全品复习方案高考物理一轮复习第12单元波粒二象性和原子物理课时作业(含解析)
高考物理一轮复习 第十二章 原子与原子核 第1讲 光电效应 波粒二象性作业 新人教版

第1讲光电效应波粒二象性[课时作业] 单独成册方便使用[基础题组]一、单项选择题1.下列有关光的波粒二象性的说法中正确的是( )A.有的光是波,有的光是粒子B.光子与电子是同样的一种粒子C.光的波长越长,其波动性越显著,波长越短,其粒子性越显著D.大量光子的行为往往显示出粒子性解析:一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性,有些行为(如光电效应)表现出粒子性,光子不是实物粒子,没有静止质量,电子是以实物形式存在的物质,光子是以场形式存在的物质,A、B错误;光的波粒二象性表明,大量光子的行为表现出波动性,个别光子的行为表现出粒子性.光的波长越长,衍射性越好,即波动性越显著,光的波长越短,其光子能量越大,个别或少数光子的作用就足以引起光接收装置的反应,所以其粒子性就很显著,C正确,D错误.答案:C2.用一束紫外线照射某金属时不能产生光电效应,可能使该金属发生光电效应的措施是( )A.改用频率更小的紫外线照射B.改用X射线照射C.改用强度更大的原紫外线照射D.延长原紫外线的照射时间解析:某种金属能否发生光电效应取决于入射光的频率,与入射光的强度和照射时间无关.不能发生光电效应,说明入射光的频率小于金属的极限频率,所以要使金属发生光电效应,应增大入射光的频率,X射线的频率比紫外线频率高,所以本题答案为B.答案:B3.关于光电效应,下列说法正确的是( )A.极限频率越大的金属材料逸出功越大B.只要光照射的时间足够长,任何金属都能产生光电效应C.从金属表面逸出的光电子的最大初动能越大,这种金属的逸出功越小D.入射光的光强一定时,频率越高,单位时间内逸出的光电子数就越多解析:逸出功W=hν0,W∝ν0,A正确;只有照射光的频率ν大于金属极限频率ν0,才能产生光电效应现象,B错误;某金属的逸出功只与该金属的极限频率有关,与从金属表面逸出的光电子的最大初动能无关,C错误;光强E=nhν,ν越大,E一定,则光子数n越小,单位时间内逸出的光电子数就越少,D 错误. 答案:A4.频率为ν的光照射某金属时,产生光电子的最大初动能为E km .改为频率为2ν的光照射同一金属,所产生光电子的最大初动能为(h 为普朗克常量)( ) A .E km -h ν B .2E km C .E km +h νD .E km +2h ν解析:根据爱因斯坦光电效应方程得E km =h ν-W ,若入射光频率变为2ν,则E km ′=h ·2ν-W =2h ν-(h ν-E km )=h ν+E km ,故选C. 答案:C5.用不同频率的紫外线分别照射钨和锌的表面而产生光电效应,可得到光电子最大初动能E k 随入射光频率ν变化的E k ν图像.已知钨的逸出功是3.28 eV ,锌的逸出功是3.34 eV ,若将二者的图线画在同一个E k ν坐标系中,如图所示,用实线表示钨,虚线表示锌,则正确反映这一过程的是( )解析:依据光电效应方程E k =h ν-W 可知,E k ν图线的斜率代表普朗克常量h ,因此钨和锌的E k ν图线应该平行.图线的横轴截距代表截止频率ν0,而ν0=Wh,因此钨的截止频率小些,综上所述,A 图正确. 答案:A 二、多项选择题6.波粒二象性是微观世界的基本特征,以下说法正确的有( ) A .光电效应现象揭示了光的粒子性B .热中子束射到晶体上产生衍射图样说明中子具有波动性C .黑体辐射的实验规律可用光的波动性解释D .动能相等的质子和电子,它们的德布罗意波长也相等解析:光电效应说明光具有粒子性,A 正确.衍射是波的特点,说明中子具有波动性,B 正确.黑体辐射的实验规律说明光具有粒子性,C 错误.动能相等的质子和电子,二者质量不同,动量不同,德布罗意波长不相等,D 错误.答案:AB7.用极微弱的可见光做双缝干涉实验,随着时间的增加,在屏上先后出现如图(a)(b)(c)所示的图像,则( )A .图像(a)表明光具有粒子性B .图像(c)表明光具有波动性C .用紫外线观察不到类似的图像D .实验表明光是一种概率波解析:图像(a)曝光时间短,通过的光子数很少,呈现粒子性,A 正确.图像(c)曝光时间长,通过了大量光子,呈现波动性,B 正确.该实验表明光是一种概率波,D 正确.紫外线本质和可见光本质相同,也可以发生上述现象,C 错误. 答案:ABD8.在探究光电效应现象时,某小组的同学分别用波长为λ、2λ的单色光照射某金属,逸出的光电子最大速度之比为2∶1,普朗克常量用h 表示,光在真空中的速度用c 表示,则( )A .光电子的最大初动能之比为2∶1B .该金属的截止频率为cλC .用波长为52λ的单色光照射该金属时能发生光电效应D .用波长为4λ的单色光照射该金属时不能发生光电效应解析:在两种单色光照射下,逸出的光电子的最大速度之比为2∶1,由E k =12mv 2可知,光电子的最大初动能之比为4∶1,A 错误;又由h ν=W +E k 知,h c λ=W +12mv 21 ,h c 2λ=W +12mv 22,又v 1=2v 2,解得W =h c 3λ,则该金属的截止频率为c3λ,B 错误;光的波长小于或等于3λ时才能发生光电效应,C 、D 正确. 答案:CD[能力题组]一、选择题9.用光照射某种金属,有光电子从金属表面逸出,如果光的频率不变,而减弱光的强度,则( )A .逸出的光电子数减少,光电子的最大初动能不变B .逸出的光电子数减少,光电子的最大初动能减小C .逸出的光电子数不变,光电子的最大初动能减小D .光的强度减弱到某一数值,就没有光电子逸出了解析:光的频率不变,表示光子能量不变,仍会有光电子从该金属表面逸出,逸出的光电子的最大初动能也不变;而减弱光的强度,逸出的光电子数就会减少,选项A 正确. 答案:A10.如图甲所示,合上开关,用光子能量为2.5 eV 的一束光照射阴极K ,发现电流表读数不为零.调节滑动变阻器,发现当电压表读数小于0.60 V 时,电流表读数仍不为零,当电压表读数大于或等于0.60 V 时,电流表读数为零.把电路改为图乙,当电压表读数为2 V 时,则逸出功及电子到达阳极时的最大动能为( )A .1.5 eV,0.6 eVB .1.7 eV,1.9 eVC .1.9 eV,2.6 eVD .3.1 eV,4.5 eV解析:光子能量h ν=2.5 eV 的光照射阴极,电流表读数不为零,则能发生光电效应,当电压表读数大于或等于0.6 V 时,电流表读数为零,则电子不能到达阳极,由动能定理eU =12mv 2m 知,最大初动能E km =eU =0.6 eV ,由光电效应方程h ν=E km +W 知W =1.9 eV ,对图乙,当电压表读数为2 V 时,电子到达阳极的最大动能E km ′=E km +eU ′=0.6 eV +2 eV =2.6 eV.故C 正确. 答案:C11.(多选)(2018·重庆万州二中模拟)某金属在光的照射下产生光电效应,其遏止电压U c 与入射光频率ν的关系图像如图所示,则由图像可知( )A .若已知电子电荷量e ,就可以求出普朗克常量hB .遏止电压是确定的,与照射光的频率无关C .入射光的频率为2ν0时,产生的光电子的最大初动能为h ν0D .入射光的频率为3ν0时,产生的光电子的最大初动能为h ν0解析:根据光电效应方程E k =h ν-W 和-eU c =0-E k 得,U c =he ν-W e,可知当入射光的频率大于极限频率时,遏止电压与入射光的频率呈线性关系,B 错误;因为U c =h e ν-W e,知图线的斜率等于he,从图像上可以得出斜率的大小,若已知电子电荷量e ,可以求出普朗克常量h ,A 正确;从图像上可知逸出功W =h ν0,根据光电效应方程得E k =h ·2ν0-W =h ν0,C 正确;E k =h ·3ν0-W =2h ν0,D 错误.答案:AC12.(多选)产生光电效应时,关于逸出光电子的最大初动能E k ,下列说法正确的是( ) A .对于同种金属,E k 与照射光的强度无关 B .对于同种金属,E k 与照射光的时间成正比 C .对于同种金属,E k 与照射光的频率成线性关系D .对于不同种金属,若照射光频率不变,E k 与金属的逸出功成线性关系解析:发生光电效应,一个电子获得一个光子的能量,E k =h ν-W ,所以E k 与照射光的强度无关,与光照射的时间无关,A 正确,B 错误;由E k =h ν-W 可知,对同种金属,E k 与照射光的频率成线性关系,若频率不变,对不同金属,E k 与W 成线性关系,C 、D 正确. 答案:ACD 二、非选择题13.如图甲所示是研究光电效应规律的光电管.用波长λ=0.50 μm 的绿光照射阴极K ,实验测得流过电流表G 的电流I 与AK 之间的电势差U AK 满足如图乙所示规律,取h =6.63×10-34J·s .结合图像,求:(结果保留两位有效数字)(1)每秒钟阴极发射的光电子数和光电子飞出阴极K 时的最大动能. (2)该阴极材料的极限波长.解析:(1)光电流达到饱和时,阴极发射的光电子全部到达阳极A ,阴极每秒钟发射的光电子的个数n =I m e =0.64×10-61.6×10-19(个)=4.0×1012(个)光电子的最大初动能为E km =eU 0=1.6×10-19 C×0.6 V=9.6×10-20 J.(2)设阴极材料的极限波长为λ0,根据爱因斯坦光电效应方程得E km =h c λ-h cλ,代入数据得λ0=0.66 μm.答案:(1)4.0×1012个 9.6×10-20J(2)0.66 μm14.用功率P 0=1 W 的光源照射离光源r =3 m 处的某块金属的薄片,已知光源发出的是波长λ=663 nm 的单色光,试计算: (1)1 s 内打到金属板1 m 2面积上的光子数; (2)若取该金属原子半径r 1=0.5×10-10m ,则金属表面上每个原子平均需隔多少时间才能接收到一个光子?解析:(1)离光源r =3 m 处的金属板1 m 2面积上1 s 内接收的光能E 0=P 0t 4πr2=8.85×10-3J 每个光子的能量E =h cλ=3×10-19J所以每秒接收的光子数n =8.85×10-33×10-19=2.95×1016个.(2)每个原子的截面积为S 1=πr 21=7.85×10-21 m 2把金属板看成由原子密集排列组成的,则面积S 1上接收的光的功率P ′=8.85×10-3×7.85×10-21 W =6.95×10-23 W每两个光子落在原子上的时间间隔Δt =E P ′=3×10-196.95×10-23s =4 317 s.答案:(1)2.95×1016个 (2)4 317 s。
