因式分解(十字交叉法)练习题04957复习过程

合集下载

因式分解(十字交叉法)练习题[精选.]

因式分解(十字交叉法)练习题[精选.]

word. 用十字交叉法分解因式一、选择题1、若34-x 是多项式a x x ++542的一个因式,则a 是 ( )A.-8 B.-6 C.8 D.62、下列变形中,属于因式分解的是 ( )A.c b a m c bm am ++=++)( B.⎪⎭⎫ ⎝⎛++=++a a a a a 15152C.)123(123223+-=+-a a a a a a D.22244)2(y xy x y x ++=+ 3、下列多项式:(1)672++x x ,(2)342++x x ,(3)862++x x ,(4),1072++x x (5)44152++x x .其中有相同因式的是( ) A.只有(1)、(2) B.只有(3)、(4)C.只有(2)、(4) D.不同于上述答案4、下列各式中,可以分解因式的是 ( )A.22y x -- B.ny mx + C.222a m n -- D.42n m -5、在下列各式的因式分解中,分组不正确的是( ) A.)2()1(122222n mn m n mn m ++-=+-+ B.)1()(1+++=+++x y xy y x xyC.)()(xy ay bx ab xy ay bx ab +++=+++ D.)()(32233223y y x xy x y y x xy x +++=+++ 6、若4:5:y x =,则2215174y xy x +-的值是( ) A.54 B.45C.1 D.07、如果)5)(3(152-+=--x x kx x ,那么k 的值是( ) A.-3 B.3 C.-2 D.28、若多项式162--mx x 可以分解因式,则整数m可取的值共有( )A.3个 B.4个 C.5个 D.6个二、填空题9、若多项式65222-++--y mx y xy x 可以分解为)32)(2(-++-y x y x ,则____=m . 三、计算题10、把多项式n n n b b a b a 5324257912-+-分解因式,并注明每一步因式分解所用的方法.11、已知012)1)((2222=--++y x y x ,求22y x +的值.word. 四、分解因式:1、32576x y x y xy --2、219156n n n x x x ++-- 3 、25724--x x4、611724-+x x5、4224257y y x x -+6、42246117y y x x --7、3)()(22----b a b a 8、3)()(22-+++n m n m 9、3)2(8)2(42++-+y x y x10、3168)2(42++--y x y x 11、222215228d c abcd b a +- 12、42248102mb b ma ma +-13、2592a a -+ 14、2x 2 + 13x + 15 15、22152y ay a --16、2210116y xy x ++- 17、22166z yz y -- 18、6)2(5)2(2++++b a b a最新文件 仅供参考 已改成word 文本 。

因式分解(十字交叉法)练习题上课讲义

因式分解(十字交叉法)练习题上课讲义

因式分解(十字交叉法)练习题用十字交叉法分解因式一、选择题1、若34-x 是多项式a x x ++542的一个因式,则a 是 ( )A.-8 B.-6 C.8 D.62、下列变形中,属于因式分解的是 ( )A.c b a m c bm am ++=++)( B.⎪⎭⎫ ⎝⎛++=++a a a a a 15152C.)123(123223+-=+-a a a a a a D.22244)2(y xy x y x ++=+3、下列多项式:(1)672++x x ,(2)342++x x ,(3)862++x x ,(4),1072++x x (5)44152++x x .其中有相同因式的是( )A.只有(1)、(2) B.只有(3)、(4)C.只有(2)、(4) D.不同于上述答案4、下列各式中,可以分解因式的是 ( )A.22y x -- B.ny mx + C.222a m n -- D.42n m -5、在下列各式的因式分解中,分组不正确的是 ( )A.)2()1(122222n mn m n mn m ++-=+-+ B.)1()(1+++=+++x y xy y x xy C.)()(xy ay bx ab xy ay bx ab +++=+++ D.)()(32233223y y x xy x y y x xy x +++=+++ 6、若4:5:y x =,则2215174y xy x +-的值是( ) A.54 B.45C.1 D.07、如果)5)(3(152-+=--x x kx x ,那么k 的值是( ) A.-3 B.3 C.-2 D.28、若多项式162--mx x 可以分解因式,则整数m可取的值共有( ) A.3个 B.4个 C.5个 D.6个二、填空题9、若多项式65222-++--y mx y xy x 可以分解为)32)(2(-++-y x y x ,则____=m . 三、计算题10、把多项式n n n b b a b a 5324257912-+-分解因式,并注明每一步因式分解所用的方法.11、已知012)1)((2222=--++y x y x ,求22y x +的值.四、分解因式:1、32576x y x y xy --2、219156n n n x x x ++-- 3 、25724--x x4、611724-+x x5、4224257y y x x -+6、42246117y y x x --7、3)()(22----b a b a 8、3)()(22-+++n m n m 9、3)2(8)2(42++-+y x y x10、3168)2(42++--y x y x 11、222215228d c abcd b a +- 12、42248102mb b ma ma +-13、2592a a -+ 14、2x 2 + 13x + 15 15、22152y ay a --2210116yxyx++-17、22166zyzy--18、6)2(5)2(2++++baba16、。

