几何第五节抛物线讲义含解析

第五节抛物线突破点一抛物线的定义及其应用抛物线的定义不经过点)平面内与一个定点和一条定直线(的点的轨迹叫做抛物线.点叫做距离相等的抛物线的焦点,直线叫做抛物线的准线.一、判断题(对的打“√”,错的打“×”)()平面内与一个定点和一条定直线的距离相等的点的轨迹一定是抛物线.( )()为抛物线=的过焦点的弦,若(,),(,),则=,=-,弦长=++.( )答案:()×()√二、填空题.已知动点到定点()的距离和它到直线:=-的距离相等,则点的轨迹方程为.答案:=.已知抛物线:=的焦点为,(,)是上一点,=,则=.答案:.已知是抛物线=的焦点,,是该抛物线上的两点,+=,则线段的中点到轴的距离为.答案:考法一抛物线的定义及应用[例] ()(·赣州模拟)若点的坐标为(),是抛物线=的焦点,点在抛物线上移动时,使+取得最小值的的坐标为( ).().().(,) ()(·襄阳测试)已知抛物线=的焦点为,准线为,在上,线段与抛物线交于点,若=,则=( )..[解析] ()过点作准线的垂线,垂足是,则+=+,当,,三点共线时,+取得最小值,此时().()如图,过作准线的垂线,垂足为.根据抛物线的定义可知=,在△中,=,则∠=°.在△中,∠=°,所以=.而=.所以=.故选.[答案] () ()[方法技巧]利用抛物线的定义解决问题时,应灵活地进行抛物线上的点到焦点距离与其到准线距离间的等价转化.“看到准线应该想到焦点,看到焦点应该想到准线”,这是解决抛物线距离有关问题的有效途径.考法二焦点弦问题焦点弦的常用结论以抛物线=(>)为例,设是抛物线的过焦点的一条弦(焦点弦),是抛物线的焦点,(,),(,),,在准线上的射影为,,则有以下结论:()=,=-;()=++=(其中θ为直线的倾斜角),抛物线的通径长为,通径是最短的焦点弦;()+=为定值;()以为直径的圆与抛物线的准线相切;()以(或)为直径的圆与轴相切;()以为直径的圆与直线相切,切点为,∠=°;(),,三点共线,,,三点也共线.[例] (·长沙四校联考)过抛物线:=的焦点的直线与抛物线交于,两点,与抛物线的准线交于点,且=,则=( ) [解析] 如图,不妨设点在第一象限,过作垂直于抛物线的准线,垂足为,由抛物线定义可知=,又因为=,所以=,所以==,在△中,∠==,由抛物线焦点弦的性质可知===.故选.[答案][方法技巧]焦点弦问题的求解策略解决焦点弦问题的关键是“设而不求”方法的应用,解题时,设出直线与抛物线两交点的坐标,根据抛物线的方程正确表示出焦点弦长,再利用已知条件求解.若抛物线=上一点到其焦点的距离为,为坐标原点,则△的面积为( )..解析:选设(,),由题意可得抛物线的焦点为(,),准线方程为=-,又点到焦点的距离为,∴由抛物线的定义知点到准线的距离为,∴+=,得=,代入抛物线方程得=,∴△的面积为=··=××=.故选.已知是抛物线=的一条焦点弦,=,则中点的横坐标是( )解析:选设(,),(,),则=++=,又=,∴+=,∴点的横坐标是=.故选.已知是抛物线=上一点,为其焦点,点在圆:(+)+(-)=上,则+的最小值是.解析:依题意,由点向抛物线=的准线:=-引垂线,垂足为(图略),则有+=+,结合图形可知+的最小值等于圆心(-,)到=-的距离再减去圆的半径,即等于-=,因此+的最小值是.答案:突破点二抛物线的标准方程及性质一、判断题(对的打“√”,错的打“×”)()方程=(≠)表示的曲线是焦点在轴上的抛物线,且其焦点坐标是,准线方程是=-.( )()抛物线既是中心对称图形,又是轴对称图形.( ) ()若直线与抛物线只有一个交点,则直线与抛物线一定相切.( )答案:()×()×()×二、填空题.已知抛物线的对称轴为轴,顶点在原点,焦点在直线-+=上,则此抛物线的方程是.答案:=-.抛物线=的准线方程是=,则的值为.答案:-.已知是抛物线=的焦点,若抛物线上的点到轴的距离为,则=.答案:考法一求抛物线的标准方程[例] ()(·河南中原名校联考)抛物线=(>)的焦点为,为坐标原点,为抛物线上一点,且=,△的面积为,则抛物线的方程为( ).=.