高考物理一轮复习 第12章 近代物理初步 第2讲 原子和原子核课时作业(含解析)新人教版-新人教版高

第2讲原子和原子核时间:45分钟总分为:100分一、选择题(此题共14小题,每一小题6分,共84分。
其中1~11题为单项选择,12~14题为多项选择)1.(2019·广东揭阳一模)如下列图,x为未知的放射源,L为薄铝片,假设在放射源和计数器之间加上L后,计数器的计数率大幅度减小,在L和计数器之间再加竖直向下的匀强磁场,计数器的计数率不变,如此x可能是()A.α射线和β射线的混合放射源B.纯α射线放射源C.纯γ射线放射源D.α射线和γ射线的混合放射源答案 D解析在放射源和计数器之间加薄铝片L后,发现计数器的计数率大幅度减小,说明射线中含有穿透能力弱的α射线,在L和计数器之间再加竖直向下的匀强磁场,计数器的计数率不变,说明没有射线或剩下的射线不带电,即为γ射线,因此放射源x可能是α射线或它和γ射线的混合放射源,故A、B、C错误,D正确。
2.(2019·江西高三九校3月联考)如下说法中正确的答案是()A.天然放射现象的发现,揭示了原子核是由质子和中子组成的B.玻尔的原子结构理论是在卢瑟福核式结构学说上引进了量子理论C.天然放射现象中出现的α射线、β射线、γ射线都是高能量的电磁波D.卢瑟福的α粒子散射实验揭示了原子核有复杂结构答案 B解析天然放射现象的发现,揭示了原子核有复杂的结构,故A错误;玻尔的原子结构理论是在卢瑟福核式结构学说的根底上引入了量子理论,故B正确;天然放射现象中出现的α射线、β射线、γ射线,其中α射线是氦原子核,β射线是电子流,只有γ射线是高能量的电磁波,故C错误;卢瑟福的α粒子散射实验揭示了原子有复杂结构,在此根底上,他建立了原子的核式结构模型,故D错误。
3.(2020·安徽省A10联盟高三摸底)据报道,香烟会释放一种危险的放射性元素“钋(210 84 Po)〞,如果每天抽1.5包香烟,一年后累积的辐射相当于300次胸透的辐射。
210 84Po发生一次α衰变和一次β衰变后产生了新核,新核的中子数比质子数多()A.38个B.40个C.42个D.44个答案 B解析210 84Po发生一次α衰变和一次β衰变产生的新核为206 83X,其中子数为206-83=123,中子数比质子数多123-83=40,B正确。
届高考物理一轮复习第十二章波粒二象性原子结构和原子核课时作业

课时作业42[双基过关练]1.(多选)夏天,小明同学把自行车轮胎上的气门芯拔出的时候,会觉得从轮胎里喷出的气体凉,如果把轮胎里的气体视为理想气体,则关于气体喷出的过程,下列说法正确的是( ) A.气体的内能减少B.气体的内能不变C.气体来不及与外界发生热交换,对外做功,温度降低D.气体膨胀时,热量散得太快,使气体温度降低了E.气体分子的平均动能减小解析:本题主要考查热学基础知识,意在考查考生的理解能力和分析能力.气体喷出时,来不及与外界交换热量,发生绝热膨胀,Q=0,对外做功,热力学第一定律的表达式为W=ΔE,内能减少,温度降低,温度是分子平均动能的标志,则A、C、E正确.答案:ACE2.(多选)下列说法中正确的是( )A.尽管技术不断进步,但热机的效率仍不能达到100%,而制冷机却可以使温度降到热力学零度B.雨水没有透过布雨伞是液体表面张力的作用导致的C.气体温度每升高1 K所吸收的热量与气体经历的过程有关D.空气的相对湿度定义为水的饱和蒸汽压与相同温度时空气中所含水蒸气压强的比值E.悬浮在液体中的微粒越大,在某一瞬间撞击它的液体分子数越多,布朗运动越不明显解析:本题考查分子动理论和热力学定律,意在考查考生对分子动理论和热力学定律有关知识的理解和辨析能力.热力学零度只能接近而不能达到,A错误;雨水没有透过布雨伞是液体表面张力的作用导致的,B正确;由热力学第一定律ΔU=Q+W知,温度每升高1 K,内能增加,但既可能是吸收热量,也可能是对气体做功使气体的内能增加,C正确;空气的相对湿度是指空气中所含水蒸气的压强与同温度下的饱和蒸汽压的比值,故D错误;微粒越大,某一瞬间撞击它的分子数越多,受力越容易平衡,布朗运动越不显著,E正确.答案:BCE3.(多选)下列有关热现象的叙述中正确的是( )A.布朗运动是液体分子的运动,它说明了液体分子在永不停息地做无规则运动B.物体的温度越高,分子运动速率越大C.不违背能量守恒定律的实验构想也不一定能够实现D.晶体和非晶体在适当条件下是可以相互转化的E.用活塞压缩汽缸里的空气,对空气做功2.0×105 J,若空气向外界放出1.5×105 J的热量,则空气内能增加5×104 J解析:本题主要考查分子动理论、热力学定律等,意在考查考生对相关概念、规律的理解能力.布朗运动是液体中固体颗粒的运动,不是液体分子的运动,A错误;物体的温度越高,分子运动的平均速率越大,B错误;热力学第二定律表明第二类永动机虽不违背能量守恒定律,但仍不能实现,选项C正确;晶体和非晶体在适当条件下是可以相互转化的,D正确;根据热力学第一定律可知选项E正确.答案:CDE4.(多选)如图所示,汽缸和活塞均绝热,汽缸内部有一个导热性能良好的固定隔板,封闭着两部分气体A和B,活塞处于平衡状态.现通过电热丝对气体A加热一段时间,后来活塞达到新的平衡状态.气体的分子势能不计,忽略活塞与汽缸壁间的摩擦,大气压强保持不变.下列判断正确的是( )A.气体A吸热,内能增加B.气体B吸热,对外做功,内能不变C.气体A的分子的平均动能增大D.气体A和气体B中每个分子的动能都增大E.气体B中的分子在单位时间内对器壁单位面积碰撞的次数减少解析:气体A做等容变化,故W=0,根据ΔU=W+Q可知,气体A吸收热量,则其内能增加,温度升高,气体A的分子的平均动能增大,但不是每个分子的动能都增大,选项A、C正确,D错误;因为中间是导热隔板,所以气体B吸收热量,温度升高,内能增加,因为压强不变,故体积变大,气体对外做功,选项B错误;气体B的压强不变,但是温度升高,体积增大,所以气体B中的分子在单位时间内对器壁单位面积碰撞的次数减少,选项E正确.答案:ACE5.(多选)如图所示,一定质量的理想气体从状态a变化到状态b,在这一过程中,下列说法正确的是( )A.气体的体积变小B.气体的温度降低C.气体从外界吸收热量D.气体的内能增大E.单位时间内碰撞到单位面积容器壁的分子数减少解析:从状态a到状态b,气体的压强不变,气体的温度升高,则气体的体积增大,选项A、B错误;一定质量的理想气体的内能只与温度有关,气体的温度升高,故气体的内能增大,选项D正确;气体的体积增大,对外做功,W<0,气体的内能变大,由热力学第一定律ΔU=W+Q,故气体一定从外界吸热,选项C正确;因为气体的温度升高,分子平均动能增大,而压强不变,所以单位时间内碰撞到单位面积容器壁的分子数减少,选项E正确.答案:CDE6.气体温度计结构如图所示.玻璃测温泡A内充有理想气体,通过细玻璃管B和水银压强计相连.开始时A处于冰水混合物中,左管C中水银面在O点处,右管D中水银面高出O点h1=14 cm.后将A放入待测恒温槽中,上下移动D,使C中水银面仍在O点处,测得D中水银面高出O点h2=44 cm.(已知外界大气压为标准大气压,标准大气压相当于76 cmHg)(1)恒温槽的温度为________℃;(2)此过程A内气体内能________(填“增大”或“减小”),气体不对外做功,气体将________(填“吸热”或“放热”).解析:(1)测温泡内气体进行等容变化.p1=p0+h1=76+14=90 cmHg,T1=273 Kp2=p0+h2=76+44=120 cmHg由p1T1=p2T2,得T2=p2p1T1=12090×273=364 K=91 ℃(2)理想气体的内能只与温度有关,随着温度的升高,内能将增大,气体等容变化,做功为0,内能的增加要靠吸热来实现.答案:(1)91 (2)增大吸热7.一定质量的理想气体从状态A变化到状态B,再变化到状态C,其状态变化过程的p-T图象如图所示.已知该气体在状态A时的体积为1×10-3 m3.求:(1)该气体在状态C时的体积.(2)该气体从状态A到状态B再到状态C的过程中,气体与外界传递的热量.解析:(1)A 、B 两状态体积相等,则有 p A T A =p B T B得:T B =p B T Ap A从B 到C 压强相同,则: V B T B =V C T C得V C =V B T C T B =V B T C p A p B T A =V B p Ap B又:V B =V A故:V C =3×10-3 m 3(2)由A 到B 为等容降温过程,由B 到C 为等压升温过程,A 到C 的过程,应用热力学第二定律得,W +Q =ΔE.由于状态A 和C 温度相同,内能不变,ΔE=0,B 到C 过程,体积变大,W =p B (V A -V C )=1×105×(1×10-3-3×10-3) J =-200 J ,Q =-W =200 J.答案:(1)3×10-3 m 3(2)200 J [能力提升练]8.(2020·山西长治二中等五校联考)如图所示,一绝热汽缸倒立竖在两水平台面上,缸内一光滑活塞密封了一定质量的理想气体;在活塞下挂有一物块,活塞与物块的总重量G =30 N ,活塞的横截面积S=3×10-3 m 2.活塞静止时,缸内气体温度t 1=27 ℃,体积V 1=3×10-3 m 3,外界的大气压强恒为p 0=1.0×105Pa ,缸内有一个电热丝,电热丝的电阻值恒为R =5 Ω,电源电动势E =18 V 、内阻r =1 Ω,闭合开关20 s 后,活塞缓慢下降高度h =0.1 m ,求:(1)20 s 内气体内能的变化量; (2)20 s 末缸内气体的温度.解析:(1)设缸内气体初态压强为p 1,对活塞由受力平衡有 p 0S =G +p 1S ,在电热丝对气体加热20 s 的过程中,外界对气体做的功为W =-p 1Sh ,电热丝产生的热量为Q =I 2Rt ,其中I =E R +r,根据热力学第一定律有ΔU=W +Q , 解得ΔU=873 J ,即气体的内能增加了873 J.(2)气体做等压膨胀,由盖·吕萨克定律有V 1T 1=V 1+ShT 2,代入数据解得T 2=330 K ,即缸内气体的温度为t 2=(330-273) ℃=57 ℃. 答案:(1)增加873 J (2)57 ℃9.如图所示,一根两端开口、横截面积为S =2 cm 2足够长的玻璃管竖直插入水银槽中并固定(插入水银槽中的部分足够深).管中有一个质量不计的光滑活塞,活塞下封闭着长L =21 cm 的气柱,气体的温度为t 1=7 ℃,外界大气压取p 0=1.0×105Pa(相当于75 cm 高的汞柱的压强).(1)若在活塞上放一个质量为m =0.1 kg 的砝码,保持气体的温度t 1不变,则平衡后气柱为多长?(g2019-2020学年高考物理模拟试卷一、单项选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.充电式果汁机小巧简便,如图甲所示,被誉为出行神器,满足了人们出行也能喝上鲜榨果汁的需求。