(完整版)因式分解之十字相乘法专项练习题

(完整版)因式分解之十字相乘法专项练习题

十字相乘法进行因式分解1.二次三项式多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式.在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式.在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式.2.十字相乘法的依据和具体内容利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式))(()(2b x a x ab x b a x ++=+++分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.(2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =⋅21,c c c =⋅21,且b c a c a =+1221, 3.因式分解一般要遵循的步骤多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试, 分组分解要合适,四种方法反复试,结果应是乘积式”.【典型热点考题】例1 把下列各式分解因式:(1)1522--x x ;(2)2265y xy x +-. 解:例2 把下列各式分解因式: (1)3522--x x ;(2)3832-+x x . 解:点拨:二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性.例3 把下列各式分解因式:(1)91024+-x x ; (2))(2)(5)(723y x y x y x +-+-+;(完整版)因式分解之十字相乘法专项练习题(3)120)8(22)8(222++++a a a a .十字相乘法专项练习题(1) a 2-7a+6; (2)8x 2+6x -35;(3)18x 2-21x+5; (4) 20-9y -20y 2;(5)2x 2+3x+1; (6)2y 2+y -6;(7)6x 2-13x+6; (8)3a 2-7a -6;(9)6x 2-11x+3; (10)4m 2+8m+3;(11)10x 2-21x+2; (12)8m 2-22m+15;(13)4n 2+4n -15; (14)6a 2+a -35;(15)5x 2-8x -13; (16)4x 2+15x+9;(17)15x 2+x -2; (18)6y 2+19y+10;(19) 2(a+b)2 +(a+b )(a -b )-6(a -b)2; (20)7(x -1)2 +4(x -1)-20;把下列各式分解因式:(1)6724+-x x ; (2)36524--x x ;(3)422416654y y x x +-; (4)633687b b a a --;(5)234456a a a --; (6)422469374b a b a a +-.15.把下列各式分解因式:(1)2224)3(x x --; (2)9)2(22--x x ; ( 3)2222)332()123(++-++x x x x ;(4)60)(17)(222++-+x x x x ; (5)8)2(7)2(222-+-+x x x x ;(6)48)2(14)2(2++-+b a b a .(1)22157x x ++ (2) 2384a a -+ (3) 2576x x +- (4) 261110y y --(5)2252310a b ab +- (6)222231710a b abxy x y -+ (7) 22712x xy y -+(8)42718x x +- (9)22483m mn n ++ (10) 53251520x x y xy --六、解下列方程(1)220x x --= (2)2560x x +-= (3)23440a a +-= (4)227150b b +-=。

十字交叉(附例题)

十字交叉(附例题)