=.=.=()(·江西协作体联考)设抛物线:=(>)的焦点为,点在上,=.若以为直径的圆过点(),则的方程为( ).=或=.=或=.=或=.=或=[解析] ()设(,),因为=,=,所以=,由抛物线定义知+=,所以=,所以=±,又△的面积为,所以××=,解得=(=-舍去).所以抛物线的方程为=. ()由已知得抛物线的焦点,设点(),抛物线上点(,),则=,=.由已知得·=,即-+=,因而=,.由=得,=,又>,解得=或=,故选.[答案] () ()[方法技巧]求抛物线方程的个注意点()当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种.()要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系.()要注意参数的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.考法二抛物线的几何性质[例] ()(·兰州双基过关考试)抛物线=(>)上横坐标为的点到此抛物线焦点的距离为,则该抛物线的焦点到准线的距离为( )....()(·赣州二模)抛物线:=(>)的焦点为,是抛物线上一点,若到的距离是到轴距离的两倍,且三角形的面积为,为坐标原点,则的值为( )....[解析] ()设抛物线的准线方程为=-(>),如图,则根据抛物线的性质有=+=,解得=,所以抛物线的焦点到准线的距离为.()不妨设(,)在第一象限,由题意可知(\\(+()=,△=()·()·=,))即(\\(=(),=(),))∴,又∵点在抛物线=上,∴=×,即=,又∵>,∴=,故选.[答案] () ()[方法技巧]用抛物线几何性质的技巧涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题.顶点在原点,对称轴为坐标轴,且过点(-,-)的抛物线的标准方程是( ).=-.=-.=-或=-.=-或=-解析:选设抛物线为=,代入点(-,-),解得=-,则抛物线方程为=-;设抛物线为=,代入点(-,-),解得=-,则抛物线方程为=-.已知抛物线:=的焦点为,点(,-).若线段与抛物线相交于点,则=( )解析:选由题意,(),=,设=,则到准线的距离为,的横坐标为-,由三角形相似,可得=,所以=,故选.已知是抛物线=(>)上一点,是抛物线的焦点,为坐标原点,当=时,∠=°,则抛物线的准线方程是( ).=-.=-.=-.=-解析:选过向准线作垂线,设垂足为,准线与轴的交点为.因为∠=°,所以△为等边三角形,∠=°,从而==,因此抛物线的准线方程为=-.选.。
2020版高考数学一轮复习第八篇平面解析几何第5节抛物线课件文新人教A版

返回导航
4.设抛物线 y2=2px(p>0)的焦点为 F,点 A(0,2),若线段 FA 的中点 B 在抛物线上,则 B 到该抛物线准线的距离为________.
返回导航
解析:依题意知 F 坐标为(p2,0), 所以 B 的坐标为(p4,1)代入抛物线方程得 p22=1,解得 p= 2, 所以抛物线准线方程为 x=- 22, 所以点 B 到抛物线准线的距离为 42+ 22=34 2. 答案:34 2
返回导航
2.若点 P 为抛物线 y=2x2 上的动点,F 为抛物线的焦点,则|PF|
的最小值为( )
1
(A)2
(B)2
(C)14
(D)18
返回导航
D 解析:本题考查抛物线的定义.抛物线 y=2x2 上的点到焦点 的距离等于该点到准线的距离,所以最小距离是p2,又 2p=12,则p2= 18,即|PF|的最小值为18,故选 D.
y=p2
返回导航
【重要结论】 抛物线焦点弦的几个常用结论 设 AB 是过抛物线 y2=2px(p>0)焦点 F 的弦,若 A(x1,y1),B(x2, y2),则 (1)x1x2=p42,y1y2=-p2.(2)弦长|AB|=x1+x2+p=sin22pα (α 为弦 AB 的倾斜角). (3)以弦 AB 为直径的圆与准线相切. (4)通径:过焦点垂直于对称轴的弦,长等于 2p.
