平行关系小题练习(2015年)
2015届高考数学(理)二轮专题配套练习:专题5_第2讲_空间中的平行与垂直(含答案)

第2讲 空间中的平行与垂直考情解读 1.以选择、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.1.线面平行与垂直的判定定理、性质定理2提醒 3.平行关系及垂直关系的转化热点一 空间线面位置关系的判定例1 (1)设a ,b 表示直线,α,β,γ表示不同的平面,则下列命题中正确的是()A .若a ⊥α且a ⊥b ,则b ∥αB .若γ⊥α且γ⊥β,则α∥βC .若a ∥α且a ∥β,则α∥βD .若γ∥α且γ∥β,则α∥β(2)平面α∥平面β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α思维启迪 判断空间线面关系的基本思路:利用定理或结论;借助实物模型作出肯定或否定.思维升华 解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.设m 、n 是不同的直线,α、β是不同的平面,有以下四个命题:①若α⊥β,m ∥α,则m ⊥β ②若m ⊥α,n ⊥α,则m ∥n③若m ⊥α,m ⊥n ,则n ∥α ④若n ⊥α,n ⊥β,则β∥α 其中真命题的序号为( )A .①③B .②③C .①④D .②④热点二 平行、垂直关系的证明例2 如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E 和F 分别是CD 和PC 的中点,求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ; (3)平面BEF ⊥平面PCD .思维启迪 (1)利用平面P AD ⊥底面ABCD 的性质,得线面垂直;(2)BE ∥AD 易证;(3)EF 是△CPD 的中位线. 思维升华 垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.如图所示,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点. 求证:(1)AF ∥平面BCE ; (2)平面BCE ⊥平面CDE .热点三 图形的折叠问题例3 如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?请说明理由.思维启迪 折叠问题要注意在折叠过程中,哪些量变化了,哪些量没有变化.第(1)问证明线面平行,可以证明DE ∥BC ;第(2)问证明线线垂直转化为证明线面垂直,即证明A 1F ⊥平面BCDE ;第(3)问取A 1B 的中点Q ,再证明A 1C ⊥平面DEQ .思维升华 (1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,折线同一侧线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.如图(1),已知梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =2AD =4,E ,F 分别是AB ,CD上的点,EF ∥BC ,AE =x .沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF (如图(2)所示),G 是BC 的中点.(1)当x =2时,求证:BD ⊥EG ;(2)当x 变化时,求三棱锥D -BCF 的体积f (x )的函数式.1.证明线线平行的常用方法(1)利用平行公理,即证明两直线同时和第三条直线平行; (2)利用平行四边形进行转换; (3)利用三角形中位线定理证明;(4)利用线面平行、面面平行的性质定理证明. 2.证明线面平行的常用方法(1)利用线面平行的判定定理,把证明线面平行转化为证线线平行; (2)利用面面平行的性质定理,把证明线面平行转化为证面面平行. 3.证明面面平行的方法证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行. 4.证明线线垂直的常用方法(1)利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直; (2)利用勾股定理逆定理;(3)利用线面垂直的性质,即要证线线垂直,只需证明一线垂直于另一线所在平面即可. 5.证明线面垂直的常用方法(1)利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直; (2)利用面面垂直的性质定理,把证明线面垂直转化为证面面垂直;(3)利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面. 6.证明面面垂直的方法证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决.真题感悟1.(2014·辽宁)已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊥α,n ⊂α,则m ⊥n C .若m ⊥α,m ⊥n ,则n ∥α D .若m ∥α,m ⊥n ,则n ⊥α2.(2014·辽宁)如图,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F ,G 分别为AC ,DC ,AD 的中点. (1)求证:EF ⊥平面BCG ; (2)求三棱锥D -BCG 的体积.附:锥体的体积公式V =13Sh ,其中S 为底面面积,h 为高.押题精练1.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线P A 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题: ①P A ∥平面MOB ;②MO ∥平面P AC ; ③OC ⊥平面P AC ;④平面P AC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号).2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点. (1)证明:平面ADC 1B 1⊥平面A 1BE ;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?并证明你的结论.(推荐时间:60分钟)一、选择题1.(2014·广东)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定2.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( )A .α⊥β,且m ⊂αB .m ∥n ,且n ⊥βC .α⊥β,且m ∥αD .m ⊥n ,且n ∥β3.ABCD -A 1B 1C 1D 1为正方体,下列结论错误的是( ) A .BD ∥平面CB 1D 1B .A 1C ⊥BD C .AC 1⊥平面CB 1D 1 D .AC 1⊥BD 14.如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ADB 沿BD折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD .则在三棱锥A -BCD 中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC 5.直线m ,n 均不在平面α,β内,给出下列命题:①若m ∥n ,n ∥α,则m ∥α;②若m ∥β,α∥β,则m ∥α;③若m ⊥n ,n ⊥α,则m ∥α; ④若m ⊥β,α⊥β,则m ∥α.