一、十字交叉相乘法这是利用化合价书写物质化学式的方法,它适用于两种元素或两种基团组成的化合物。

其根据的原理是化合价法则:正价总数与负价总数的代数和为0或正价总数与负价总数的绝对值相等。

现以下例看其操作步骤。

二、十字交叉相比法我们常说的十字交叉法实际上是十字交叉相比法,它是一种图示方法。

十字交叉图示法实际上是代替求和公式的一种简捷算法,它特别适合于两总量、两关系的混合物的计算(即2—2型混合物计算),用来计算混合物中两种组成成分的比值。

三、十字交叉消去法十字交叉消去法简称为十字消去法,它是一类离子推断题的解法,采用“十字消去”可缩小未知物质的范围,以便于利用题给条件确定物质,找出正确答案。

其实十字交叉法就是解二元一次方程的简便形式如果实在不习惯就可以例方程解但我还是给你说说嘛像A的密度为10 B的密度为8 它们的混合物密度为9 你就可以把9放在中间把10 和8 写在左边标上AB 然后分别减去9 可得右边为1 1 此时之比这1:1 了这个例子比较简单但难的也是一样你自己好好体会一下嘛这个方法其实很好节约时间特别是考理综的时候其实十字交叉法就是解二元一次方程的简便形式如果实在不习惯就可以例方程解但我还是给你说说嘛像A的密度为10 B的密度为8 它们的混合物密度为9 你就可以把9放在中间把10 和8 写在左边标上AB 然后分别减去9 可得右边为1 1 此时之比这1:1 了这个例子比较简单但难的也是一样你自己好好体会一下嘛这个方法其实很好节约时间特别是考理综的时候(一)混和气体计算中的十字交叉法【例题】在常温下,将1体积乙烯和一定量的某气态未知烃混和,测得混和气体对氢气的相对密度为12,求这种烃所占的体积。

【分析】根据相对密度计算可得混和气体的平均式量为24,乙烯的式量是28,那么未知烃的式量肯定小于24,式量小于24的烃只有甲烷,利用十字交叉法可求得甲烷是0.5体积(二)同位素原子百分含量计算的十字叉法【例题】溴有两种同位素,在自然界中这两种同位素大约各占一半,已知溴的原子序数是35,原子量是80,则溴的两种同位素的中子数分别等于。

因式分解(十字交叉法)练习题

因式分解(十字交叉法)练习题

用十字交叉法分解因式一、选择题1、若34-x 是多项式a x x ++542的一个因式,则a 是 ( ) A.-8 B.-6 C.8 D.62、下列变形中,属于因式分解的是 ( )A.c b a m c bm am ++=++)( B.⎪⎭⎫ ⎝⎛++=++a a a a a 15152C.)123(123223+-=+-a a a a a a D.22244)2(y xy x y x ++=+ 3、下列多项式:(1)672++x x ,(2)342++x x ,(3)862++x x ,(4),1072++x x (5)44152++x x .其中有相同因式的是( ) A.只有(1)、(2) B.只有(3)、(4)C.只有(2)、(4) D.不同于上述答案4、下列各式中,可以分解因式的是 ( )A.22y x -- B.ny mx + C.222a m n -- D.42n m - 5、在下列各式的因式分解中,分组不正确的是( ) A.)2()1(122222n mn m n mn m ++-=+-+ B.)1()(1+++=+++x y xy y x xyC.)()(xy ay bx ab xy ay bx ab +++=+++ D.)()(32233223y y x xy x y y x xy x +++=+++ 6、若4:5:y x =,则2215174y xy x +-的值是( ) A.54 B.45C.1 D.07、如果)5)(3(152-+=--x x kx x ,那么k 的值是( ) A.-3 B.3 C.-2 D.28、若多项式162--mx x 可以分解因式,则整数m可取的值共有( ) A.3个 B.4个 C.5个 D.6个二、填空题9、若多项式65222-++--y mx y xy x 可以分解为)32)(2(-++-y x y x ,则____=m . 三、计算题10、把多项式n n n b b a b a 5324257912-+-分解因式,并注明每一步因式分解所用的方法.11、已知012)1)((2222=--++y x y x ,求22y x +的值.四、分解因式:1、32576x y x y xy --2、219156n n n x x x ++-- 3 、25724--x x4、611724-+x x5、4224257y y x x -+6、42246117y y x x --7、3)()(22----b a b a8、3)()(22-+++n m n m 9、3)2(8)2(42++-+y x y x10、3168)2(42++--y x y x 11、222215228d c abcd b a +- 12、42248102mb b ma ma +-13、2592a a -+14、2x 2 13x 15 15、22152y ay a --16、2210116y xy x ++-17、22166z yz y -- 18、6)2(5)2(2++++b a b a。