高考物理-全品一轮第12单元原子物理作业详解

教师详解(作业手册)课时作业(三十)1.B[解析]一群处于n=3激发态的氢原子向较低能级跃迁,可能放出三种不同频率的光子,故选项A错误;每种原子都有自己的特征谱线,故可以根据原子光谱来鉴别物质,故选项B正确;原子中的电子没有确定的轨道,在空间各处出现的概率是不一定的,故选项C错误.α粒子散射实验揭示了原子的核式结构模型,认为电子绕核旋转,故选项D错误.2.AC[解析]光是一种概率波,少量光子的行为易显示出粒子性,而大量光子的行为往往显示出波动性,A正确,B错误;光的波动性不是由于光子之间的相互作用引起的,而是光的一种属性,C正确;粒子性和波动性是光同时具备的两种属性,D错误.3.D[解析]增大照射光的频率,若其不大于金属材料的极限频率,还是不会发生光电效应,选项A错误;光电效应是否产生与照射光频率有关,而与照射光强度无关,选项B错误;光电效应是否产生与照射光照射时间无关,选项C错误;只要照射光的频率大于该金属材料的极限频率,就能发生光电效应,选项D正确.4.BD[解析]根据爱因斯坦的光电效应方程,hν=W+m v2,最大初动能随照射光频率的增大而增大,随照射光频率的减小而减小,选项A错误,B正确;减小金属的逸出功,也能增大最大初动能,选项C错误,D正确.5.A[解析]由E=h可知,波长大,光子能量小,故Hα光子能量最小,Hδ光子能量最大,再由h=E n-E2可知,Hα对应的轨道量子数最小,A错误.6.BC[解析]发生光电效应的条件是照射光频率大于截止频率,并不是光足够强就能发生光电效应,故A错误;金属的逸出功W0=hν,得ν=,故B正确;一定强度的照射光照射某金属发生光电效应时,照射光的频率越高,单个光子的能量值越大,光子的个数越少,单位时间内逸出的光电子数就越少,故C正确;氢原子由低能级向高能级跃迁时,吸收光子的能量等于两能级间能量差,故D错误.7.BD[解析]若仅增大该单色光照射的强度,由于每个光子的能量不变,因此光电子的最大初动能不变,但单位时间内射出的光电子数增多,因此光电流增大,故选项A错误;逸出功由金属材料自身决定,与是否有光照无关,故B正确;发生光电效应不需要时间积累,只要照射光的频率大于极限频率即可,故选项C错误;若滑动变阻器滑片左移,则电压表示数减小,因为电压是反向电压,所以电压减小时,光电子更容易到达A极形成电流,电流表示数增大,故选项D正确.8.B[解析]以从阴极K逸出的且具有最大初动能的光电子为研究对象,由动能定理得-Ue=0-,由光电效应方程得nhν=+W(n=2,3,4,…),联立解得U=(n=2,3,4,…),故选项B正确. 9.D[解析]用一定频率的a单色光照射光电管时,电流计指针会发生偏转,知νa>νc,a光的波长小于b光的波长,A错误;发生光电效应的条件是ν>νc,增加b光的强度不能使电流计G的指针发生偏转,B错误;发生光电效应时,电子从光电管左端运动到右端,而电流的方向与电子定向移动的方向相反,所以流过电流计G的电流方向是由c到d,C错误;增加a光的强度可使通过电流计G的电流增大,D正确.10.BC[解析]一个处于量子数n=5激发态的氢原子向低能级跃迁时,最多可产生4种不同频率的光子,选项A错误;当n=3时,氢原子的能量E3=-1.51 eV,所以处于n=3激发态的氢原子的电离能是1.51 eV,当该氢原子吸收具有1.87 eV能量的光子后被电离,选项B正确;根据玻尔理论,处于基态的氢原子不可能吸收该光子,所以氢原子仍处于基态,选项C正确;电子从高能级到低能级跃迁时,动能增大,电势能减小,选项D错误.11.ABC[解析]由爱因斯坦光电效应方程E k=hν-W0知,当ν=0时,-W0=E k,故W0=E,A正确;而E k=0时,hν=W0,即W0=hν0,B正确;照射光的频率为2ν0时产生的光电子的最大初动能E km=2hν0-hν0=hν0=E,C正确;照射光的频率为时,不会发生光电效应,D错误.12.AB[解析]已知从n=4到n=1能级辐射的电磁波的波长为λ1,从n=4到n=2能级辐射的电磁波的波长为λ2,从n=2到n=1能级辐射的电磁波的波长为λ3,则λ1、λ2、λ3的关系为h,即,λ1<λ3,,λ3<λ2,又h,即,则,选项A、B正确.13.BC[解析]氢原子从高能级向低能级跃迁时放出的光子的能量等于前、后两个能级的能量之差,当氢原子从高能级直接跃迁到基态时放出的光子的能量最小值为-3.4 eV-(-13.6 eV)=10.2 eV,大于3.34 eV,所以一定能使逸出功为3.34 eV的金属发生光电效应,A错误;大量处于n=4能级的氢原子向基态跃迁时,辐射光子的种数为=6,B正确;大量处于n=3能级的氢原子向n=1能级跃迁时,辐射出的光子能量最大为-1.51 eV-(-13.6 eV)=12.09 eV,用此光子照射逸出功为3.34 eV 的金属,由爱因斯坦光电效应方程可得光电子的最大初动能为12.09 eV-3.34 eV=8.75 eV,C正确;当氢原子由低能级向高能级跃迁时,氢原子吸收的光子能量一定等于两能级之间的能量差,而由氢原子的能级图可知n=1能级与任何能级间的能量差都不等于10.3 eV,因此不能使n=1能级的氢原子跃迁到较高的能级,D错误.14.AB[解析]能得到电子的衍射图样,说明电子具有波动性,A正确;由德布罗意波长公式λ=,可得λ=,B正确;由λ=可知,加速电压越大,电子的波长越小,衍射现象就越不明显,C错误;用相同动能的质子替代电子,质子的波长变小,衍射现象与电子相比更不明显,故D错误.15.(1)不能(2)27.2 eV[解析](1)设运动氢原子的速度为v0,发生完全非弹性碰撞后两者的速度为v,损失的动能ΔE被静止氢原子吸收.若ΔE=10.2 eV,则静止氢原子可由n=1能级跃迁到n=2能级.由动量守恒定律和能量守恒定律有m v0=2m vm v2+ΔE=E k=13.6 eV联立解得ΔE==6.8 eV因为ΔE=6.8 eV<10.2 eV,所以不能使静止氢原子发生跃迁.(2)若要使静止氢原子电离,则ΔE≥13.6 eV联立解得E k≥27.2 eV.课时作业(三十一)1.B[解析]核反应前后质量数守恒,电荷数也守恒,A错误;半衰期是宏观统计概念,C错误;核聚变释放能量,D错误.2. C[解析]同位素的核外电子数量相同,所以一种元素的各种同位素都具有相同的化学性质,A错误;原子核内相邻的质子和中子之间均存在核力,B错误;核子数越多其结合能也越大,所以Kr都大,但Kr都小,C正确;α射线、β射线都是带电粒子流,而γ射线是电磁波,不带电,故D错误.3.AB[解析]放射性元素的半衰期只与原子核自身有关,与温度、压强无关,故A正确;玻尔理论认为原子只能处在能量不连续的一系列状态,故B正确;通过卢瑟福α粒子散射实验判定的是原子具有核式结构,并未判定原子由电子和带正电的物质组成,故C错误Pb时,质量数减小24,而质子数减小8,因β衰变时质量数不变,质子数增加1,而α衰变时质量数减小4,质子数减小2,所以要经过6次α衰变和4次β衰变,故D错误.4.C[解析] A是聚变反应,反应剧烈,至今可控聚变反应还处于实验研究阶段;B是裂变反应,虽然实现了人工控制,但因反应剧烈,防护要求高,还不能小型化;C是人工放射性同位素的衰变反应,是小型核能电池主要采用的反应方式;D是人工核反应,需要高能α粒子.5.AD[解析]根据比结合能越大,越稳定,则核燃料总是利用比结合能小的核,故A正确.核反应中γ光子的能量就是质量亏损对应的能量,故B错误Pu更稳定,说明U的比结合能大,所以Pu衰变时,会释放巨大能量,故C错误,D正确.6.C[解析]钚239Pu)和铀239U)质量数相同,质子数和中子数均不同,选项A、B错误Pu多两个中子,少两个质子Pu,选项C正确.7.B[解析]X,质量数没有发生变化,故①为β衰变Pb,质量数减少4,故③为α衰变Ti,电荷数减少2,故②为α衰变,过程④的电荷数增加1,为β衰变,故A、C、D错误,B正确.8.C[解析]该反应方程为e→2γ,由于光子的静止质量为零,所以质量亏损为Δm=2m,由质能方程,对应的能量为ΔE=2mc2,根据能量守恒定律可知2hν=2E+ΔE,即有=2E+2mc2,所以光子在真空中的波长λ=,C正确.9.BC[解析]核反应中质量数守恒、电荷数守恒,则知n,a=3,故A错误,B正确.由ΔE=Δmc2可得,ΔE=(m U+m X-m Ba-m Kr-3m X)c2=(m U-m Ba-m Kr-2m X)c2,故C正确,D错误.10.AD[解析]根据核反应方程He+X,X的质量数m1=2+3-4=1,核电荷数z1=1+1-2=0,所以X是中子,故A正确;根据核反应方程X+Y H,X是中子,所以Y的质量数m2=4+3-1=6,核电荷数z2=2+1-0=3,所以Y的质子数是3,中子数是3,故B错误;根据两个核反应方程可知,都有大量的能量释放出来,所以一定都有质量亏损,故C 错误;氘和氚的核反应过程中是质量较小的核生成质量较大的新核,所以是核聚变反应,故D正确.11.CD[解析]原子核A发生α衰变,设原子核B和α粒子的速度分别为v B和vα,由动量守恒定律有0=m B v B-mαvα,则,,A、B错误.由质能方程知原子核B和α粒子的动能之和为ΔE=Δmc2=(m A-m B-mα)c2,C正确.由质量数守恒和电荷数守恒知,A比B质子数多2,中子数多2,D正确.12.CD[解析]由核反应过程中的质量数守恒和电荷数守恒可知n,则新粒子为中子n,A错误;核反应过程中有质量亏损,释放能量,仍然满足能量守恒定律,B错误;由题意可知ΔE=(2.014 1 u×2-3.016 0 u-1.008 7 u)×931 MeV/u=3.3MeV,根据核反应中系统的能量守恒有E kHe+E kn=2E0+ΔE,根据核反应中系统的动量守恒有p He-p n=0,由E k=,可知,解得E kHe=·(2E0+ΔE)≈1 MeV,E kn=(2E0+ΔE)≈3 MeV,C、D正确.13.(1He(2)v(3)[解析](1)由电荷数守恒和质量数守恒可得衰变方程为He.(2)设Th核的反冲速度为v0,由动量守恒定律得0=m v0-m v解得v0=v.(3)由能量守恒定律有+hν=Δmc2解得Δm=.14.(1He(2)(3) [解析](1He(2)由动量守恒定律得m n v=-m H v1+m He v2由题意得v1∶v2=7∶8解得v1=,v2=(3)氚核和α粒子的动能之和为E k=m v2释放的核能为ΔE=E k-E kn=m v2由爱因斯坦质能方程得,质量亏损为Δm=。
高考物理总复习第十二单元波粒二象性原子结构与原子核课时2原子结构原子核教师用书(含解析)新人教版