其中正确命题的个数是( ) A .1 B .2 C .3 D .46.在正三棱锥S -ABC 中,M ,N 分别是SC ,BC 的中点,且MN ⊥AM ,若侧棱SA =23,则正三棱锥S -ABC 外接球的表面积是( ) A .12π B .32π C .36π D .48π 二、填空题7.已知两条不同的直线m ,n 和两个不同的平面α,β,给出下列四个命题:①若m ∥α,n ∥β,且α∥β,则m ∥n ;②若m ∥α,n ⊥β,且α⊥β,则m ∥n ;③若m ⊥α,n ∥β,且α∥β,则m ⊥n ;④若m ⊥α,n ⊥β,且α⊥β,则m ⊥n .其中正确的个数为_________________.8.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是________(写出所有符合要求的图形序号).9.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC 为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .10.如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC (不含端点)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.三、解答题11.如图所示,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,点D 是AB 的中点, (1)求证:AC ⊥BC 1; (2)求证:AC 1∥平面CDB 1.12.如图所示,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,D ,E 分别为A 1B 1,AA 1的中点,点F 在棱AB 上,且AF =14AB .(1)求证:EF ∥平面BC 1D ;(2)在棱AC 上是否存在一个点G ,使得平面EFG 将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G 的位置;若不存在,请说明理由.13.如图,在平行四边形ABCD 中,AB =2BC =4,∠ABC =120°,E ,M 分别为AB ,DE 的中点,将△ADE 沿直线DE 翻折成△A ′DE ,F 为A ′C 的中点,A ′C =4. (1)求证:平面A ′DE ⊥平面BCD ; (2)求证:FB ∥平面A ′DE .例1 (1)D (2)D 变式训练 D 答案 B 答案 ②④DBDDDC 7.2 8.①③ 9.a 或2a 10.⎝⎛⎭⎫12,111.证明 (1)直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5, ∴AB 2=AC 2+BC 2, ∴AC ⊥BC .CC 1⊥平面ABC , AC ⊂平面ABC ,∴AC ⊥CC 1,又BC ∩CC 1=C , ∴AC ⊥平面BCC 1B 1, BC 1⊂平面BCC 1B 1, ∴AC ⊥BC 1.(2)设CB 1与C 1B 的交点为E ,连接DE , ∵D 是AB 的中点,E 是C 1B 的中点, ∴DE ∥AC 1,∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1, ∴AC 1∥平面CDB 1.12.(1)证明 取AB 的中点M ,连接A 1M . 因为AF =14AB ,所以F 为AM 的中点.又E 为AA 1的中点,所以EF ∥A 1M .在三棱柱ABC -A 1B 1C 1中,D ,M 分别是A 1B 1,AB 的中点, 所以A 1D ∥BM ,A 1D =BM ,所以四边形A 1DBM 为平行四边形,所以A 1M ∥BD . 所以EF ∥BD .因为BD ⊂平面BC 1D ,EF ⊄平面BC 1D , 所以EF ∥平面BC 1D .(2)解 设AC 上存在一点G ,使得平面EFG 将三棱柱分割成两部分的体积之比为1∶15,如图所示.则V E -AFG ∶VABC -A 1B 1C 1=1∶16, 所以V E -AFGVABC -A 1B 1C 1=13×12AF ·AG sin ∠GAF ·AE 12×AB ·AC sin ∠CAB ·AA 1=13×14×12×AG AC =124×AG AC , 由题意,124×AG AC =116,解得AG AC =2416=32.所以AG =32AC >AC ,所以符合要求的点G 不存在.13.证明 (1)由题意,得△A ′DE 是△ADE 沿DE 翻折而成的, ∴△A ′DE ≌△ADE .∵∠ABC =120°,四边形ABCD 是平行四边形, ∴∠A =60°. 又∵AD =AE =2,∴△A ′DE 和△ADE 都是等边三角形. 如图,连接A ′M ,MC , ∵M 是DE 的中点, ∴A ′M ⊥DE ,A ′M = 3.在△DMC 中,MC 2=DC 2+DM 2-2DC ·DM cos 60° =42+12-2×4×1×cos 60°, ∴MC =13.在△A ′MC 中,A ′M 2+MC 2=(3)2+(13)2=42=A ′C 2. ∴△A ′MC 是直角三角形,∴A ′M ⊥MC . 又∵A ′M ⊥DE ,MC ∩DE =M , ∴A ′M ⊥平面BCD . 又∵A ′M ⊂平面A ′DE , ∴平面A ′DE ⊥平面BCD . (2)取DC 的中点N ,连接FN ,NB .∵A ′C =DC =4,F ,N 分别是A ′C ,DC 的中点, ∴FN ∥A ′D .又∵N ,E 分别是平行四边形ABCD 的边DC , AB 的中点, ∴BN ∥DE .又∵A ′D ∩DE =D ,FN ∩NB =N , ∴平面A ′DE ∥平面FNB . ∵FB ⊂平面FNB , ∴FB ∥平面A ′DE .。
平行与相交专项练习30题(有答案)ok

平行与相交专项练习30题(有答案)ok平行与相交专项练30题(有答案)1.下列对于线的描述,说法正确的是()A.不相交的两条直线是平行线B.两条直线相交成直角时,这两条直线互相垂直C.过直线外一点,能画无数条平行线D.有一条直线长6分米2.从直线外一点画已知直线的平行线,可以画()条.A.1B.2C.无数3.下面的图形中,()只有2组平行线.A.B.C.D.4.如果在同一平面内画两条直线,它们都和第三条直线相交成直角,那么这两条直线(A.互相垂直B.互相平行C.不垂直也不平行5.下列各句话中有()句是错误的.(1)两条直线相交,这两条直线互相垂直.(2)两条直线的交点,叫做这两条直线的垂足.(3)平行线之间的线段到处相等.(4)两条直线都与另一条直线相交,这两条直线一定平行.A.1B.2C.3D.46.在同一平面内,若把两根小棒都摆成和第三根小棒垂直,那么这两根小棒()A.相互平行B.相互垂直C.相交7.同一平面内的两条直线最多有()个交点.A.B.1C.28.一张长方形纸对折两次后展开,折痕()A.相互平行B.相互垂直C.可能相互垂直,也可能相互平行9.在两条平行线之间画垂直线段,第一条长7厘米,第二条长()A.大于7厘米B.小于7厘米C.等于7厘米10.关于平行线的说法正确的是()A.不相交的两条线段B.不相交的两条直线C.在同一平面内,不相交的两条直线11.直线a、b、c在同一平面里,a与b相互垂直,b与c 相互垂直,那么a与c相互(A..垂直B.平行C.平行或垂直12.有两条直线都与同一条直线平行,则这两条直线一定()平行与相交----1))A.相互垂直B.相互平行C.相交13.在同一个平面上垂直于同一条直线的两条直线一定()A.互相垂直B.互相平行C.