返回导航
5.直线 l 过抛物线 x2=2py(p>0)的焦点,且与抛物线交于 A,B 两点,若线段 AB 的长是 6,AB 的中点到 x 轴的距离是 1,则此抛物 线方程是________.
解析:设 A(x1,y1),B(x2,y2),则|AB|=y1+y2+p=2+p=6, ∴p=4.即抛物线方程为 x2=8y.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【2019最新】精选高考数学大一轮复习第八篇平面解析几何第5节抛物线
习题理
【选题明细表】
知识点、方法题号
抛物线的定义与应用4,5,6,8,10
抛物线的标准方程及应用1,2,3
直线与抛物线的位置关系7,12,14
抛物线的综合应用9,11,13
基础对点练(时间:30分钟)
1.(2016·重庆南开中学月考)抛物线y2=4x的焦点到准线的距离为( C )
(A) (B) (C)2 (D)4
解析:焦点到准线的距离d=p=2.故选C.
2.(2017·四川巴中一诊)若坐标原点到抛物线y=mx2的准线的距离为2,则m等于( D )
(A)8 (B)±8 (C)± (D)±
解析:将其化为标准方程:x2=y,
所以||=2⇒m=±,故选D.
3.(2016·陕西西安质检)若抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0等于( A )
(A)1 (B)2 (C)4 (D)8
解析:因为2p=1,故=,
而|AF|=x0+=x0,
解之得x0=1,故选A.
4.(2017·河南百校联盟质检)已知抛物线C:y2=4x上一点A到焦点F的距离与其到对称轴的距离之比为5∶4,且|AF|>2,则A点到原点的距离为( B )
(A)3 (B)4 (C)4 (D)4
解析:设A(x,y),
则=⇒=⇒y=4或y=1(舍),
所以A(4,4)到原点的距离为4,选B.
5.(2017·湖北黄石调研)过抛物线y2=4x的焦点F的直线l与抛物线交于A,B两点,若A,B两点的横坐标之和为,则|AB|等于( D )
(A) (B) (C)5 (D)
解析:|AB|=|AF|+|BF|=(xA+1)+(xB+1)
=(xA+xB)+2=+2=.
故选D.
6.(2016·广东茂名二模)若动圆的圆心在抛物线y=x2上,且与直线y+3=0相切,则此圆恒过定点( C )
(A)(0,2) (B)(0,-3)
(C)(0,3) (D)(0,6)
解析:直线y+3=0是抛物线x2=12y的准线,由抛物线的定义知抛物线上的点到直线
y=-3的距离与到焦点(0,3)的距离相等,所以此圆恒过定点(0,3).
7.(2017·重庆巴蜀中学月考)已知抛物线y2=4x焦点为F,过焦点F的直线交抛物线于A,B,O为坐标原点,若△AOB的面积为4,则|AB|等于( D )
(A)6 (B)8 (C)12 (D)16
解析:设A(,y1),B(,y2),F(1,0),
所以=⇒y1y2=-4,
由△AOB的面积为4得×|y1-y2|×1=4⇒+=56,
因此|AB|=+2=16,选D.
8.(2016·豫南九校联考)已知点P是抛物线x2=4y上的动点,点P在x轴上的射影是点Q,点A的坐标是(8,7),则|PA|+|PQ|的最小值为( C )
(A)7 (B)8 (C)9 (D)10
解析:抛物线的焦点为F(0,1),准线方程为y=-1,
根据抛物线的定义知,
|PF|=|PM|=|PQ|+1.
所以|PA|+|PQ|=|PA|+|PM|-1
=|PA|+|PF|-1≥|AF|-1
=-1=10-1=9.
当且仅当A,P,F三点共线时,等号成立,
则|PA|+|PQ|的最小值为9.故选C.
9.导学号 18702477已知抛物线y2=2px(p>0)上一点M(1,m)到其焦点的距离为5,双曲线x2-=1的左顶点为A,若双曲线一条渐近线与直线AM垂直,则实数a= .
