十字交叉法使用

合集下载

高中化学解题方法——十字交叉法

高中化学解题方法——十字交叉法
详细描述
在化学反应速率问题中,十字交叉法可以用来确定反应速率常数与反应物浓度之 间的关系,从而理解反应速率的变化规律。
03
CATALOGUE
十字交叉法的解题步骤
确定问题类型
01
02
03
混合物计算
当题目涉及混合物时,可 以通过十字交叉法计算混 合物的组成和比例。
平均量计算
当需要计算平均量时,如 平均相对分子质量、平均 摩尔质量等,可以使用十 字交叉法。
高中化学解题方法—— 十字交叉法
汇报人:
202X-01-01
CATALOGUE
目 录
• 十字交叉法的原理 • 十字交叉法的应用 • 十字交叉法的解题步骤 • 十字交叉法的注意事项 • 实例解析
01
CATALOGUE
十字交叉法的原理
原理概述
十字交叉法是一种用于解决混合 物计算问题的化学解题方法。
它通过将混合物的两个组分的质 量或体积进行交叉相乘,来找出 两组分在混合物中的质量比或体
积比。
这种方法适用于解决涉及两种组 分混合的问题,如气体混合、溶
液混合等。
原理的数学表达
则A组分在混合物中 的质量分数为:XA = (m1/M)。
两组分的交叉相乘关
系为:m1XA
=
m2XB。
B组分在混合物中的 质量分数为:XB = (m2/M)。
溶液配制与稀释
总结词
适用于溶液配制和稀释的计算,特别是当涉及溶液的平均量和两个不同浓度的 溶液时。
详细描述
在溶液配制和稀释过程中,十字交叉法可以用来计算两个不同浓度的溶液混合 后的平均浓度,或者确定某一浓度的溶液稀释到另一浓度的比例。
化学反应速率
总结词

有关十字交叉法在化学计算中的应用

有关十字交叉法在化学计算中的应用

有关十字交叉法在化学计算中的应用化学组 庄雅云在现在的考试中,对于知识的掌握很重要,对于能力的掌握也同样很重要。

而掌握一种比较好的计算方法,不仅可以提高自己的计算能力,还可以为自己节省许多的时间,达到事半功倍的效果。

“十字交叉法”是化学计算中常用的一种方法。

一、“十字交叉法”的使用有一定的要求:1、只适用于2种物质组成的混合物2、符合关系式:A 1·b 1 + A 2·b 2= ·(b 1+b 2)二、“十字交叉法”经常出现的有以下几种情况:(一)有关平均摩尔质量的计算M 1·n 1 + M 2·n 2 =·(n 1+n 2) M 1—M 2M 2 M 1—例题1、已知N 2、O 2混合气体的平均摩尔质量为28.8g/mol ,求:混合气体中N 2、O 2的物质的量之比?解析:N 2 28 3.228.8O 2 32 0.8n(N 2):n(O 2) = 3.2:0.8 = 4:1例题2、在标准状况下,由H 2和O 2组成的混合气体的密度等于0.536g/L ,求该混合气体中H 2和O 2的体积比等于多少?n 1—M 2 = n 2 M 1—解析:= ρ·Vm =0.536g/L·22.4L/mol = 12g/molH2 2 2012O232 10V(H2):V(O2) = n(H2):n(O2) = 20:10 = 2:1(二)同位素原子的个数比例题3:已知自然界中铱有两种质量数分别为191和193的同位素,而铱的平均原子量为192.22,则这两位种同位素的原子个数比A、39:61B、61:39C、1:1D、39:11解析:191Ir 191 0.78192.22193Ir 193 1.22n(191Ir):n(191Ir) = 0.78:1.22 = 39:61答案:A(三)利用对于反应的比较求物质的量之比例题4、用1L浓度为1.0mol/L的NaOH溶液吸收了0.80mol CO2气体,所得溶液中CO32—和HCO3—的物质的量之比为:。