两种都有可能D.A、B两种都不可能.14.在同一平面内,两条直线可能_________,也可能_________,互相垂直是一种特殊的_________.15.指出左图形中各有几组互相平行的线段,并写在括号里,(_________).16.在同一平面内不相交的两条直线叫做_________,也可以说这两条直_________.在同一平面内的两条直线的位置关系有_________、_________两种情况.17.语文课本的封面,相对的两条边是相互_________的,相邻的两条边是相互_________的.18.点到直线的所有线段中,_________最短.19.平行线之间的垂直线段不但相互_________,并且长度_________.20.在同一平面内,两条不重合的直线的位置干系有_________、_________.21.上面有一排字母:TEFNKHXZ有互相垂直线段的字母是_________;有互相平行线段的字母是_________;既有互相垂直,又有互相平行的线段的字母是_________.22.如图,能找到_________组相互垂直的线段.23.两条直线不相交,就说这两条直线相互平行._________.24.图中有几组相互垂直的线段?_________组.25.当两条直线相交成直角时,这两条直线相互平行._________.26.在一张纸上画若干条直线后发现,凡是不平行的,就一定会相交._________.平行与相交----227.在同一平面内,两条直线的位置干系可分红哪两类?相交或垂直_________相交或平行_________平行或垂直_________.28.过直线外一点只能画一条直线的垂线._________.29.小猪要过河,它走下面的哪条路最近?这条路有什么特点?30.点A是大象的家,XXX表示河.大象要去河岸边饮水,请设想一条使大象饮水近来的线路图.平行与相交----3参考答案:1.A、不相交的两条直线是平行线,说法错误,前提是:在同一平面内;B、根据互相垂直的含义:两条直线相交成直角时,这两条直线互相垂直,说法正确;C、过直线外一点,能画无数条平行线,说法错误,应为一条平行线;D、因为直线无限长,所以有一条直线长6分米,说法错误;故选:B.2.按照平行的性质得:过直线外一点画直线的平行线,可以画一条直线与直线平行,应选:A.3.A、是正六边形,有3组平行线;B、没有平行线;C、有2组平行线;D、是正八边形,有4组平行线;故选:C.4.如图:在同一平面内,p⊥d,k⊥d,所以XXX,故选:B.5.(1)两条直线相交,这两条直线互相垂直,说法错误,应为:两条直线相交成直角时,这两条直线就互相垂直;(2)两条直线的交点,叫做这两条直线的垂足,说法错误;因为两条直线相交成直角,这两条直线就互相垂直,交点叫做垂足;(3)平行线之间的线段处处相等,说法错误,应为:平行线之间的距离处处相等;(4)根据垂直的性质可知:两条直线都与另一条直线相交,这两条直线一定平行,说法错误,前提必须在同一个平面内;故选:D.6.如图所示,,a和b都垂直于c,则a和b平行;应选:A.7.同一平面内的两条直线最多有1个交点.应选:B.8.由阐发可知:把一张长方形的纸对折两次后,折痕的干系是可能相互平行,也可能相互垂直;应选:C.9.由阐发可知:两条平行线中可以画无数条垂线段,这些线段的长度都相等,所以在两条平行线之间画垂直线段,第一条长7厘米,第二条也长7厘米;应选:C.10.因为在同一平面内,两条不相交的直线是平行线,故A、B错误;应选:C.11.由垂直和平行的特征和性质可知:直线a、b、c在同一平面里,a与b相互垂直,b与c相互垂直,那么a与c互相平行;故选:B.12.根据平行的性质可得:有两条直线都与同一条直线平行,则这两条直线一定互相平行;故选:B13.由垂直的性质可得:在同一个平面内垂直于同一条直线的两条直线一定互相平行;故选:B.14.在同一平面内,两条直线可能相交,也可能平行,互相垂直是一种特殊的相交.15.指出左图形中各有几组互相平行的线段,并写在括号里,(9组).如图:平行与相交----4图中的平行线段有:AD∥EF,BD∥EF,DE∥FB,DE∥FC,DF∥AE,DF∥EC,DE∥BC,DF∥AC,EF∥AB;共有9对;故谜底为:9组16.在同一平面内不相交的两条直线叫做平行线,也能够说这两条直线相互平行.在同一平面内的两条直线的位置干系有相交、平行两种情形.由阐发得出:在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行,在同一平面内的两条直线的位置关系有相交、平行两种情况.故答案为:平行线;线互相平行;相交;平行17.语文课本的封面,相对的两条边是相互平行的,相邻的两条边是相互垂直的.18.点到直线的所有线段中,垂线段最短.19.平行线之间的垂直线段不但相互平行,并且长度相等.20.在同一平面内,两条不重合的直线的位置干系有相交、平行.21.上面有一排字母:XXX有相互垂直线段的字母是T、E、H;有相互平行线段的字母是E、N、Z、H;既有相互垂直,又有相互平行的线段的字母是E、H.22.如图,能找到8组相互垂直的线段.23.两条直线如果永不相交,这两条直线一定互相平行,说法错误,前提是必须在同一平面内;故答案为:错误.24.图中有几组互相垂直的线段?6组.25.当两条直线相交成直角时,这两条直线相互平行.错误.26.在一张纸上画若干条直线后发现,凡是不平行的,就一定会相交.正确.由分析可知:在一张纸上画若干条直线后发现,凡是不平行的,就必然会相交;故答案为:正确.27.在同一平面内,两条直线的位置关系可分成哪两类?相交或垂直×相交或平行√平行或垂直×.28.过直线外一点只能画一条已知直线的垂线.正确.29.如图:PC近来,这条路垂直于河对岸的路.30.如图所示:根据垂直线段最短的性质,红色的垂线段就是使大象饮水最近的线路,。
2015届高考数学总复习第八章 第五节空间图形的平行关系精讲课件 文

变式探究
1 .正方体 ABCD - A1B1C1D1 中,点 N 在 BD 上,点 M 在 B1C 上,且CM=DN,求证:MN∥平面AA1B1B.
证明: 如图,连接 CN 并延长交 BA所在直线于点P, 连接B1P,则B1P⊂平面AA1B1B.
因为△NDC∽△NBP,
DN CN 所以 NB = NP. 又 CM=DN,B1C=BD, CM DN CN 所以MB = NB = NP, 1 所以 MN∥B1P.因为 B1P⊂平面 AA1B1B, 所以 MN∥平面 AA1B1B.
证明:(1)连接BC1,B1C,
则B1C⊥BC1, BC1是AP在平面BB1C1C上的射影, ∴AP⊥B1C. 又B1C∥MN,∴AP⊥MN.
(2)连接B1D1, ∵P,N分别是D1C1,B1C1的中点,
∴PN∥B1D1.
又B1D1∥BD,
∴PN∥BD.
又PN不在平面A1BD上,∴PN∥平面A1BD
(1)证明:∵截面EFGH是一个矩形, ∴EF∥GH.又GH⊂平面BCD, ∴EF∥平面BCD,而EF⊂平面ACD, 平面ACD∩平面BCD=CD.∴EF∥CD. 又∵CD⊄平面EFGH,EF⊂平面EFGH, ∴CD∥平面EFGH. (2)解析:由(1)知CD∥EF, 同理 AB∥FG ,由异面直线所成角的定义知 ∠ EFG 即为所 求的角.易得∠EFG=90°.
(2)证明:∵EC∥PD,PD⊂平面PDA,
EC⊄平面PDA,∴EC∥平面PDA. 同理可得BC∥平面PDA, ∵EC⊂平面EBC,BC⊂平面EBC,且EC∩BC=C, ∴平面BEC∥平面PDA. 又BE⊂平面EBC,∴BE∥平面PDA.
点评:利用判定定理判定直线与平面平行,关键是找平 面内与已知直线平行的直线,可先直观判断平面内是否已有, 若没有,则需作出该直线,常考虑三角形的中位线、平行四 边形的对边或过已知直线作一平面找其交线.