解析:抛物线y2=2px(p>0)上一点M(1,m)到其焦点的距离d=1+=5,
所以p=8,抛物线方程为y2=16x,
设点M(1,4),点A(-1,0),kAM==2,
所以-=-,
即a=.
答案:
10.(2016·山西忻州模拟)已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值
是.
解析:由题意知,圆x2+(y-4)2=1的圆心为C(0,4),半径为1,抛物线的焦点为F(1,0),根据抛物线的定义,点P到点Q的距离与点P到抛物线准线的距离之和即点P到点Q 的距离与点P到抛物线焦点F的距离之和,因此|PQ|+|PF|≥|PC|+|PF|-1≥
|CF|-1=-1.
答案:-1
能力提升练(时间:15分钟)
11.导学号 18702478设抛物线C:y2=4x的焦点为F,准线l与x轴的交点为R,过抛物线C上一点P作准线l的垂线,垂足为Q,若△QRF的面积为2,则点P的坐标为( A ) (A)(1,2)或(1,-2) (B)(1,4)或(1,-4)
(C)(1,2) (D)(1,4)
解析:设点P的坐标为(x0,y0),
因为△QRF的面积为2,
所以×2×|y0|=2,即|y0|=2,
所以x0=×4=1,
所以点P的坐标为(1,2)或(1,-2).故选A.
12.(2017·湖北襄阳月考)已知直线l:y=k(x+1)(k>0)与抛物线C:
y2=4x相交于A,B两点,且A,B两点在抛物线C准线上的射影分别是M,N,若|AM|=2|BN|,则k的值是( C )
(A) (B) (C) (D)2
解析:设B(x,y),直线y=k(x+1)过定点(-1,0),
由|AM|=2|BN|得A(2x+1,2y),
所以
解得
k==.故选C.
13.(2017·湖南长沙摸底测试)抛物线x2=2py(p>0)的焦点为F,其
准线与双曲线x2-y2=1相交于A,B两点,若△ABF为等边三角形,则p= .
解析:抛物线准线为y=-,代入双曲线得|x|=,焦点F(0,),故=,解得
p=2.
答案:2
14.导学号 18702479已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.
(1)若=3,求直线AB的斜率;
(2)设点M在线段AB上运动,原点O关于点M的对称点为C,求
四边形OACB面积的最小值.
解:(1)依题意可设直线AB:x=my+1,
联立得y2-4my-4=0,
设A(x1,y1),B(x2,y2),
由根与系数的关系得
因为=3,
所以y1=-3y2,所以m2=,
所以AB的斜率为或-.
(2)SOACB=2S△AOB
=2×|OF||y1-y2|
=|y1-y2|
=
=≥4,
当m=0时,四边形OACB的面积最小,最小值为4.
好题天天练
1.导学号 18702480已知F为抛物线C:y2=4x的焦点,点E在C的准线上,且在x轴上方,线段EF的垂直平分线与C的准线交于点Q(-1,),与C交于点P,则点P的坐标为( D )
(A)(1,2) (B)(2,2)
(C)(3,2) (D)(4,4)
解题关键:设出E点坐标,利用|EQ|=|QF|解出E点坐标,再利用kEF与kQP的关系写出QP方程,联立方程组求解.
解析:由题意,得抛物线的准线方程为x=-1,F(1,0).
设E(-1,y),因为PQ为EF的垂直平分线,
所以|EQ|=|FQ|,
即y-=,解得y=4,
所以kEF==-2,kPQ=,
所以直线PQ的方程为y-=(x+1),
即x-2y+4=0.
由解得
即点P的坐标为(4,4),故选D.
2.导学号 18702481抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为( A )
(A) (B)1 (C) (D)2
解析:设|AF|=a,|BF|=b,作AQ,BP垂直准线于Q,P,
由抛物线定义,得|AF|=|AQ|,|BF|=|BP|,
在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.
由余弦定理得,|AB|2=a2+b2-2abcos 120°=a2+b2+ab,
所以=≤≤==,当且仅当a=b时等号成立,
即的最大值为.故选A.。