1.原子的核式结构模型(1)电子的发现:英国物理学家汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,几乎被“撞”了回来。
(3)卢瑟福提出原子的核式结构模型:在原子中心有一个很小的核,原子几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.氢原子的能级结构(1)玻尔理论①定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
②跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n。
(h是普朗克常量,h=6.626×10-34J·s)③轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
(2)基态和激发态:原子能量最低的状态叫基态,其他能量较高的状态叫激发态。
3.原子核的组成(1)原子核由质子和中子组成,它们统称为核子。
(2)原子核的核电荷数=质子数,原子核的质量数=质子数+中子数。
(3)同位素:具有相同质子数、不同中子数的原子。
同位素在元素周期表中的位置相同。
4.天然放射现象(1)天然放射现象:元素自发地放出射线的现象,首先由贝可勒尔发现。
天然放射现象的发现,说明原子核还具有复杂的结构。
(2)三种射线放射性元素放射出的射线共有三种,分别是α射线、β射线、γ射线。
其中α射线是高速运动的氦核,β射线是高速运动的电子流,γ射线是光子。
(3)半衰期①定义:放射性元素的原子核有半数发生衰变所需的时间。
②影响因素:放射性元素衰变的快慢是由原子核内部因素决定的,跟原子所处的物理状态(如温度、压强)及化学状态(如单质、化合物)无关。
(4)α衰变和β衰变的实质α衰变:核内两个中子和两个质子作为一个整体从较大的原子核内抛射出来。
高考物理总复习121波粒二象性针对训练含解析新人教版

12.1 波粒二象性1.(2019年温州质检)(多选)下列关于波粒二象性的说法正确的是( )A.光电效应揭示了光的波动性B.使光子一个一个地通过单缝,若时间足够长,底片上也会出现衍射图样C.黑体辐射的实验规律可用光的粒子性解释D.热中子束射到晶体上产生衍射图样说明中子具有波动性解析:光电效应揭示了光的粒子性,A 错误;单个光子通过单缝后在底片上呈现出随机性,但大量光子通过单缝后在底片上呈现出波动性,B 正确;黑体辐射的实验规律说明了电磁辐射是量子化的,即黑体辐射是不连续的、一份一份的,所以黑体辐射用光的粒子性来解释,C 正确;热中子束射在晶体上产生衍射图样,是由于运动的实物粒子具有波的特性,即说明中子具有波动性,D 正确.答案:BCD2.(2019年黄冈中学模拟)(多选)如图12-1-9所示为研究光电效应规律的实验电路,电源的两个电极分别与接线柱c 、da 照射光电管时,灵敏电流计G 的指针会发生偏转,而用另一频率的单色光b 照射该光电管时,灵敏电流计G 是 ( )图12-1-9A.a 光的频率一定大于b 光的频率B.电源正极可能与c 接线柱连接C.用b 光照射光电管时,一定没有发生光电效应D.若灵敏电流计的指针发生偏转,则电流方向一定是由e →G →f解析:由于电源的接法不知道,所以有两种情况:①c 接负极,d 接正极:用某种频率的单色光a 照射光电管阴极K ,电流计G 的指针发生偏转,知ab 照射光电管阴极K 时,电流计G 的指针不发生偏转,知b 光的频率小于金属的极限频率,所以a 光的频率一定大于b 光的频率.②c 接正极,d 接负极:用某种频率的单色光a 照射光电管阴极K ,电流计G 的指针发生偏转,知a 光产生的光电子能到达负极db 照射光电管阴极K 时,电流计G 的指针不发生偏转,知b 光即使产生光电子也不能到达负极d 端,所以a 光产生的光电子的最大初动能大,所以a 光的频率一定大于b 光的频率,故A 、B 正确;由以上的分析可知,不能判断出用b 光照射光电管时,一定没有发生光电效应,故C 错误;电流的方向与负电荷定向移动的方向相反,若灵敏电流计的指针发生偏转,则电流方向一定是由e →G →f ,故D 正确. 答案:ABD3.现有a 、b 、c 三束单色光,其波长关系为λa ∶λb ∶λc a 光束照射某种金属板时能发生光电效应,飞出的光电子最大动能为E k ,若改用b 光束照射该金属板,飞出的光电子最大动能为13E k ,当改用c 光束照射该金属板时( ) A.能发生光电效应,飞出的光电子最大动能为16E k B.能发生光电效应,飞出的光电子最大动能为19E kC.能发生光电效应,飞出的光电子最大动能为112E kD.由于c 光束光子能量较小,该金属板不会发生光电效应解析:对a 、b 两束光由光电效应方程有hc λa -W 0=E k ,hc 2λa -W 0=13E k ,联立解得hc λa =43E k ,W 0=13E k .当改用c 光束照射该金属板时有hc 3λ0-W 0=49E k -13E k =19E k ,B 正确. 答案:B4.如图12-1-10所示是研究光电管产生的电流的电路图,A 、K 是光电管的两个电极,已知该光电管阴极的极限频率为ν0.现将频率为ν(大于ν0)的光照射在阴极上,则下列方法一定能够增加饱和光电流的是( )图12-1-10A.照射光频率不变,增加光强B.照射光强度不变,增加光的频率C.增加A 、K 电极间的电压D.减小A 、K 电极间的电压解析:要增加单位时间内从阴极逸出的光电子的数量,就需要增加照射光单位时间内入射光子的个数,所以只有A 正确.答案:A。
高考物理一轮总复习第十二章波粒二象性原子物理基次2原子结构原子核练习含解析新人教版

高考物理一轮总复习第十二章波粒二象性原子物理基次2原子结构原子核练习含解析新人教版基础课 2 原子结构、原子核一、选择题1.(2019届华南师大附中模拟)下列说法正确的是( )A.汤姆孙通过研究阴极射线发现了电子,并提出了原子的核式结构模型B.太阳辐射的能量主要来自太阳内部的热核反应C.光电效应中光电子的最大初动能与入射光的频率成正比D.15 7N+11H→12 6C+42He是α衰变方程解析:选B 汤姆孙通过研究阴极射线发现了电子,并提出了原子的“枣糕模型”,选项A错误;太阳辐射的能量主要来自太阳内部的热核反应,选项B正确;光电效应中光电子的最大初动能与入射光的频率成线性关系,不成正比,选项C错误;15 7N+11H→12 6C+42He是人工转变,不是α衰变方程,选项D错误.2.(多选)关于天然放射性,下列说法正确的是( )A.所有元素都可能发生衰变B.放射性元素的半衰期与外界的温度无关C.放射性元素与别的元素形成化合物时仍具有放射性D.α、β和γ三种射线中,γ射线的穿透能力最强E.一个原子核在一次衰变中可同时放出α、β和γ三种射线解析:选BCD 只有原子序数大于等于83的元素才能发生衰变,选项A错误;半衰期由原子核内部的结构决定,与外界温度无关,选项B正确;放射性来自于原子核内部,与其形成的化合物无关,选项C正确;α、β、γ 三种射线中,γ射线能量最高,穿透能力最强,选项D正确;一个原子核在一次衰变中要么是α衰变,要么是β衰变,同时伴随γ射线的产生,选项E错误.3.(2018届广东五校一联)2017年11月17日,“中国核潜艇之父”——黄旭华获评全国道德模范,颁奖典礼上,习总书记为他“让座”的场景感人肺腑.下列有关核反应说法错误的是( )A.目前核潜艇是利用重核裂变提供动力B.重核裂变反应中一定有质量亏损C.235 92U+10n→140 54Xe+9438Sr+d10n,式中d=2D.铀核裂变后生成的新核比铀核的比结合能小解析:选D 目前世界上的核潜艇都是利用重核裂变提供动力,A正确;重核裂变释放能量一定存在质量亏损,B正确;由核反应中质量数守恒可知d=2,C正确;铀核裂变后生成的新核的比结合能比铀核的大,D错误.4.(2018年全国卷Ⅲ)1934年,约里奥—居里夫妇用α粒子轰击铝核2713Al,产生了第一个人工放射性核素X:α+2713Al→n+X.X的原子序数和质量数分别为( ) A.15和28 B.15和30C.16和30 D.17和31解析:选B 在核反应过程中,质量数和电荷数分别守恒,则X的原子序数为2+13=15,X的质量数为4+27-1=30,选项B正确.5.(2016年北京卷)处于n=3能级的大量氢原子,向低能级跃迁时,辐射光的频率有( )A.1种 B.2种C.3种 D.4种解析:选C 大量氢原子从n=3能级向低能级跃迁时,能级跃迁图如图所示,有3种跃迁情况,故辐射光的频率有3种,选项C正确.6.(2019届广东茂名综合测试)铝核2713Al被α粒子击中后产生的反应生成物是磷3015P,同时放出一种粒子,关于这种粒子的下列说法中正确的是( )A.这种粒子在电场中可以被加速或发生偏转B.这种粒子在磁场中一定不受磁场力作用C.这种粒子在真空中的速度等于3×108 m/sD.在14 6C核内有6个这种粒子解析:选B 核反应中质量数守恒,电荷数守恒,2713Al+42He→3015P+10n,这种粒子是中子18 m/s,所以0n,中子不带电,故A错误,B正确;实物粒子在真空中的速度小于光速3×10C错误;在14 6C中有8个10n,所以D错误.7.(2018届江西上饶六校一联)PET(正电子发射型计算机断层显像)的基本原理是:将放射性同位素15 8O注入人体,参与人体的代谢过程.15 8O在人体内衰变放出正电子,与人体内负电子相遇而湮灭转化为一对光子,被探测器探测到,经计算机处理后产生清晰的图象.根据PET的基本原理,下列说法正确的是( )A.15 8O衰变的方程式为15 8O→15 9F+0-1eB.将放射性同位素15 8O注入人体,15 8O的主要用途是作为示踪原子C.一对正负电子湮灭后也可能只生成一个光子D.PET中所选的放射性同位素的半衰期应较长解析:选B 由质量数守恒和电荷数守恒可知,15 8O衰变的方程式为15 8O→15 7N+01e,故A错误;将放射性同位素15 8O注入人体,15 8O的主要用途是作为示踪原子,故B正确;一对正负电子湮灭后生成两个光子,故C错误;PET中所选的放射性同位素的半衰期应较短,故D错误.8.(2019届三明模拟)按照玻尔理论,一个氢原子中的电子从一半径为r a的圆轨道自发地直接跃迁到一半径为r b的圆轨道上,已知r a>r b,则在此过程中( )A.原子要发出某一频率的光子,电子的动能增大,原子的电势能减小,原子的能量也减小B.原子要吸收某一频率的光子,电子的动能减小,原子的电势能减小,原子的能量也减小C.原子要发出一系列频率的光子,电子的动能减小,原子的电势能减小,原子的能量也减小D.