小学六年级数学题《平行线问题大全及答案》

小学六年级数学题《平行线问题大全及答案》姓名:_____________ 年级:____________ 学号:______________1、下面语句中,正确的是①不相交的两条直线叫做平行线;②在同一平面内,两条直线的位置关系只有相交和平行两种;③如果线段ab和线段cd不相交,那么直线ab和直线cd平行;④如果a∥b,b∥c,那么a∥c.[ ]a.②和④b.①和②c.②和③d.①和④答案与解析:a2、我们知道生活中许多美丽的事物都是由许多的图形组成的,如我们可以用两条平行线,一个等腰三角形,一个圆(或半圆)来表示一个可爱娃娃。
怎么样,开动你的脑筋,用你的灵巧小手,用两条平行线、一个等腰三角形,一个圆(或半圆)来描绘我们美好事物,并给它起一个好听的名字。
答案与解析:答案不唯一,只要美观即可。
3、三条平行线上分别有3个点,4个点和5个点,且不在同一条平行线上的三个点不共线,以这些点为顶点的三角形共有______个.答案与解析:根据题干分析可得:(1)在第一条直线上取一点,另外两点分别在第二条直线上,或在第三条直线上,可以得到的三角形的个数为:3x6+3x10=48(个),(2)在第二条直线上取一点,另外两点分别在第一条直线上,或在第三条直线上,可以得到的三角形的个数为:4x3+4x10=52(个),(3)在第三条直线上取一点,另外两点分别在第二条直线上,或在第一条直线上,可以得到的三角形的个数为:5x3+5x6=45(个),(4)每条直线上各取一点有,可得三角形的个数为:3x4x5=60(个),所以48+52+45+60=205(个).答:以这些点为顶点的三角形共有205个.故答案为:205.4、在图中,过a作已知直线的垂线,再过b作已知直线的平行线,量出a、b间的距离,并与ab为直径画一个圆.答案与解析:答案如图,5、下面平行线中的三个图形,它们的面积从大到小排列是[ ]a.②③①b.②①③c.③②①答案与解析:c6、比较平行线间的两个阴影部分面积,如下图[ ]a.甲乙b.甲乙c.甲=乙答案与解析:c7、在两条平行线间,分别画出面积相等的长方形、平行四边形、三角形和梯形。
面面平行的性质(2015年)

C E P F D
G
B
E F C
A
G
B
N
D
M
A
分析一:证明平面EFG//平面PAB得到 分析二:根据EF与底面的平行关系做出EFG与四棱锥 的交线,连接EN,证明EN//PA
例3:(1)正方体AC1中,经过D1B的平面分别交 AA1,CC1于点E,F,则四边形D1EBF的形状是( ) A. 矩形 B. 菱形 C. 平行四边形 D. 正方形
(4)夹在两个平行平面间的平线线段相等
总结2:证明线面平行的方法
总结3:证明线线平行的方法
例2:正方体AC1中,E,F是所在棱的中点,求证: EF ǁ 面BB1D1D
F
D1
C1
A1
B1
D E A B
C
练习:已知如图所示直角梯形ABCD中, APǁCB,AP⊥AB,AP=2BC=2AB,D为AP的中点, E,F,G分别为PC,PD,CB中点,将ΔPCD沿CD折起, 得到四棱锥P-ABCD,如图,求证:APǁ 面EFG
γ
β
α
b a
判定两直线 平行的依据
思考3:如果两个相交平面同时和第三个 平面相交,那么它们的交线的位置关系 如何?
β b β γ α γ a α
l
a
b
l
思考4:若 ,那么在平面β 内 经过点P且与l 平行的直线存在吗?有几 条?
α β P β l α γ
思考5:若平面α 、β 都与平面γ 平行, 则平面α 与平面β 的位置关系如何?
理论迁移
例1 求证:夹在两个平行平面间的平行线段相等.
A C 已知:α//β,直线AB,CD 与两个平面都相,交点分 别为A,B,C,D,且AB//CD 求证:AB=CD
(完整版)平行线习题(含答案)(2)

2019年4月16日初中数学作业学校: ______________ 姓名: _____________ 班级:_______________ 考号:______________一、单选题1. 如图,经过直线a外一点O的4条直线中,与直线a相交的直线至少有()A. 4条B. 3条C. 2条D. 1条【答案】B【解析】【分析】根据经过直线外一点有且只有一条直线和已知直线平行得出即可.【详解】解:根据经过直线外一点有且只有一条直线和已知直线平行,得出如果有和直线a平行的,只能是一条,即与直线a相交的直线至少有3条,故选:B.【点睛】本题考查了平行线和相交线的应用,注意:经过直线外一点有且只有一条直线和已知直线平行.2. 下列说法中,正确的个数有()①在同一平面内不相交的两条线段必平行;②在同一平面内不相交的两条直线必平行;③在同一平面内不平行的两条线段必相交;④在同一平面内不平行的两条直线必相交.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据平面内直线和线段的位置关系判断.详解】解:(1)线段不相交,延长后不一定不相交,错误;(2)同一平面内,直线只有平行或相交两种位置关系,正确;(3)线段是有长度的,不平行也可以不相交,错误;(4)同(2),正确;所以(2)(4)正确.故选:B.【点睛】本题主要考查在同一平面内两直线的位置关系,需要注意(1)和(3)说的是线段.3.下列表示平行线的方法正确的是()A. ab// cdB. A // BC. a// BD. a// b【答案】D【解析】【分析】根据平行线的表达方法来判断即可得出结论.【详解】解:直线可以用两个大写字母表示,也可以用一个小写字母表示,故正确的表示方法是D.故答案为:D【点睛】本题主要考查了学生对平行线的表达方法的掌握情况,掌握平行线的表达方法是解题的关键.4 .在同一平面内,下列说法正确的是()A .没有公共点的两条线段平行B .没有公共点的两条射线平行C.不垂直的两条直线一定互相平行D .不相交的两条直线一定互相平行【答案】D【解析】【分析】根据平行线的定义,即可求得此题的答案,注意举反例的方法.详解】A. 在同一平面内,没有公共点的两条线段不一定平行,故本选项错误;B. 在同一平面内,没有公共点的两条射线不一定平行,故本选项错误;C. 在同一平面内,不垂直的两条直线不一定互相平行,故本选项错误;D. 在同一个平面内,不相交的两条直线一定互相平行,故本选项正确;【点睛】此题考查了平行线的判定.解题的关键是熟记平行线的定义.5.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B. 同一平面内两条不相交的直线是平行线C. 在同一平面内,过一点只能画一条直线与已知直线垂直D. 在同一平面内,经过直线外一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据平行线的定义及平行公理进行判断.【详解】A 中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误B. C. D 是公理,正确.故选A.【点睛】本题考查了平行线的定义和公理,熟练掌握定义和公理是解题的关键.6.在同一平面内,无公共顶点的两个直角,如果它们有一条边共线,那么另一边互相( )A •平行B.垂直C.共线 D.平行或共线【答案】A【解析】【分析】结合图形,由平行线的判断定理进行分析.【详解】如图所示:n n无公共顶点的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行•故选A.【点睛】本题考查了平行线的判定,熟练掌握判定定理是解题的关键7 .下列结论正确的是()A .过一点有且只有一条直线与已知直线垂直B. 过一点有且只有一条直线与已知直线平行C. 在同一平面内,不相交的两条射线是平行线D. 