十字交叉法解浓度问题

十字交叉法解浓度问题

十字交叉法解浓度问题十字交叉法是解决溶液浓度问题的一种简单有效的方法,通常用于计算不同浓度的液体或溶液的混合比例。

该方法基于比例关系,将给定的溶液容量、浓度和所需混合后的溶液浓度进行杂交,以找到所需的混合比例。

下面将介绍十字交叉法解浓度问题的具体步骤。

步骤一:确定所需的混合溶液浓度和容量首先需要确定目标混合溶液的浓度和容量。

这可以根据具体的实验要求或应用场景进行选择。

例如,如果需要制备100mL的20%浓度的溶液,那么这些信息需要在问题中明确给出。

步骤二:将浓度和容量写成比例式根据比例关系,将目标混合溶液的浓度和容量写成比例式,如下所示:目标溶液浓度/100 = X(所需体积)/与该浓度液体混合的体积例如,对于要制备100mL的20%溶液,可以写成:20/100 = X / (100 - X)其中,X代表所需体积,100-X代表与该浓度液体混合的体积。

步骤三:根据已知条件解出所需的体积将已知条件代入比例式中,解出所需的体积。

以制备100mL的20%溶液为例,可进行以下计算:20/100 = X / (100 - X)化简后得到X = 20mL通过这个比例式,可以得出制备20%浓度的溶液,需要取20mL的纯化液加入80mL的稀释液中。

步骤四:计算所需的纯化液体积根据已知条件和所需的体积,可以计算出所需的纯化液体积。

对于上面的例子,需要取20mL的纯化液体,所以所需的纯化液体积即为20mL。

步骤五:计算所需的稀释液体积最后,开始计算所需的稀释液体积。

根据上面的例子,所需的总体积为100mL,其中20mL是纯化液体,所以所需的稀释液体积为80mL。

通过上述五个步骤,就可以利用十字交叉法解决浓度问题。

需要注意的是,在计算过程中,必须确保所使用的所有单位都是相同的,并且需要对计算结果进行检查,确保其正确无误。

总结十字交叉法是解决浓度问题的一种简单而有效的方法,它可以用于计算不同浓度的液体或溶液的混合比例。

混合增长率十字交叉法使用条件

混合增长率十字交叉法使用条件

混合增长率十字交叉法使用条件混合增长率十字交叉法(MixedGrowthRateCross-sectionalMethod,MGRM)是以时间静态性质研究中所采用的一种方法,以定量研究两个以上行业领域并行增长情况并解释其形成原因的经济研究工具。

MGRM认为,在某一特定的时间点上,由于某种技术的应用或某种新的经济环境的影响,会对行业而言形成混合增长模式,这种混合增长模式可以运用十字交叉法来检验。

MGRM有四个主要的使用条件:(1)行业之间增长必须满足一定的平衡状态;(2)每个行业的增长必须满足相等的条件;(3)行业的增长模式必须显示出一定的稳定性;(4)行业的增长率必须一致。

MGRM的运用需要考虑行业间同构性的因素,有效的划分相同的行业类别,达到多行业的共同增长,进而把握影响市场的各个因素,从而实现经济活动的综合考量。

MGRM在经济学研究中可以用于衡量行业领域相同性和整体性,从而对经济活动的发展趋势进行客观性的分析和论证。

通过MGRM可以研究各个行业之间的关系以及各行业增长和衰退的联系,揭示经济活动发展趋势,这对我们了解经济活动变化趋势,深入分析经济活动的发展规律,加深对经济活动的理解,实现经济环境及变化的客观预判具有重要意义。

MGRM可以用于对流通股市、宏观经济增长趋势等的研究。

它可以检验在某一特定的时间点上,行业增长概率的分布情况,并可以预测出各行业在特定时间点上的增幅预期。

从所得到的结果可以说,MGRM在宏观经济研究中和流通股市研究中都具有重要意义,它能够有效地筛选出影响市场的各项因素,帮助我们分析行业的发展趋势及影响因素,同时,MGRM也能够让我们更深入的了解经济环境的变化,为经济管理者提供可靠的经济研究成果。