原子要吸收一系列频率的光子,电子的动能增大,原子的电势能增大,原子的能量也增大解析:选A 由玻尔氢原子理论知,电子轨道半径越大,原子能量越大,当电子从r a 跃迁到r b时,原子能量减小,放出光子;在电子跃迁过程中,库仑力做正功,原子的电势能减小;由库仑力提供电子做圆周运动的向心力,即ke2r2=mv2r,r减小,电子速度增大,动能增大,综上所述可知A正确.9.(多选)如图所示是氢原子的能级图,大量处于n=5能级的氢原子向低能级跃迁时,一共可以辐射出10种不同频率的光子.其中莱曼系是指氢原子由高能级向n=1能级跃迁时释放的光子,则( )A.10种光子中波长最短的是从n=5能级跃迁到基态时产生的B.10种光子中有4种属于莱曼系C.使n=5能级的氢原子电离至少要0.85 eV的能量D.从n=2能级跃迁到基态释放光子的能量等于从n=3能级跃迁到n=2能级释放光子的能量解析:选AB 由n=5能级跃迁到基态时产生的光子能量最大,频率最高,波长最短,A项正确;5→1、4→1、3→1和2→1跃迁时释放的4种光子属于莱曼系,B项正确;使n =5能级的氢原子电离至少要0.54 eV的能量,C项错误;从n=2能级跃迁到基态释放光子的能量为-3.4 eV -(-13.6 eV)=10.2 eV ,从n =3能级跃迁到n =2能级释放光子的能量为-1.51 eV -(-3.4 eV)=1.89 eV ,D 项错误.10.(2018届河北“五个一名校联盟”高三考试)由于放射性元素237 93Np 的半衰期很短,所以在自然界一直未被发现,只是在使用人工方法制造后才被发现.已知237 93Np 经过一系列α衰变和β衰变后变成20983Bi ,下列判断正确的是( )A .衰变过程中原子核的质量和电荷量守恒B .20983Bi 比237 93Np 少28个中子C .衰变过程中共发生了7次α衰变和4次β衰变D .经过两个半衰期后含有237 93Np 的矿石的质量将变为原来的四分之一解析:选C α衰变的实质是质量数减少4、电荷数减少2,β衰变的实质是质量数不变、电荷数加1. 237 93Np 经过一系列衰变变成20983Bi 时,由质量数守恒和电荷数守恒可知,经过了7次α衰变、4次β衰变,C 正确;衰变过程中核反应方程遵循质量数守恒和电荷数守恒,但原子核的质量不守恒,A 错误;20983Bi 有126个中子,237 93Np 有144个中子,显然237 93Np 比20983Bi 多18个中子,B 错误;经过两个半衰期以后,有34的237 93Np 发生衰变,产生新核,所以矿石中放射性元素237 93Np 的质量为原来的四分之一,不是矿石的质量为原来的四分之一,D 错误.11.(2019届吉林长春高三质量监测)2017年1月9日,大亚湾反应堆中微子实验工程获得国家自然科学一等奖.大多数原子核发生核反应的过程中都伴随着中微子的产生,例如核裂变、核聚变、β衰变等.下列关于核反应的说法正确的是( )A .234 90Th 衰变为222 86Rn ,经过3次α衰变、2次β衰变B.21H +31H→42He +10n 是α衰变方程,234 90Th→234 91Pa +0-1e 是β衰变方程C .235 92U +10n→144 56Ba +8936Kr +310n 是核裂变方程,也是氢弹的核反应方程D .高速运动的α粒子轰击氮核可从氮核中打出中子,其核反应方程为42He +147N→178O +10n解析:选A 23490Th 经过3次α衰变后质量数减少12、质子数减少6,再经过2次β衰变后质子数增加2,衰变为222 86Rn ,A 正确;21H +31H→42He +10n 是核聚变方程,234 90Th→234 91Pa +0-1e是β衰变方程,B 错误;235 92U +10n→14456Ba +8936Kr +310n 是核裂变方程,也是原子弹的核反应方程,C 错误;高速运动的α粒子轰击氮核可从氮核中打出质子,其核反应方程为42He +147N→178O +11H ,D 错误.12.(2018届重庆六校第一次联考)原子核的比结合能曲线如图所示,根据该曲线,下列判断正确的是( )A.21H 核的结合能约为1 MeVB .重核235 92U 裂变成8936Kr 和14456Ba 要吸收能量C .两个21H 核结合成42He 核要释放能量D .中等质量的原子核最不稳定解析:选C 由原子核的比结合能曲线可知,21H 核的比结合能约为1 MeV ,21H 核有两个核子,21H 核的结合能约为2×1 MeV=2 MeV ,选项A 错误;由于重核235 92U 的比结合能与8936Kr 和14456Ba 的比结合能相比较小,所以重核235 92U 裂变成8936Kr 和14456Ba 要放出能量,选项B 错误;由于21H 核的比结合能与42He 的比结合能相比较小,所以两个21H 核结合成42He 核要释放能量,选项C 正确;由于中等质量的原子核比结合能较大,核子脱离原子核需要的能量大,所以中等质量的原子核相比其他原子核稳定,选项D 错误.13.用中子(10n)轰击铀核(235 92U)发生裂变反应,会产生钡核(141 56Ba)和氪核(9236Kr),并释放中子(10n),当达到某些条件时可发生链式反应,一个铀核(235 92U)裂变时,质量亏损为Δm ,已知光在真空中的传播速度为c ,以下说法正确的是( )A .235 92U 的裂变方程为235 92U→141 56Ba +9236Kr +210nB .235 92U 发生链式反应的条件与铀块的温度有关C .235 92U 发生链式反应的条件与铀块的体积有关D .一个铀核(235 92U)裂变时,放出的能量为ΔE =12Δmc 2 解析:选C 23592U 的裂变方程为235 92U +10n→141 56Ba +9236Kr +310n ,故A 错误;当铀块体积达到临界体积时才能使链式反应不断进行下去,与铀块的温度无关,B 错误,C 正确;根据爱因斯坦质能方程可知一个235 92U 裂变时,放出的能量为ΔE =Δmc 2,D 错误.14.(多选)一个静止的镭核(226 88Ra)发生α衰变,假设释放的能量全部转化为氡核(Rn)和α粒子的动能,已知镭核(Ra)、氡核(Rn)、α粒子的质量分别是226.025 4 u 、222.017 5 u 、4.002 6 u,1 u 相当于931 MeV.则下列说法正确的是( )A .镭核的衰变方程为226 88Ra→226 86Rn +42HeB .衰变后生成的氡核比原来的镭核少了4个中子C .衰变过程中释放的核能约为4.93 MeVD .衰变后氡核(Rn)与α粒子的速度之比为1∶43解析:选AC 根据质量数守恒和电荷数守恒可知,镭核的衰变方程为226 88Ra→226 86Rn +42He ,A 正确;氡核的质量数为222,电荷数为86,所以中子数为136,同理可得镭核的中子数为138,所以氡核的中子数比镭核的少2,B 错误;根据ΔE =Δmc 2,可以算出衰变过程中释放的核能约为4.93 MeV ,C 正确;衰变过程中动量守恒,根据动量守恒定律可知氡核与α粒子的动量大小相等,所以它们的速度与质量成反比,而不是与电荷数成反比,D 错误.二、非选择题15.(2017年北京卷)在磁感应强度为B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出α粒子(42He)在与磁场垂直的平面内做圆周运动,其轨道半径为R .以m 、q 分别表示α粒子的质量和电荷量.(1)放射性原子核用AZ X 表示,新核的元素符号用Y 表示,写出该α衰变的核反应方程;(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小;(3)设该衰变过程释放的核能都转化为α粒子和新核的动能,新核的质量为M ,求衰变过程的质量亏损Δm .解析:(1)α衰变的核反应方程为A Z X→A -4Z -2Y +42He.(2)α粒子在磁场中做圆周运动,洛伦兹力提供向心力 qv 1B =m v 21RT =2πR v 1解得 T =2πm qB由电流的定义式可得I =q T =q 2B 2πm. (3)衰变过程中由动量守恒定律可得 mv 1=Mv 2由能量守恒定律可知,释放的核能为ΔE =12mv 21+12Mv 22 由质能方程可得 ΔE =Δmc 2联立以上方程可解得 Δm =q 2B 2R 2M +m 2Mmc2. 答案:(1)AZ X→A -4Z -2Y +42He (2)2πm qB q 2B 2πm (3)q 2B 2R 2M +m 2Mmc2。
2020复习方案高考物理人教版一轮复习讲义:第十二章 第1讲 波粒二象性 含答案

第十二章近代物理初步第1讲波粒二象性考点1对光电效应现象的理解1.光电效应的研究思路(1)两条线索:(2)两条对应关系:光强大→光子数目多→发射光电子多→光电流大.光子频率高→光子能量大→光电子的最大初动能大.2.对光电效应规律的解释1.(多选)1905年是爱因斯坦的“奇迹”之年,这一年他先后发表了三篇具有划时代意义的论文,其中关于光量子的理论成功地解释了光电效应现象.关于光电效应,下列说法正确的是(AD)A.当入射光的频率低于极限频率时,不能发生光电效应B.光电子的最大初动能与入射光的频率成正比C.光电子的最大初动能与入射光的强度成正比D.某单色光照射一金属时不发生光电效应,改用波长较短的光照射该金属可能发生光电效应解析:根据光电效应现象的实验规律,只有入射光频率大于极限频率才能发生光电效应,故A、D正确.根据光电效应方程,最大初动能与入射光频率为线性关系,但非正比关系,B错误;根据光电效应现象的实验规律,光电子的最大初动能与入射光强度无关,C错误.2.(多选)在光电效应实验中,用同一种单色光先后照射锌板和银板的表面,都能发生光电效应现象.对于这两个过程,下列四个物理量中,一定不同的是(BD)A.单位时间内逸出的光电子数B.遏止电压C.饱和电流D.光电子的最大初动能解析:同一种单色光照射锌板和银板的表面都能发生光电效应,但锌和银的逸出功不等,根据光电效应方程,可知光电子的最大初动能不同,则遏止电压不同,故选B、D.3.(2019·湖北宜昌模拟)如图所示,是研究光电效应的电路图,对于某金属用绿光照射时,电流表指针发生偏转,则以下说法正确的是(D)A.将滑动变阻器滑动片向右移动,电流表的示数一定增大B.如果改用紫光照射该金属时,电流表无示数C.将光照强度增大时,电流表的示数减小D.将电源的正负极调换,仍用相同的绿光照射时,将滑动变阻器滑动片向右移动一些,电流表的读数可能不为零解析:本题考查光电效应,涉及光电流大小,明确在发生光电效应的前提下,光电流的大小与电路中的电压和入射光的强度均有关.滑动变阻器滑片向右移动,电压虽然增大,但已达到饱和电流,则电流表的示数可能不变,故A错误;如果改用紫光照射该金属时,因频率的增加,导致光电子最大初动能增加,则电流表增大,故B错误;只增加光照强度,从而增加了光子的个数,则产生的光电子数目增多,光电流增大,使通过电流表的电流增大,故C错误;电源的正负极调换,仍用相同的绿光照射时,将滑动变阻器滑片向右移动一些,此时的电压仍小于反向截止电压,则电流表仍可能有示数,故D正确.