如果两条直线都与第三条直线平行,那么这两条直线互相平行【答案】D【解析】【分析】本题可结合平行线的定义,垂线的性质和平行公理进行判定即可.【详解】(1)过一点有且只有一条直线与已知直线垂直,应强调在同一平面内,故本项错误;(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.故选D.【点睛】本题主要考查了平行线的定义,垂线的性质和平行公理.熟练掌握公理和概念是解决本题的关键.8 .在同一平面内,直线AB与CD相交,AB与EF平行,则CD与EF()A •平行B.相交C. 重合D.三种情况都有可能【答案】B【解析】【分析】先根据题意画出图形,即可得出答案.【详解】如图,•••在同一平面内,直线AB与CD相交于点O, AB // EF,••• CD与EF的位置关系是相交,故选B.【点睛】本题考查了平行线的性质的应用,能根据题意画出图形是解此题的关键,注意:数形结合思想的应用.9 .下列语句不正确的是()A .在同一平面内,过直线外一点有且只有一条直线与已知直线平行B. 两直线被第三条直线所截,如果同位角相等,那么两直线平行C. 两点确定一条直线D. 内错角相等【答案】D【解析】【分析】根据平行线的公理、推论及平行线的判定,可得答案.【详解】A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故A正确;B、两直线被第三直线所截,如果同位角相等,那么两直线平行,故B正确;C、两点确定一条直线,故C正确;D、两直线平行,内错角相等,故D错误;故选D.【点睛】本题考查了平行公理及推论,熟记公理、推论是解题关键.10 .下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】依据线段的性质、平行公理、两点间的距离以及垂线的定义,即可得到正确结论.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,错误;③过直线外一点有且仅有一条直线与已知直线平行,正确;④两点之间的距离是两点间的线段的长度,错误;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等或互补,错误. 故选:B.【点睛】本题考查线段的性质、平行公理、两点间的距离以及垂线的定义,解题时注意:平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度.11 .下列说法中正确的是()A .两条相交的直线叫做平行线B. 在直线外一点,只能画出一条直线与已知直线平行C. 如果a // b, b // c,贝U a不与b平行D. 两条不平行的射线,在同一平面内一定相交【答案】B【解析】【分析】根据平行线的性质进行解题即可,见详解.详解】解:两条不相交的直线叫做平行线,故A 错误,在直线外一点,只能画出一条直线与已知直线平行如果a// b , b // c ,则a // b,平行线的传递性,故C 错误, 射线一端固定,另一端无限延伸,故D 错误, 综上选B. 【点睛】,属于简单题,熟悉平行线的性质是解题关键【解析】【分析】 根据平行线的传递性即可解题 【详解】解:••• AB // CD ,CD // EF ,••• AB // EF ,(平行线的传递性)故选A. 【点睛】本题考查了平行线的传递性 ,属于简单题,熟悉平行线的性质是解题关键13 •一条直线与另两条平行直线的关系是 ( )A .一定与两条平行线平行B .可能与两条平行线的一条平行,一条相交C . 一定与两条平行线相交D .与两条平行线都平行或都相交【答案】D 【解析】 【分析】根据在同一平面内,两条直线的位置关系有两种:平行和相交,可知如果一条直线与另 两条平行线中的一条相交,则它与另一条平行线也相交;如果一条直线与另两条平行线中的一条平行,则它与另一条平行线也平行即可求出本题答案【详解】,正确,// EF ,那么AB 和EF 的位置关系是本题考查了平行线的性质C.垂直D.不能确定【答案】A•••在同一平面内,两条直线的位置关系有两种:平行和相交,•••如果一条直线与另两条平行线中的一条相交,则它与另一条平行线也相交,否则与平行公理相矛盾;如果一条直线与另两条平行线中的一条平行,根据平行于同一直线的两条直线平行,则它与另一条平行线也平行.故答案为:D.【点睛】本题考查了平行线的相关知识,熟练掌握平行线的有关性质是本题解题的关键.14.下列说法中,正确的个数为( )①过一点有无数条直线与已知直线平行;②如果a// b, a // c,那么b // c;③如果两线段不相交,那么它们就平行;④如果两直线不相交,那么它们就平行.A.1 个B.2 个C.3 个D.4 个【答案】A【解析】【分析】根据平行线的定义、公理及推论判断即可求出本题答案.【详解】(1) 过直线外一点有且只有一条直线与已知直线平行,故错误;(2) 根据平行公理的推论,正确;(3) 线段的长度是有限的,不相交也不一定平行,故错误;(4) 应该是“在同一平面内”,故错误.正确的只有一个,故选A.故答案为:A.【点睛】本题考查了平行公理及推论,平行线,熟练掌握该知识点是本题解题的关键.15 •已知在同一平面内有一直线AB和一点P,过点P画AB的平行线,可画()A • 1条B. 0条 C. 1条或0条D.无数条【答案】C【解析】【分析】根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行可得答案.【详解】如果点P在直线上,过点P画直线与AB的平行线可画0条,如果点P在直线外,过点P画直线与AB的平行线可画1条•故答案为:C.【点睛】本题考查了平行公理及推论,熟练掌握该知识点是本题解题的关键16 .下列说法中,正确的是()A •平面内,没有公共点的两条线段平行B. 平面内,没有公共点的两条射线平行C. 没有公共点的两条直线互相平行D. 互相平行的两条直线没有公共点【答案】D【解析】【分析】回忆线段之间、射线之间与直线之间的位置关系;对于A,可在纸上画出两条没有公共点的线段,观察两条线段的位置关系;对于B,可在纸上画出两条没有公共点的射线,观察两条线段的位置关系;对于C,思考若两条直线不在一个平面内,是否能够得到两条直线不平行也不相交,对于D,根据平行线的定义可作出判断•【详解】对于A,如图所示,A错误;对于C,如果两条直线不在同一个平面内,不相交也可能不平行,则C错误;对于D,根据平行线的定义可知D正确•故答案为:D.【点睛】本题考查了两条直线的位置关系,直线、射线、线段的定义,熟练掌握直线的位置关系及相关定义是本题解题的关键•17 .下面说法正确的是( )A .过两点有且只有一条直线B.平角是一条直线C.两条直线不相交就一定平行D.过一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据直线公理:经过两点有且只有一条直线;角的概念;平行线的定义和平行公理及推论进行判断.【详解】A、由直线公理可知,过两点有且只有一条直线,故本选项正确;B、平角是有公共端点是两条射线组成的图形,故本选项错误;C、同一平面内两条直线不相交就一定平行,故本选项错误;D、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误.故选:A .【点睛】本题属于综合题,考查了直线的性质:两点确定一条直线;角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边;同一平面内,两条直线的位置关系:平行或相交;平行公理:经过直线外一点,有且只有一条直线与这条直线平行.18 .下列说法错误的是( )A .对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行【答案】D【解析】【分析】A .