因式分解(十字交叉法)练习题

因式分解(十字交叉法)练习题

用十字交叉法分解因式一、选择题1、若34-x 是多项式a x x ++542的一个因式,则a 是 ( )A.-8 B.-6 C.8 D.6 2、下列变形中,属于因式分解的是( ) A.c b a m c bm am ++=++)( B.⎪⎭⎫ ⎝⎛++=++a a a a a 15152C.)123(123223+-=+-a a a a a a D.22244)2(y xy x y x ++=+ 3、下列多项式:(1)672++x x ,(2)342++x x ,(3)862++x x ,(4),1072++x x (5)44152++x x .其中有相同因式的是( ) A.只有(1)、(2) B.只有(3)、(4)C.只有(2)、(4) D.不同于上述答案4、下列各式中,可以分解因式的是 ( )A.22y x -- B.ny mx + C.222a m n -- D.42n m - 5、在下列各式的因式分解中,分组不正确的是 ( )A.)2()1(122222n mn m n mn m ++-=+-+ B.)1()(1+++=+++x y xy y x xyC.)()(xy ay bx ab xy ay bx ab +++=+++D.)()(32233223y y x xy x y y x xy x +++=+++ 6、若4:5:y x =,则2215174y xy x +-的值是( ) A.54 B.45C.1 D.07、如果)5)(3(152-+=--x x kx x ,那么k 的值是( ) A.-3 B.3 C.-2 D.28、若多项式162--mx x 可以分解因式,则整数m可取的值共有( )A.3个 B.4个 C.5个 D.6个二、填空题9、若多项式65222-++--y mx y xy x 可以分解为)32)(2(-++-y x y x ,则____=m .三、计算题10、把多项式n n n b b a b a5324257912-+-分解因式,并注明每一步因式分解所用的方法. 11、已知012)1)((2222=--++y x y x ,求22y x +的值. 四、分解因式:1、32576x y x y xy --2、219156n n n x x x ++-- 3 、25724--x x 4、611724-+x x5、4224257y y x x -+6、42246117y y x x --7、3)()(22----b a b a8、3)()(22-+++n m n m 9、3)2(8)2(42++-+y x y x 10、3168)2(42++--y x y x11、222215228d c abcd b a +- 12、42248102mb b ma ma +- 13、2592a a -+14、2x 2 + 13x + 15 15、22152y ay a -- 16、2210116y xy x ++- 17、22166z yz y -- 18、6)2(5)2(2++++b a b a。

因式分解专题4_用十字相乘法(含答案)

因式分解专题4_用十字相乘法(含答案)

4、用十字相乘法把二次三项式分解因式【知识精读】对于首项系数是1的二次三项式的十字相乘法,重点是运用公式进行因式分解。

掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个数的积,且其和等于一次项系数。

对于二次三项(a、b、c都是整数,且)来说,如果存在四个整数满足,并且,那么二次三项式即可以分解为。

这里要确定四个常数,分析和尝试都要比首项系数是1的类型复杂,因此一般要借助画十字交叉线的办法来确定。

下面我们一起来学习用十字相乘法因式分解。

【分类解析】1. 在方程、不等式中的应用例1. 已知:,求x的取值范围。

分析:本题为二次不等式,可以应用因式分解化二次为一次,即可求解。

解:例2. 如果能分解成两个整数系数的二次因式的积,试求m的值,并把这个多项式分解因式。

分析:应当把分成,而对于常数项-2,可能分解成,或者分解成,由此分为两种情况进行讨论。

解:(1)设原式分解为,其中a、b为整数,去括号,得:将它与原式的各项系数进行对比,得:解得:此时,原式(2)设原式分解为,其中c、d为整数,去括号,得:将它与原式的各项系数进行对比,得:解得:此时,原式2. 在几何学中的应用例. 已知:长方形的长、宽为x、y,周长为16cm,且满足,求长方形的面积。