对光电效应的4点提醒(1)能否发生光电效应,不取决于光的强度而取决于光的频率.(2)光电效应中的“光”不是特指可见光,也包括不可见光.(3)逸出功的大小由金属本身决定,与入射光无关.(4)光电子不是光子,而是电子.考点2光电效应的规律1.深入理解三个关系(1)爱因斯坦光电效应方程E k=hν-W0.(2)光电子的最大初动能E k可以利用光电管用实验的方法测得,即E k =eU c,其中U c是遏止电压.(3)光电效应方程中的W0为逸出功,它与极限频率νc的关系是W0=hνc.2.三类图象考向1对光电效应方程的理解(2018·全国卷Ⅱ)用波长为300 nm的光照射锌板,电子逸出锌板表面的最大初动能为1.28×10-19 J.已知普朗克常量为6.63×10-34 J·s,真空中的光速为3.00×108 m·s-1.能使锌产生光电效应的单色光的最低频率约为()A.1×1014 Hz B.8×1014 HzC.2×1015 Hz D.8×1015 Hz[审题指导]能使金属产生光电效应的单色光的最低频率即恰好发生光电效应的条件:照射光的能量等于金属的逸出功.【解析】本题考查光电效应规律.由光电效应方程得E k=hcλ-W0,而能使锌产生光电效应的单色光的最低频率ν0应满足hν0=W0,联立得ν0=cλ-E kh=8×1014 Hz,故选项B正确.【答案】 B考向2对光电效应三类图象的理解(2019·山东济南一模)用如图甲所示的电路研究光电效应中光电流大小与照射光的强弱、频率等物理量的关系.图中A、K两极间的电压大小可调,电源的正负极也可以对调,分别用a、b、c三束单色光照射,调节AK间的电压U,得到光电流I与电压U的关系如图乙所示,由图可知()A.单色光a和c的频率相同,但a更弱些B.单色光a和b的频率相同,但a更强些C.单色光a的频率大于单色光c的频率D.单色光a的频率小于单色光b的频率【解析】a、c两光照射后遏止电压相同,知产生的光电子最大初动能相等,可知a、c两光的频率相等,光子能量相等,即频率相同,由于a 光的饱和电流较大,则a光的强度较大,故A、C错误;a光的遏止电压小于b光的遏止电压,所以产生的光电子最大初动能E k a<E k b,根据爱因斯坦光电效应方程E k=hν-W0可知,νa<νb,故B错误,D正确.【答案】 D1.(2019·山东青岛模拟)用如图甲所示的装置研究光电效应现象.闭合开关S,用频率为ν的光照射光电管时发生了光电效应.图乙是该光电管发生光电效应时光电子的最大初动能E k与入射光频率ν的关系图象,图线与横轴的交点坐标为(a,0),与纵轴的交点坐标为(0,-b),下列说法中正确的是(B)A.普朗克常量为h=a bB.断开开关S后,电流表的示数不为零C.仅增加照射光的强度,光电子的最大初动能将增大D.保持照射光强度不变,仅提高照射光频率,电流表的示数保持不变解析:根据E km=hν-W0得,纵轴截距的绝对值等于金属的逸出功,等于b,当最大初动能为零时,入射光的频率等于截止频率,所以金属的截止频率为ν0=a,普朗克常量为h=ba,故A错误.开关S断开后,因光电子有初动能,因此电流表G的示数不为零,故B正确.根据光电效应方程可知,最大初动能与入射光频率有关,与光的强度无关,故C错误.若保持照射光强度不变,仅提高照射光频率,则光子数目减少,电流表的示数减小,故D错误.2.小明用金属铷为阴极的光电管,观测光电效应现象,实验装置示意图如图甲所示.已知普朗克常量h=6.63×10-34 J·s.(1)图甲中电极A为光电管的阳极(选填“阴极”或“阳极”);(2)实验中测得铷的遏止电压U c与入射光频率ν之间的关系如图乙所示,则铷的截止频率νc=5.15×1014[(5.12~5.18)×1014均视为正确] Hz,逸出功W0=3.41×10-19[(3.39~3.43)×10-19均视为正确] J;(3)如果实验中入射光的频率ν=7.00×1014Hz,则产生的光电子的最大初动能E k=1.23×10-19[(1.21~1.25)×10-19均视为正确] J.解析:(1)在光电效应中,电子向A极运动,故电极A为光电管的阳极.(2)由题图可知,铷的截止频率νc为5.15×1014Hz,逸出功W0=hνc =6.63×10-34×5.15×1014 J≈3.41×10-19 J.(3)当入射光的频率为ν=7.00×1014Hz时,由E k=hν-hνc得,光电子的最大初动能为E k=6.63×10-34×(7.00-5.15)×1014 J≈1.23×10-19 J.光电效应中有关图象问题的解题方法(1)明确图象中纵坐标和横坐标所表示的物理量.(2)明确图象所表示的物理意义及所对应的函数关系,同时还要知道截距、交点等特殊点的意义.例如,①E km-ν图象,表示了光电子的最大初动能E km随入射光频率ν的变化曲线,图甲中横轴上的截距是阴极金属的极限频率,纵轴上的截距表示了阴极金属的逸出功负值,直线的斜率为普朗克常量,图象的函数式:E k =hν-W0.②光电效应中的I-U图象,是光电流强度I随两极板间电压U的变化曲线,图乙中的I m是饱和光电流,U c为遏止电压.考点3光的波粒二象性物质波1.对光的波粒二象性的理解2.对物质波的理解(1)与实物粒子相联系的波叫物质波,也叫德布罗意波,属于概率波;(2)实物粒子的能量E和动量p跟它所对应的波的频率ν和波长λ之间遵循的关系为:E=hν,p=h λ.1.(2019·浙江义乌模拟)(多选)波粒二象性是微观世界的基本特征,以下说法正确的有(AB)A.光电效应现象揭示了光的粒子性B.热中子束射到晶体上产生衍射图样说明中子具有波动性C.黑体辐射的实验规律可用光的波动性解释D.动能相等的质子和电子,它们的德布罗意波长也相等解析:光电效应现象揭示了光的粒子性,A正确;衍射是波特有的性质,故中子束射到晶体上产生衍射图样说明运动的中子具有波动性,B正确;黑体辐射的实验规律不能使用光的波动性解释,普朗克借助于能量子假说,完美地解释了黑体辐射规律,破除了“能量连续变化”的传统观念,C错误;根据德布罗意波长公式λ=hp可知,若一个电子和一个质子的德布罗意波长相等,则动量p也相等,但是质子质量比电子质量大,动能E k=p22m,可知两者动能不相等,D错误.2.(多选)物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减小入射光的强度,使光子只能一个一个地通过狭缝.实验结果表明,如果曝光时间不太长,底片上只能出现一些如图甲所示不规则的点子;如果曝光时间足够长,底片上就会出现如图丙所示规则的干涉条纹.对于这个实验结果的认识正确的是(ACD)A.单个光子的运动没有确定的轨道B.曝光时间不长时,光的能量太小,底片上的条纹看不清楚,故出现不规则的点子C.干涉条纹中明亮的部分是光子到达机会较多的地方D.大量光子的行为表现为波动性解析:由于光的传播不是连续的而是一份一份的,每一份就是一个光子,所以某次通过狭缝只有一个光子,当一个光子到达某一位置时该位置感光而留下痕迹,由于单个光子表现粒子性,即每一个光子所到达的区域是不确定的,但是大量光子表现出波动性,所以长时间曝光后最终形成了图丙中明暗相间的条纹,干涉条纹中明亮的部分是光子到达机会较多的地方,该实验说明了光具有波粒二象性,所以A、C、D项正确,B项错误.学习至此,请完成课时作业39。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全品复习方案高考物理一轮复习第12单元波粒二象性和原子物理课时作业(含解析)课时作业光电效应波粒二象性和原子物理时间/40分钟基础达标1.(多选)光电效应实验中,下列表述正确的是 ()A.光照时间越长,则光电流越大B.入射光足够强就可以有光电流C.遏止电压与入射光的频率有关D.入射光频率大于极限频率时一定能产生光电子2.(多选)已知某金属发生光电效应的截止频率为νc,则()A.当用频率为2νc的单色光照射该金属时,一定能产生光电子B.当用频率为2νc的单色光照射该金属时,所产生的光电子的最大初动能为hνcC.当照射光的频率ν大于νc时,若ν增大,则逸出功增大D.当照射光的频率ν大于νc时,若ν增大一倍,则光电子的最大初动能也增大一倍3.[2018·浙江温岭模拟]用电子做双缝干涉实验,如图K30-1所示的三幅图分别为100个、3000个、7000个左右的电子通过双缝后在胶片上出现的干涉图样.该实验表明()图K30-1A.电子具有波动性,不具有粒子性B.电子具有粒子性,不具有波动性C.电子既有波动性又有粒子性D.电子到达胶片上不同位置的概率相同图K30-24.(多选)用同一光电管研究a、b两种单色光产生的光电效应,得到光电流I与光电管两极间所加电压U的关系如图K30-2所示,则这两种光()A.照射该光电管时,a光使其逸出的光电子最大初动能大B.从同种玻璃射入空气发生全反射时,a光的临界角大C.通过同一装置发生双缝干涉时,a光的相邻条纹间距大D.通过同一玻璃三棱镜时,a光的偏折程度大5.(多选)已知钙和钾的截止频率分别为7.73×1014Hz和5.44×1014Hz,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钾逸出的光电子具有较大的()A.波长B.频率C.能量D.动量技能提升6.绿色植物在光合作用中,每放出1个氧分子要吸收8个波长为6.88×10-7m的光量子,而每放出1mol的氧气,同时植物储存469kJ的能量,则绿色植物能量转换效率为(普朗克常量h=6.63×10-34J·s) ()A.79%B.56%C.34%D.9%7.(多选)甲、乙两种金属发生光电效应时,光电子的最大初动能与入射光频率间的关系分别如图K30-3中的a、b所示.下列判断正确的是()图K30-3A.图线a与b不一定平行B.图线a与b的斜率是定值,与入射光和金属材料均无关系C.乙金属的极限频率大于甲金属的极限频率D.甲、乙两种金属发生光电效应时,若光电子的最大初动能相同,则甲金属的入射光频率大图K30-48.(多选)[2018·浙江嘉兴联考]如图K30-4所示为研究光电效应规律的实验电路,电源的两个电极分别与接线柱c、d连接.用一定频率的单色光b照射光电管阴极时,灵敏电流计G的指针会发生偏转,而用另一频率的单色光a照射时,灵敏电流计G的指针不偏转.下列说法正确的是()A.电源正极可能与c接线柱连接B.a光的频率一定大于b光的频率C.用a光照射光电管时,可能发生了光电效应D.若灵敏电流计的指针发生偏转,则电流方向一定是f→G→e图K30-59.(多选)[2018·河北衡水中学月考]图K30-5为研究光电效应的实验装置示意图,闭合开关,滑片P处于滑动变阻器中央位置,当一束单色光照到此装置的金属表面K时,电流表有示数.