根据对顶角的性质判定即可;B. 根据线段的性质判定即可;C. 根据补角的性质判定即可;D .根据平行公理判定即可 .【详解】A .对顶角相等,故选项正确;B. 两点之间连线中,线段最短,故选项正确;C•等角的补角相等,故选项正确;D .过直线外一点P,能画一条直线与已知直线平行,故选项错误•故选D.【点睛】本题分别考查了对顶角、邻补角的性质、线段的性质、余角、补角的关系及平行公理,都是基础知识,熟练掌握这些知识即可解决问题 .二、填空题19 . L i, 12, 13为同一平面内的三条直线,如果11与12不平行,12与13不平行,则11与13的位置关系是_______________ .【答案】相交或平行【解析】【分析】根据关键语句“若?有?不平行,??与?不平行,”画出图形,图形有两种情况,根据图形可得答案.【详解】根据题意可得图形:根据图形可知:若?不平行,??与?3不平行,则?3可能相交或平行,故答案为:相交或平行•【点睛】本题主要考查了直线的位置关系,在同一平面内,两条直线的位置关系:平行或相交20 •小明列举生活中几个例子,你认为是平行线的是_________________ (填序号).①马路上斑马线;②火车铁轨;③直跑道线;④长方形门框上下边.【答案】①②③④【解析】【分析】根据平行线的判定进行判断即可•【详解】解:是平行线的是①②③④.故答案为:①②③④【点睛】本题考查了平行线的含义,应结合生活实际进行解答21.如图,用符号表示下列两棱的位置关系.AB ___ A ' B AA ' __________ AB ; AD _____ B ' C【答案】// 丄 //【解析】【分析】根据题意,可由立体图形中的平行线的判定条件,以及垂直的判定条件进行分析,然后填空即可.【详解】解:由图可知,AB// A B', AA丄AB AD// B' C'【点睛】本题主要考查的是直线的位置关系•22 .如图,在正方体中,与线段AB平行的线段有________ 条.【答案】3【解析】【分析】与线段AB平行的线段的种类为:①直接与AB平行,②与平行于AB的线段平行. 【详解】解:与AB平行的线段是:DC EF;与CD平行的线段是:HG所以与AB线段平行的线段有:EF、HG DC.故答案是:EF、HG DC【点睛】本题考查了平行线•平行线的定义:在同一平面内,不相交的两条直线叫平行线.23 .如图所示,用直尺和三角尺作直线AB , CD,从图中可知,直线AB与直线CD的位置关系为 ________ .【答案】平行【解析】【分析】根据同位角相等,两直线平行判断.【详解】如图,C 亠丘D根据题意,/ 1与/ 2是三角尺的同一个角,所以/仁/2,所以,AB // CD (同位角相等,两直线平行)故答案为:平行.【点睛】本题考查了平行线的判定熟练掌握同位角相等,两直线平行,并准确识图是解题的关键.24 .在如图的长方体中,与棱AB平行的棱有 ________________________________________;与棱AA'平行的棱有DD , BB , CC解析】【分析】根据平行的定义,结合图形直接找出和棱AB平行的棱,与棱AA平行的棱即可.【详解】由图可知,和棱AB平行的棱有CD , AB', CD;与棱AA 平行的棱有DD ,BB ,CC .故答案为:CD , A B , C D ;DD , BB , CC .【点睛】本题考查了认识立体图形的知识点,熟练掌握平行的定义是本题解题的关键.25.在同一平面内,直线AB 与直线CD 满足下列条件,则其对应的位置关系是(1)___________________________________________________________________ 若直线AB与直线CD没有公共点,则直线AB与直线CD的位置关系为______________________________ ;(2)直线AB 与直线CD 有且只有一个公共点,则直线AB 与直线CD 的位置关系为_______________ 【答案】平行;相交.【解析】【分析】根据“在同一平面内,两条直线的位置关系是:平行或相交.平行没有公共点,相交只有一个公共点”即可推出本题答案.【详解】在同一平面内,直线AB与CD满足下列条件,则其对应的位置关系是:(1)若AB与CD没有公共点,则AB与CD的位置关系是平行;(2 )若AB与CD有且只有一个公共点,则AB与CD 的位置关系为相交• 故答案为:(1)平行;(2)相交.【点睛】本题考查了直线的位置关系,熟练掌握判定方法是本题解题的关键.三、解答题26 .把图中的互相平行的线段用符号“//”写出来,互相垂直的线段用符号“丄”写出来:【解析】【分析】根据平行线和垂直的定义即可解答.【详解】解:如图所示,在长方体中:互相平行的线段:AB// CD EF// GH MN PQ互相垂直的线段:AB丄EF, AB丄GH CDL EF, CDL GH【点睛】本题考查了平行线和垂直的定义,理解定义是解题的关键•27 .如图,过点0 '分别画AB , CD的平行线.【答案】详见解析•【解析】【分析】把三角板的一条直角边与已知直线重合,用直尺靠紧三角板的另一条直角边,沿直尺移动三角板,使三角板的原来和已知直线重合的直角边和O点重合,过O点沿三角板的直角边画直线即可.【详解】解:如图,本题考查了学生利用直尺和三角板作平行线的能力28 •如图,按要求完成作图⑴过点P作AB的平行线EF;(2) 过点P作CD的平行线MN ;(3) 过点P作AB的垂线段,垂足为G.【点睛】【答案】作图见解析【解析】【分析】利用题中几何语言画出对应的几何图形.【详解】如图,本题考查了平行线的作法和作垂线的步骤.29 •我们知道相交的两条直线的交点个数是 1 ;两条平行线的交点个数是0;平面内三条平行线的交点个数是0,经过同一点的三条直线的交点个数是 1 ;依此类推(1) 请你画图说明平面内五条直线最多有几个交点.(2) 平面内五条直线可以有4个交点吗?如果可以,请你画出符合条件的所有图形;如果不可以,请说明理由.(3) 在平面内画出10条直线,使交点个数恰好是31.【答案】(1)平面内五条直线的交点最多有10个,⑵五条直线可以有4个交点,⑶答案不唯一•【解析】【分析】(1)直接让五条直线中的任意两条互相相交即可;(2)不妨先让其中的四条直线相交得到3个交点,然后再使最后一条直线,与其中任意一条相交且与之前的交点不重合即可,接下来自己试着想想还有哪些画法;(3)结合已知,禾U用平行线的性质画出图形即可【详解】解:(1)平面内五条直线的交点最多有 10个,如图①.(2)五条直线可以有4个交点,如图②(a // b// c // d),图③(AD // BC , AB // DC),图④(a // b).團② 関③(3) 答案不唯一,如图, a / b / c / d / e , f // g // h , l // m.【点睛】此题考查平面内不重合直线的位置关系, 解答时要分各种情况解答, 的所有情形,不要遗漏,否则讨论的结果就不全面.30 •如图,在方格纸上:(1)已有的四条线段中,哪些是互相平行的?⑵过点M 画AB 的平行线.⑶过点N 画GH 的平行线.37T~/ 、A7 D 、M / 7~■【答案】(1)AB // CD ; (2)画图见解析;⑶画图见解析【解析】【分析】(1) 根据图形可观察出互相平行的线段.(2) 过点M 画AB 的平行线.(3)过点N 画GH 的平行线.要考虑到可能出现【详解】(1)由图形可得:AB // CD .⑵(3)所画图形如下:本题考查了平行线的判定方法及过一点作平行线的知识, 的判定方法及作图的基本步骤.【点睛】 属于基础题, 主要掌握平行线。
平行与相交习题(附答案)

相交线与平行线测试卷(一)一、选择题1.下列说法中,正确的是()A.一条射线把一个角分成两个角,这条射线叫做这个角的平分线。