分析:要求长方形的面积,需借助题目中的条件求出长方形的长和宽。

解:或又解得:或∴长方形的面积为15cm2或3、在代数证明题中的应用例. 证明:若是7的倍数,其中x,y都是整数,则是49的倍数。

分析:要证明原式是49的倍数,必将原式分解成49与一个整数的乘积的形式。

证明一:∵是7的倍数,7y 也是7的倍数(y 是整数)∴是7的倍数而2与7互质,因此,是7的倍数,所以是49的倍数。

证明二:∵是7的倍数,设(m 是整数)则又∵∵x ,m 是整数,∴也是整数所以,是49的倍数。

4、中考点拨例1.把22224954y y x y x --分解因式的结果是________________。

十字分解法讲解及习题

十字分解法讲解及习题

十字分解法2016.5.10十字分解法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。

其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。

十字分解法能把二次三项式分解因式(不一定在整数范围内)。

对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c 分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好等于一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。

在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。

当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

基本式子:x²+(p+q)x+pq=(x+p)(x+q)。

对于形如ax²+bx+c的多项式,在判定它能否使用十字分解法分解因式时,可以使用Δ=b²-4ac进行判定。

当Δ为完全平方数时,可以在整数范围对该多项式进行十字相乘。

一般运算方法实例:a²+a-42首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a + ?)×(a -?),然后我们再看第二项,+a 这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。

再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成-21×2 或者21×-2。

首先,21和2无论正负,通过任意加减后都不可能是1,只可能是-19或者19,所以排除后者。

然后,再确定是-7×6还是7×-6。

(a+(-7))×(a+6)=a²x²-ax-42(计算过程省略)得到结果与原来结果不相符,原式+a 变成了-a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用十字交叉法分解因式
一、选择题
1、若34-x 是多项式a x x ++542的一个因式,则a 是 ( )
A.-8 B.-6 C.8 D.6 2、下列变形中,属于因式分解的是
( ) A.c b a m c bm am ++=++)( B.⎪⎭⎫ ⎝⎛++=++a a a a a 15152
C.)123(1232
23+-=+-a a a a a a D.22244)2(y xy x y x ++=+ 3、下列多项式:(1)672++x x
,(2)342++x x ,(3)862++x x , (4),1072++x x (5)44152++x x .其中有相同因式的是( ) A.只有(1)、(2) B.只有(3)、(4)
C.只有(2)、(4) D.不同于上述答案
4、下列各式中,可以分解因式的是 ( )
A.22y x -- B.ny mx + C.222a m n -- D.42n m - 5、在下列各式的因式分解中,分组不正确的是
( ) A.)2()1(122222n mn m n mn m ++-=+-+
B.)1()(1+++=+++x y xy y x xy
C.)()(xy ay bx ab xy ay bx ab +++=+++
D.)()(3
2233223y y x xy x y y x xy x +++=+++
6、若4:5:y x =,则2215174y xy x +-的值是( ) A.54 B.45
C.1 D.0
7、如果
)5)(3(152-+=--x x kx x ,那么k 的值是( ) A.-3 B.3 C.-2 D.2
8、若多项式162--mx x 可以分解因式,则整数m可取的值共有( ) A.3个 B.4个 C.5个 D.6个
二、填空题
9、若多项式6522
2-++--y mx y xy x 可以分解为)32)(2(-++-y x y x ,则____=m .
三、计算题
10、把多项式n n n b b a b a 5324257912-+-分解因式,并注明每一步因式分解所用的方法.
11、已知012)1)((2222=--++y x y x ,求22y x +的值.
四、分解因式:
1、32576x y x y xy --
2、219156n n n x x x ++-- 3 、25724--x x
4、611724-+x x
5、4224257y y x x -+
6、42246117y y x x --
7、3)()(22----b a b a 8、3)()(22-+++n m n m 9、3)2(8)2(42++-+y x y x
10、3168)2(42++--y x y x 11、222215228d c abcd b a +- 12、42248102mb b ma ma +-
13、2592a a -+ 14、2x 2 + 13x + 15 15、22152y ay a --
16、2
210116y xy x ++-
17、22166z yz y -- 18、6)2(5)2(2++++b a b a。

相关文档
最新文档