下列说法正确的是()A.若仅增大该单色光照射的强度,则光电子的最大初动能增大,电流表示数也增大B.无论增大照射光的频率还是增加照射光的强度,金属的逸出功都不变C.保持照射光的频率不变,当照射光的强度减弱时,发射光电子的时间将明显增加D.若滑动变阻器滑片左移,则电压表示数减小,电流表示数增大图K30-610.以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内只能吸收到一个光子而从金属表面逸出.强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在极短时间内吸收多个光子成为可能,从而形成多光子光电效应,这已被实验证实.光电效应实验装置示意图如图K30-6所示.用频率为ν的普通光源照射阴极K,没有发生光电效应,换用同样频率为ν的强激光照射阴极K,则发生了光电效应;此时,若加上反向电压U,即将阴极K接电源正极,阳极A接电源负极,在K、A之间就形成了使光电子减速的电场.逐渐增大U,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U可能是(其中W为逸出功,h为普朗克常量,e为电子电荷量) ()A.U=-B.U=-C.U=2hν-WD.U=-挑战自我11.用如图K30-7所示的光电管研究光电效应,用某种频率的单色光a照射光电管阴极K,电流计G 的指针发生偏转,而用另一频率的单色光b照射光电管阴极K时,电流计G的指针不发生偏转,那么()图K30-7A.a光的波长一定大于b光的波长B.增加b光的强度,可使电流计G的指针发生偏转C.用a光照射光电管阴极K时,通过电流计G的电流是由d到cD.只增加a光的强度,可使通过电流计G的电流增大图K30-812.(多选)研究光电效应规律的实验装置如图K30-8所示,以频率为ν的光照射光电管阴极K时,有光电子产生.由于光电管K、A间加的是反向电压,光电子从阴极K发射后将向阳极A做减速运动.光电流i由图中电流计G测出,反向电压U由电压表V测出.当电流计的示数恰好为零时,电压表的示数称为反向遏止电压U c,如图K30-9所示的光电效应实验规律的图像中正确的是 ()图K30-913.(多选)利用金属晶格(大小约10-10m)作为障碍物观察电子的衍射图样,方法是让电子束通过电场加速后,照射到金属晶格上,从而得到电子的衍射图样.已知电子质量为m,电荷量为e,初速度为0,加速电压为U,普朗克常量为h.下列说法中正确的是 ()A.该实验说明了电子具有波动性B.实验中电子束的德布罗意波长为λ=C.加速电压U越大,电子的衍射现象越明显D.若用相同动能的质子替代电子,衍射现象将更加明显14.用频率为ν的光照射光电管阴极时,产生的光电流随阳极与阴极间所加电压的变化规律如图K30-10所示,U c为遏止电压.已知电子电荷量为-e,普朗克常量为h,求:(1)光电子的最大初动能E k;(2)该光电管发生光电效应的极限频率νc.图K30-10课时作业(三十一)第31讲原子和原子核时间/40分钟基础达标1.在卢瑟福α粒子散射实验中,金箔中的原子核可以看作静止,如图K31-1所示的各图画出的是其中两个α粒子经历金箔散射过程的径迹,其中正确的是 ()图K31-12.[2018·浙江温州模拟]某核电站遭受严重破坏,产生了严重的核泄漏,从核电站周围一定范围内的空气中和核电站排出的废水中分别检测出了放射性物质碘131和钚239,严重危及了人们的生命安全.已知该核电站采用的是重水反应堆,用U(铀)吸收中子后生成Pu(钚),碘131的半衰期为8天,下列说法正确的是()A.排出的废水中的钚239是铀核裂变的生成物B.若U吸收中子后变成U U很不稳定,则经过2次β衰变后变成PuC.核电站的核废料可直接堆放在露天垃圾场D.碘131的半衰期只有8天,因此16天后会全部消失3.四个核反应方程分别为:U n SrXe+1n;U ThHe;Li n He H+4.9MeV;H H Hen+17.6MeV.下列说法正确的是 ()A.①、②是重核铀的同位素的核反应,故都是重核的裂变反应B.①、③反应前都有一个中子,故都是原子核的人工转变C.②、③、④生成物中都有氦核,故都是α衰变反应D.③比④放出的能量少,说明③比④的质量亏损得少4.[2018·浙江慈溪模拟]图K31-2为1934年约里奥·居里夫妇用α粒子轰击铝箔时的实验示意图,他们除了探测到预料中的中子外,还发现拿走α粒子放射源以后,铝箔仍继续发射出一种神奇的粒子.下列说法正确的是 ()图K31-2A.α粒子轰击铝箔的核反应方程为Al He→P HB.轰击铝箔后的生成物是磷P),它的衰变方程为P Si e+γC.拿走α粒子放射源以后,铝箔继续发射出的神奇粒子实际上是中子D.磷P)也具有放射性,只是它不像天然放射性元素那样有一定的半衰期5.(多选)如图K31-3所示是氢原子光谱的两条谱线,图中给出了谱线对应的波长及氢原子的能级图,已知普朗克常量h=6.63×10-34J·s,则()图K31-3A.Hα谱线对应光子的能量小于Hβ谱线对应光子的能量B.若两种谱线对应光子都能使某种金属发生光电效应,则Hα谱线对应光子照射到该金属表面时,形成的光电流较小C.Hα谱线对应光子的能量为1.89eVD.Hα谱线对应的光子是氢原子从n=4能级跃迁到n=3能级发出的6.(多选)钍Th)具有放射性,它能放出一个新的粒子而变为镤Pa),同时伴随有γ射线产生,其方程为Th→Pa+x,钍的半衰期为24天.下列说法正确的是()A.x为质子B.x是钍核中的一个中子转化成一个质子时产生的C.γ射线是镤核从高能级向低能级跃迁时辐射出来的D.1g钍Th)经过120天后还剩0.2g钍技能提升图K31-47.(多选)图K31-4为氢原子的能级图.现有大量处于n=3激发态的氢原子向低能级跃迁.下列说法正确的是()A.这些氢原子总共可辐射出6种不同频率的光B.氢原子由n=3能级跃迁到n=1能级产生的光照射逸出功为6.34eV的金属铂能发生光电效应C.氢原子由n=3能级跃迁到n=2能级产生的光波长最长D.这些氢原子跃迁时辐射出光子能量的最大值为10.2eV图K31-58.图K31-5为氢原子的能级示意图.现有大量的氢原子处于n=4的激发态,当原子向低能级跃迁时辐射出若干不同频率的光.关于这些光,下列说法正确的是()A.最容易发生明显衍射现象的光是由n=4能级跃迁到n=1能级产生的B.频率最小的光是由n=2能级跃迁到n=1能级产生的C.这些氢原子总共可辐射出3种不同频率的光D.用n=2能级跃迁到n=1能级辐射出的光去照射逸出功为6.34eV的金属铂能发生光电效应9.[2018·浙江缙云模拟]某静止的原子核发生核反应且放出能量Q,其方程为X YZ,假设释放的能量全都转化为新核Y和Z的动能,其中Z的速度为v,以下结论正确的是()A.Y原子核的速度大小为vB.Y原子核的动能与Z原子核的动能之比为D∶FC.Y原子核和Z原子核的质量之和比X原子核的质量大(c为光速)D.Y和Z的结合能之和一定大于X的结合能图K31-610.匀强磁场中有一个原来静止的碳14原子核,它衰变时放射出的粒子与反冲核的径迹是两个内切的圆,两圆的直径之比为7∶1,如图K31-6所示,那么碳14的衰变方程为()A. C e BB. C He BeC. C H BD. C e N图K31-711.(多选)如图K31-7所示为静止的原子核在磁场中发生衰变后的轨迹,衰变后两带电粒子a、b 的半径之比为45∶1,两带电粒子a、b回旋运动的动能之比为117∶2.下列说法正确的是()A.此衰变为α衰变B.小圆为α粒子的运动轨迹C.两带电粒子a、b的回旋周期之比为13∶10D.衰变方程为U→Th He图K31-812.U的衰变有多种途径,其中一种途径是先衰变成为Bi,然后可以经一次衰变成为X(X代表某种元素),也可以经一次衰变成为Ti,最后都变成Pb,衰变路径如图K31-8所示,下列说法中正确的是 ()A.过程①是β衰变,过程③是α衰变;过程②是β衰变,过程④是α衰变B.过程①是β衰变,过程③是α衰变;过程②是α衰变,过程④是β衰变C.过程①是α衰变,过程③是β衰变;过程②是β衰变,过程④是α衰变D.过程①是α衰变,过程③是β衰变;过程②是α衰变,过程④是β衰变13.(多选)现有两动能均为E0=0.35MeV的H在一条直线上相向运动,两个H发生对撞后能发生核反应,得到He和新粒子,且在核反应过程中释放的能量完全转化为He和新粒子的动能.已知H的质量为2.0141u He的质量为3.0160u,新粒子的质量为1.0087u,核反应时质量亏损1u释放的核能约为931MeV(如果涉及计算,结果保留整数).下列说法正确的是()A.核反应方程为H H He HB.核反应前后不满足能量守恒定律C.新粒子的动能约为3MeVD. He的动能约为1MeV挑战自我14.(多选)小宇同学参加学校科技嘉年华,设计了一个光电烟雾探测器,如图K31-9所示,S为光源,发出一束光,当有烟雾进入探测器时,来自S的光会被烟雾散射进入光电管C,当光射到光电管中的钠表面(钠的极限频率为6.00×1014Hz)时,会产生光电子,当光电流大于10-8A时,便会触发报警系统报警.下列说法正确的是 ()图K31-9A.要使该探测器正常工作,光源S发出的光波波长不能小于0.5μmB.若光源S发出的光波能使光电管发生光电效应,那么光源越强,光电烟雾探测器灵敏度越高C.光束遇到烟雾发生散射是一种折射现象D.若5%射向光电管C的光子会发生光电效应,当报警器报警时,每秒射向C中的光子最少数目是1.25×1012个15.用速度大小为v的中子轰击静止的锂核Li),发生核反应后生成氚核和α粒子.生成的氚核速度方向与中子的速度方向相反,氚核与α粒子的速度大小之比为7∶8,已知中子的质量为m,质子的质量可近似看作m,光速为c.(1)写出核反应方程;(2)求氚核和α粒子的速度大小;(3)若核反应过程中放出的核能全部转化为α粒子和氚核的动能,求质量亏损.