B.P是直线L外一点,A、B、C分别是L上的三点,已知PA=1,PB=2,PC=3,则点P•到L的距离一定是1。
C.相等的角是对顶角。
D.钝角的补角一定是锐角.2.如图1,直线AB、CD相交于点O,过点O作射线OE,则图中的邻补角一共有()A.3对 B.4对 C.5对 D.6对(1) (2) (3)3.若∠1与∠2的关系为内错角,∠1=40°则∠2等于()A.40° B.140° C.40°或140° D.不确定5.a,b,c为平面内不同的三条直线,若要a∥b,条件不符合的是()A.a∥b,b∥c。
B.a⊥b,b⊥c。
C.a⊥c,b∥c。
D.c截a,b所得的内错角的邻补角相等6.如图2,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;(4)∠4=∠7,其中能判定a∥b的条件的序号是()A.(1)、(2) B.(1)、(3)C.(1)、(4) D.(3)、(4)7.如图3,若AB∥CD,则图中相等的内错角是()A.∠1与∠5,∠2与∠6。
B.∠3与∠7,∠4与∠8。
C.∠2与∠6,∠3与∠7。
D.∠1与∠5,∠4与∠88.如图4,AB∥CD,直线EF分别交AB、CD于点E、F,ED平分∠BEF.若∠1=72°,•则∠2的度数为()A.36° B.54° C.45° D.68°(4) (5) (6)9.已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,•则符合条件的直线L的条数为()A.1 B.2 C.3 D.410.如图5,四边形ABCD中,∠B=65°,∠C=115°,∠D=100°,则∠A的度数为(• )A.65° B.80° C.100° D.115°11.如图6,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有()A.1个 B.2个 C.3个 D.4个12.若∠A和∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠B的度数为()A.30°B.70°C.30°或70° D.100°二、填空题13.如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB∥DC).•如果∠C=60°,那么∠B的度数是________.14.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将下列推理过程补充完整:(1)∵∠1=∠ABC(已知),∴AD∥______(2)∵∠3=∠5(已知),∴AB∥_____,(___________)(3)∵∠ABC+∠BCD=180°(已知),∴_______∥________,(__________)16.已知直线AB、CD相交于点O,∠AOC-∠BOC=50°,则∠AOC=_____度,•∠BOC=___度.17.如图7,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE为_________.(7)(8)18.如图8,已知∠1=∠2,∠D=78°,则∠BCD=______度19.如图9,直线L1∥L2,AB⊥L1,垂足为O,BC与L2相交于点E,若∠1=43°,•则∠2=_______度.(9)(10)20.如图10,∠ABD=•∠CBD,•DF•∥AB,•DE•∥BC,•则∠1•与∠2•的大小关系是________.三、解答题22.如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B•′有什么关系?为什么?23.如图,已知AB∥CD,试再添上一个条件,使∠1=∠2成立(•要求给出两个答案).24.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.25.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB 于E,且∠1=∠2,•∠3=80°.求∠BCA的度数.26.如图,EF⊥GF于F.∠AEF=150°,∠DGF=60°,试判断AB和CD的位置关系,并说明理由.1、∵直线AB、CD相交于点O,∴∠AOC和∠BOD是对顶角,∴∠AOC=∠BOD.∵∠AOC+∠BOD=240°,∴∠AOC=∠BOD=120°.又∵∠AOC和∠BOC是邻补角,∴∠BOC=180°-∠AOC,∴∠BOC=60°..2、[点拨] 观察图形,∠AOF与∠BOF是邻补角,∠BOF 与∠AOE是对顶角,利用它们的性质可求出∠EOC的度数.[解答] 设∠BOF=x,则∠AOF=3x,∵∠AOF+∠BOF=180°∴x+3x=180°∴x=45°,即∠BOF=45°∴∠AOE=∠BOF=45°∴∠EOC=∠AOC-∠AOE=90°-45°=45°.[方法规律] 通过设未知数列方程求解,是求角的度数一种常用的方法.3、[点拨]过一点画射线或线段的垂线时,是指画它们所在直线的垂线,垂足有时在射线反向延长线或在线段的延长线上.本题垂足分别在射线OB的反向延长线上和线段AO的延长线上.[解答]如图5.1.2-3所示,直线AE为过点A与OB垂直的直线,垂足为E;直线BD为过点B与OA垂直的直线,垂足为D.图5.1.2-3[方法规律] ①所有的垂足都要作垂直标记;②垂线画实线,延长线画虚线.5、 [方法规律] 判断两条直线平行要抓住两个关键一个前提.两个关键:一是“在同一平面内”;二是“不相交”. 一个前提:两条直线.6、[点拨]运用平行公理的推论加以判断.[解答]因为a∥b,b∥c,所以a∥c,又因为c∥d,所以a∥d.[方法规律] 对于n条直线l1,l2,l3…l n,若l1∥l2,l2∥l3,…,l n-1∥l n,那么这n条直线互相平行.7、[点拨]由∠1=∠2,及角平分线定义,可得∠EAQ=∠ABN,从而可证PQ∥MN.[解答] ∵AF平分∠EAQ,BC平分∠ABN,∴∠1=12∠EAQ,∠2=12∠ABN∵∠1=∠2,∴∠EAQ=∠ABN∴PQ∥MN[方法规律]本题不能直接判定PQ∥MN,要经过转化才能成为直接条件.8、[点拨]从标出的3个角可知:∠1与∠3是同位角,若∠1=∠3,则AB∥CD,由图可知,∠1+∠2=180°,已知∠2=3∠1,故可求出∠1,又由∠1+∠3=90°,可求出∠3.[解答] ∵∠1+∠2=180°,∠2=3∠1∴∠1+3∠1=180°,∴∠1=45°∵∠1+∠3=90°,∴∠3=45°∴∠1=∠3,∴AB∥CD.[方法规律] 利用角的关系和邻补角定义,求角定线.9、点拨] ∠1和∠3,∠2和∠3分别是l1与l3被l 所截而成的内错角及l2与l3被l所截而成的同旁内角,若它们满足平行的判定条件再由平行公理推论即可得到l1∥l2.[解答] ∵∠1=∠3=80°∴l1∥l3∵∠2=100°∴∠2+∠3=180°∴l2∥l3∴l1∥l2[方法规律] 这里l3为l1与l2平行架起了桥梁,这就是转化,它为已知与求证结论铺平了道路[点拨] ∠1与∠3是AD、DC被AC所截的同旁内角,由∠1=∠3并不能推出两条直线平行,但∠2=∠1所以能代换得到∠2=∠3,这时∠2与∠3是AB与DC被AC所截得的内错角,由内错角相等可推出AB∥CD.10、[解答]由已知条件可判断AB∥CD,理由如下:∵AC平分∠DAB(已知),∴∠1=∠2(角平分线定义).又∵∠1=∠3(已知),∴∠2=∠3(等量代换).∴AB∥CD(内错角相等,两直线平行).[方法规律] 要判断两条直线平行,得寻找同位角、内错角相等或同旁内角互补.[点拨] 本题直接求∠C不容易,如果过点C作FC∥AB,就可以把问题转化为求已知的∠B及∠D的同旁内角,进而求得∠C.11、[解答] 过点C作FC∥AB,∵AB∥ED,∴FC∥ED,∴∠1+∠B=180°,∠2+∠D=180°,∴∠1+∠2+∠B+∠D=360°.∵∠B=140°,∠D=120°,∴∠1+∠2=360°-140°-120°=120°[方法规律]此类题型,一般都是过拐点作已知直线的平行线,从而把未知问题转化为已知问题.12、点拨]利用对顶角相等,转化为同旁内角互补,得l1∥l2,再根据平行性质和对顶角相等即可求出∠4的度数.[解答]∵∠1=60°,∠2=120°,∴∠1+∠2=180°∵∠1=∠6,∴∠6+∠2=180°,∴l1∥l2∴∠7=∠3=70°,∵∠4=∠7,∴∠4=70°.[方法规律]本题的切入点是对顶角相等,再根据平行的判定和性质,可求出∠4的度数.点拨] 由∠2=∠EBD,∠1=∠2,得∠1=∠EBD,从而得FG∥CD,再由平行线的性质和∠3=55°,可求出∠4的度数.[解答] ∵∠2=∠EBD,∠1=∠2,∴∠1=∠EBD∴GF∥CD,∴∠4=∠ABD∵∠3=55°,∴∠ABD=125°,∴∠4=125°,∴选D.13、[方法规律]本题综合运用了平行线的判定和性质,在解题过程中应由未知想已知,不断促使问题的转化.[点拨]由CD⊥AB,EF⊥AB,得DC∥EF,从而得∠1=∠BCD,再由∠1=∠2,可得DG∥BC.[解答] DG∥BC.∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴CD∥EF.(同位角相等,两直线平行)∴∠1=∠BCD.(两直线平行,同位角相等)又∵∠1=∠2,∴∠2=∠BCD.∴DG∥BC.(内错角相等,两直线平行)[方法规律]本题抓住垂直证平行,促使已知条件向未知条件转换.相交线平行线答案1.D2.D 点拨:图中的邻补角分别是:∠AOC与∠BOC,∠AOC与∠AOD,∠COE与∠DOE,∠BOE与∠AOE,∠BOD与∠BOC,∠AOD与∠BOD,共6对,故选D.3.D 4.C 5.C 6.A7.C 点拨:本题的题设是AB∥CD,解答过程中不能误用AD∥BC这个条件.8.B 点拨:∵AB∥CD,∠1=72°,∴∠BEF=180°-∠1=108°.∵ED平分∠BEF,∴∠BED=12∠BEF=54°.∵AB∥CD,∴∠2=∠BED=54°.故选B.9.C 点拨:如答图,L1,L2两种情况容易考虑到,但受习惯性思维的影响,L3这种情况容易被忽略.10.B11.D 点拨:∠FCD=∠F=∠A=∠1=∠ABG=45°.故选D.12.C 点拨:由题意,知,230A BA B∠=∠⎧⎨∠=∠-︒⎩或180,230A BA B∠+∠=︒⎧⎨∠=∠-︒⎩解之得∠B=30°或70°.故选C.13.120°14.(1)BC;同位角相等,两直线平行(2)CD;内错角相等,两直线平行(3)AB;CD;同旁内角互补,两直线平行15.(2),(3),(5)16.115;65点拨:设∠BOC=x°,则∠AOC=x°+50°.∵∠AOC+∠BOC=180°.∴x+50+x=180,解得x=65.∴∠AOC=115°,∠BOC=65°.17.145°18.10219.133点拨:如答图,延长AB交L2于点F.∵L1∥L2,AB⊥L1,∴∠BFE=90°.∴∠FBE=90°-∠1=90°-43°=47°.∴∠2=180°-∠FBE=133°.20.∠1=∠221.解:如答图,由邻补角的定义知∠BOC=100°.∵OD,OE分别是∠AOB,∠BOC的平分线,。
专题训练 平行线培优习题

C. 45° D. 30°
5、如图8所示,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=度。
6、如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=_________.
7、(2015•绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F=.
14
(
(
15、如图5,ABCD是正方形,点G是BC上的任意一点, 于E, ,交AG于F.
求证: .
16.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013=度。
专题训练平行线培优习题
一、基础过关
1、(2011四川泸州)如图,∠1与∠2互补,∠3=135°,则∠4 的度数是( )
A.4 5°B.55°C.65°D.75°
2、如图,直线l1∥l2,∠1=55°,∠2=65°则∠3 = _______________.
3、下列四个图形中 大于 的是( )
4、将一副三角板按图中的方式叠放,则∠ 等于
17、如图,在等腰梯形ABCD中,AD∥BC,AB=CD=AD,∠B=60°,DE⊥AC于点E,已知该梯形的高为 .(1)求证: ∠ACD=30°;(2)DE的长度.
18、如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.
(C)若∠MON=90°,则MN与⊙O相切
(D)l1和l2的距离为2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.到空间不共面的四点距离相等的平面有 7 个.
解析
如下图分类,一类如图(1)将四点视为
三棱
锥四个顶点,取棱中点,可以做如图(1)平面平行于三棱
锥的底面,并到另一顶点距离与底面距离相等,这样
的平面有4个;另一类如图(2)取各段中点,四个点形
成平面平行于三棱锥 相对棱,这样的平面有3个,共7个.
7.如图所示,在正四棱柱ABCD —A1B1C1D1 中,E、F、G、H分别是棱CC1、C1D1、
⑥平行于同一平面的两直线可以相交.
A.1 B.2 C.3 D.4
5.过长方体ABCD—A1B1C1D1的任意两条棱的中点作直
线,其中能够与平面ACC1A1平行的直线有 12
条.
解析
如图所示,与AC平行的直线有4条,与
AA1平行的直线有4条,
ACC1A1,
连接MN,则MN∥面
这样的直线也有4条(包括MN),共12条.
4.下列命题中正确的个数是
( B)
①若直线a不在α 内,则a∥α ;
②若直线l上有无数个点不在平面α 内,则l∥α ; ③若直线l与平面α 平行,则l与α 内的任意一条 直线都平行; ④如果两条平行线中的一条与一个平面平行,那
么另一条也与这个平面平行;
⑤若l与平面α 平行,则l与α 内任何一条直线都 没有公共点;
平行关系小题练习
1. 判断下列命题是否正确,并说明理由. (1)若平面 内的两条直线分别与平面 平行,则 与 平行; × (2)若平面 内有无数条直线分别与平面 平行,则 与 平行; × (3)平行于同一直线的两个平面平行; × (4)如果一条直线平行于平面内的两条直线, 那么这条直线平行于这个平面; ×
则在平面β 内且过B点的所有直线中( A ) A.不一定存在与a平行的直线 B.只有两条与a平行的直线 C.存在无数条与a平行的直线
D.存在唯一与a平行的直线
解析 当直线a在平面β 内且经过B点时,可使 a∥平面α ,但这时在平面β 内过B点的所有直 线中,不存在与a平行的直线,而在其他情况 下,都可以存在与a平行的直线,故选A.
2. α、β是两个不重合的平面,a、b是两 条不同直线,在下列条件下,能判定α∥β 的是 .)a、b是α内两条直线,且a∥β,b∥β (4)a、b是两条异面直线且a∥α,b∥α, a∥β,b∥β
(4)
3.若平面α ∥平面β ,直线a∥平面α ,点B∈β ,
D1D、DC的中点,N是BC的中点,点M在
四边形EFGH及其内部运动,则M满足条 件 M∈线段HF时,有MN∥平面B1BDD1.
解析
由题意,HN∥面B1BDD1,
FH∥面B1BDD1. ∴面NHF∥面B1BDD1. ∴当M在线段HF上运动时,有MN∥面B1BDD1.