课时作业(三十)1.CD[解析] 光电流的大小只与单位时间流过单位面积的光电子数目有关,而与光照时间的长短无关,选项A错误;无论光照强度多大,光照时间多长,只要光的频率小于极限频率就不能产生光电效应,故选项B错误;遏止电压即反向截止电压,eU c=hν-W0,与入射光的频率有关,超过极限频率的入射光频率越高,所产生的光电子的最大初动能就越大,则遏止电压越大,故选项C正确;无论光照强度多小,光照时间多短,只要光的频率大于极限频率就能产生光电效应,故选项D正确.2.AB[解析] 该金属的截止频率为νc,则可知逸出功W0=hνc,逸出功由金属自身的性质决定,与照射光的频率无关,C错误;根据光电效应的实验规律可知A正确;由光电效应方程E k=hν-W0,将W0=hνc代入,可知B正确,D错误.3.C[解析] 实验表明少量电子表现为粒子性,大量电子表现为波动性,该实验表明电子既有波动性又有粒子性,故C正确.4.BC[解析] 由图像可知,b光照射时对应遏止电压U c2大于a光照射时的遏止电压U c1,因eU c=E k,所以b光照射时光电子最大初动能大,且νb>νa,λb<λa,A错误,C正确;b光折射率大于a光折射率,所以a光偏折程度小,临界角大,B正确,D错误.5.BCD[解析] 根据爱因斯坦光电效应方程得E k=hν-W0,又W0=hνc,联立得E k=hν-hνc,由于钙的截止频率比钾的截止频率大,则从钾表面逸出的光电子最大初动能较大,由p=可知,钾逸出的光电子的动量较大,根据λ=可知,钾逸出的光电子的波长较小,则频率较大,故A错误,B、C、D正确.6.C[解析] 根据“每放出一个氧分子需吸收8个波长为6.88×10-7 m的光量子”,则绿色植物释放 1 mol氧气吸收的光量子数目为N=1×6.02×1023×8=4.8×1024,那么消耗的光量子能量W== J≈1.4×103 kJ,因此,绿色植物能量转换效率为η=×100%=34%,C正确.7.BC[解析] 根据光电效应方程E k=hν-W0=hν-hνc知,图线的斜率表示普朗克常量,因此甲与乙一定平行,且两斜率是固定值,与入射光和金属材料皆无关系,故A错误,B正确;横轴截距表示最大初动能为零时的入射光频率,此时的频率等于金属的极限频率,由图可知乙金属的极限频率大于甲金属的极限频率,故C正确;纵轴截距的绝对值就是逸出功的数值,乙金属的逸出功大于甲金属的逸出功,由光电效应方程E k=hν-W0知,发生光电效应时,若光电子的最大初动能相同,则甲金属的入射光频率小,故D错误.8.AC[解析] 由于电源的接法未知,所以有两种情况:当c接负极而d接正极时,用某种频率的单色光b照射光电管阴极K,电流计G的指针发生偏转,可知b光频率大于金属的极限频率,而用另一频率的单色光a照射光电管阴极K时,电流计G的指针不发生偏转,可知a光的频率小于金属的极限频率,所以b光的频率大于a光的频率;当c接正极而d接负极时,用某种频率的单色光b照射光电管阴极K,电流计G的指针发生偏转,可知b光照射产生的光电子能到达负极d端,而用另一频率的单色光a照射光电管阴极K时,电流计G的指针不发生偏转,可知a光产生的光电子不能到达负极d端,所以b光照射产生的光电子的最大初动能大,b光的频率大于a光的频率,故A、C正确.由以上的分析可知,不能判断出用a光照射光电管时能否发生光电效应,但b光的频率一定大于a 光的频率,故B错误.电流的方向与负电荷定向移动的方向相反,若灵敏电流计的指针发生偏转,则电流方向一定是e→G→f,故D错误.9.BD[解析] 若仅增大该单色光照射的强度,由于每个光子的能量不变,因此光电子的最大初动能不变,但单位时间内射出的光电子数增多,所以光电流增大,故选项A错误;逸出功由金属材料自身决定,与是否有光照无关,故B正确;发生光电效应不需要时间积累,只要照射光的频率大于极限频率即可,故选项C错误;若滑动变阻器滑片左移,则电压表示数减小,因为电压是反向电压,所以电压减小时,光电子更容易到达A极形成电流,电流表示数增大,故选项D正确.10.B[解析] 以从阴极K逸出的且具有最大初动能的光电子为研究对象,由动能定理得-Ue=0-E k,由光电效应方程得nhν=E k+W(n=2,3,4,…),联立解得U=-(n=2,3,4,…),故选项B正确. 11.D[解析] 由题意可知νa>νb,a光的波长小于b光的波长,A错误;发生光电效应的条件是ν>νc,增加b光的强度不能使电流计G的指针发生偏转,B错误;发生光电效应时,电子从光电管左端运动到右端,而电流的方向与电子定向移动的方向相反,所以流过电流计G的电流方向是由c 到d,C错误;增加a光的强度可使通过电流计G的电流增大,D正确.12.ACD[解析] 当反向电压U与入射光频率ν一定时,光电流i与光强成正比,A正确;频率为ν的入射光照射阴极所发射出的光电子的最大初动能为E k=hν-W0,而遏止电压U c与最大初动能的关系为eU c=E k,所以遏止电压U c与入射光频率ν的关系是eU c=hν-W0,其函数图像不过原点,B错误;当光强与入射光频率一定时,单位时间内单位面积上逸出的光电子数及其最大初动能是一定的,所形成的光电流强度会随反向电压的增大而减少,C正确;根据光电效应的瞬时性规律,D正确.13.AB[解析] 能得到电子的衍射图样,说明电子具有波动性,A正确;由德布罗意波长公式λ=及动量p==,可得λ=,B正确;由λ=可知,加速电压越大,电子的波长越小,衍射现象就越不明显,C错误;用相同动能的质子替代电子,质子的波长更小,衍射现象与电子相比更不明显,故D错误.14.(1)eU c(2)ν-[解析] (1)光电子在光电管内减速,由动能定理得-eU c=-E k光电子的最大初动能E k=eU c.(2)由光电效应方程得E k=hν-W其中逸出功W=hνc解得νc=ν-.课时作业(三十一)1.C[解析] 金箔中的原子核与α粒子都带正电,α粒子接近原子核过程中受到斥力而不是引力作用,A、D错误;由原子核对α粒子的斥力作用及物体做曲线运动的条件知,曲线轨迹的凹侧应指向α粒子所受力的方向,B错误,C正确.2.B[解析] 裂变是重核生成几个中等质量原子核的过程,铀238的质量数比钚239的小,因此钚不是铀核裂变的生成物,选项A错误;发生β衰变时,质量数不发生改变,根据电荷数守恒可知U发生2次β衰变后变成Pu,选项B正确;核电站的核废料中具有很多的放射性物质,不可以直接堆在露天垃圾场,选项C错误;碘131的半衰期是8天,它是一个统计规律,大量的碘131在8天后会剩一半,16天后会剩四分之一,选项D错误.3.D[解析] ①是重核的裂变反应,②是α衰变反应,选项A错误;③是原子核的人工转变,④是轻核的聚变反应,选项B、C错误;③比④放出的能量少,根据爱因斯坦质能方程可知,③比④质量亏损得少,故选项D正确.4.B[解析] α粒子轰击铝箔的核反应方程为Al He P n,轰击铝箔后的生成物是磷P),是磷的一种同位素,它具有放射性,跟天然放射性元素一样发生衰变,也有一定的半衰期,衰变时放出正电子,衰变方程为P Si e+γ,故B正确,A、C、D错误.5.AC[解析] Hα波长大于Hβ波长,故Hα频率较小,Hα谱线对应光子的能量小于Hβ谱线对应光子的能量,选项A正确;光电流与光的强度有关,故选项B错误;Hα谱线对应光子的能量为E=h=3.03×10-19 J=1.89 eV,选项C正确;E4-E3=0.66 eV,选项D错误.6.BC[解析] 根据电荷数守恒和质量数守恒知,钍核衰变过程中放出了一个电子,即x为电子,故A错误;β衰变时释放的电子是由核内一个中子转化成一个质子时产生的,故B正确;原子核衰变产生的γ射线是反应生成的镤核从高能级向低能级跃迁辐射出的,故C正确;钍的半衰期为24天,1 g钍Th)经过120天后,即经过5个半衰期后,还剩0.031 25 g,故D错误.7.BC[解析] 根据=3知,这些氢原子可能辐射出三种不同频率的光子,故A错误.氢原子由n=3能级向n=1能级跃迁时辐射的光子能量最大,频率最大,最大能量为13.6 eV-1.51 eV=12.09 eV,由光电效应条件可知,能使逸出功为6.34 eV的金属铂发生光电效应,故B正确.氢原子由n=3能级跃迁到n=2能级辐射的光子能量最小,则产生的光波长最长,故C正确.氢原子由n=3能级跃迁到n=1能级,辐射的光子能量值最大,为12.09 eV,故D错误.8.D[解析] 由n=4能级跃迁到n=3能级产生的光,能量最小,波长最长,因此最容易发生明显衍射现象,故A错误;由能级差可知能量最小的光频率最小,是由n=4能级跃迁到n=3能级产生的,故B错误;大量处于n=4能级的氢原子能发射=6种频率的光,故C错误;由n=2能级跃迁到n=1能级辐射出的光的能量为ΔE=-3.4 eV-(-13.6) eV=10.2 eV,大于6.34 eV,能使该金属发生光电效应,故D正确.9.D[解析] 由动量守恒定律得0=Dv'-Fv,所以v'=v,故A错误;Y原子核的动能E kY=v2,Z原子核的动能E kZ=Fv2,它们的动能之比为F∶D,故B错误;因为放出能量,有质量亏损,所以Y原子核和Z原子核的质量之和比X原子核的质量小,结合能之和比X的大,故C错误,D正确.10.D[解析] 原子核的衰变过程满足动量守恒,粒子与反冲核的速度方向相反,根据左手定则可判断,粒子与反冲核的电性相反,则粒子带负电,所以该衰变是β衰变,两带电粒子动量大小相等,方向相反,有m1v1=m2v2,带电粒子在匀强磁场中做圆周运动,有r=,则r与q成反比,由题意知,大圆与小圆的直径之比为7∶1,半径之比为7∶1,则粒子与反冲核的电荷量之比为1∶7,所以反冲核的电荷量为7e,电荷数是7,其符号为N,碳14的衰变方程为C e N,故D正确.11.AD[解析] 放射性元素放出α粒子时,α粒子与反冲核的速度相反,而电性相同,则两个粒子受到的洛伦兹力方向相反,两个粒子的轨迹应为外切圆,故此衰变为α衰变,故A正确;根据动量守恒定律可知,两粒子动量大小相等,电荷量越大的粒子运动半径越小,故大圆为α粒子的运动轨迹,小圆为新核的运动轨迹,故B错误;带电粒子在磁场中运动,运动半径R==,则===,又p=,可得===,根据T=,可得周期之比==,故C错误;新核Z'=90,A'=234,根据电荷数守恒和质量数守恒可知衰变前Z=92,A=238,所以衰变方程为U Th He,故D正确.12.B[解析] Bi经过①变为X,质量数没有发生变化,故①为β衰变X经过③变为Pb,质量数减少4,故③为α衰变Bi经过②变化为Ti,电荷数减少2,故②为α衰变,过程④的电荷数增加1,为β衰变,故B正确.13.CD[解析] 由核反应过程中的质量数守恒和电荷数守恒可知核反应方程为H H He n,则新粒子为中子n,A错误;核反应过程中有质量亏损,释放能量,仍然满足能量守恒定律,B错误;由题意可知ΔE=(2.014 1 u×2-3.016 0 u-1.008 7 u)×931 MeV/u=3.3 MeV,根据核反应中系统的能量守恒有E kHe+E kn=2E0+ΔE,根据核反应中系统的动量守恒有p He-p n=0,由E k=,可知=,解得E kHe=(2E0+ΔE)≈1 MeV,E kn=(2E0+ΔE)≈3 MeV,C、D正确.14.BD[解析] 根据E k=hν-W0=-hνc,光源S发出的光波最大波长λmax==m=5×10-7m=0.5 μm,即要使该探测器正常工作,光源S发出的光波波长不能大于0.5 μm,故A错误;光源S发出的光波能使光电管发生光电效应,那么光源越强,被烟雾散射进入光电管C的光越多,越容易探测到烟雾,即光电烟雾探测器灵敏度越高,故B正确;光束遇到烟雾发生散射是一种反。