综上所述,MGRM是一种极为有用的经济研究工具,它能够有效地测算多行业的增长率及增幅预期,并能够筛选出影响市场的各个因素,有助于我们分析行业发展趋势及影响因素,为经济管理者提供可靠的经济研究成果。

十字交叉法的数学原理和应用

十字交叉法的数学原理和应用

十字交叉法的数学原理和应用
十字交叉法(Cross Multiplication)是数值计算中一种用于求解未知数的方法。

它适用于解决一些方程、比例和分数等相关的数学问题。

该方法基于等式两侧的乘法性质,如果两个有理数的比例相等,那么他们的乘积也相等。

在解决方程问题时,十字交叉法可以用于解决线性方程、二次方程和分式方程。

以线性方程为例,假设有一个线性方程a/b=c/d,其中a、b、c、d分别是已知数,而x是未知数。

利用十字交叉法,我们可以通过以下步骤求解x:
1. 计算a与d的乘积: ad;
2. 计算b与c的乘积: bc;
3. 设置等式: ad = bc;
4. 解出未知数: x = ad / b。

在解决比例和分数问题时,十字交叉法同样适用。

比例问题中,如果有两个比例a/b=c/d,其中a、b、c、d分别是已知数,而x是未知数。

通过十字交叉法,可以用如下步骤求解x:
1. 计算a与d的乘积: ad;
2. 计算b与c的乘积: bc;
3. 设置等式: ad = bc;
4. 解出未知数: x = ad / b。

十字交叉法的应用也十分广泛。

例如,在物理学中,可以利用十字交叉法解决一些力学方程和电路中的电流方程。

在商业中,也可以使用十字交叉法计算成本和利润率等比较问题。

此外,十字交叉法还可以用于解决一些几何问题,如比较线段的长短、角度的大小等等。

总的来说,十字交叉法是一种简单而实用的数值计算方法,可以用于解决各种类型的数学问题。

它通过利用乘法性质,求解未知数,提供了一种直观且易于理解的计算思路。

十字交叉法使用

十字交叉法使用

“十字交叉”法的妙用 化学计算是从数量的角度研究物质的组成、结构、性质变化,涉及到的化学基本概念多,解法灵活多变,且需要跨学科的知识和思维方法,所以该知识点一直是中学化学教与学的难点,但因能较好地训练学生的逻辑思维能力和思维的敏捷性,又能考察学生的双基知识,所以是教学重点,也是各种考试的热点。

如何进行这方面知识的教学,使学生理解和掌握这些知识、发展学力,一直是各位老师研究的热门话题。

本文拟就教学中所得,粗浅地谈一谈“十字交叉法”在化学计算中的应用。

一、适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。

例1:实验测得乙烯与氧气的混合气体的密度是氢气的14.5倍。

可知其中乙烯的质量分数为( )解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。

100 答案:C 。

(解毕)二、十字交叉法的解法探讨:1.十字交叉法的依据:对一个二元混合体系,可建立一个特性方程: ax+b(1-x)=c(a 、b 、c 为常数,分别表示A 组分、B 组分和混合体系的某种平均化学量,如:单位为g/mol 的摩尔质量、单位为g/g 的质量分数等) ;x 为组分A 在混合体系中某化学量的百分数(下同)。

如欲求x/(1-x)之比值,可展开上述关系式,并整理得: ax -bx=c -b 解之,得: 即:ca b c x x --=-1 2.十字交叉法的常见形式:为方便操作和应用,采用模仿数学因式分解中的十字交叉法,记为:3.解法关健和难点所在: 十字交叉法应用于解题快速简捷,一旦教给了学生,学生往往爱用,但是也往往出错。

究其原因,无外乎乱用平均量(即上述a 、b 、c c 组分1 a c -b 混合物 组分2 b a -c C a -c何量之比。

十字交叉法的原理及其应用

十字交叉法的原理及其应用

十字交叉法的原理及其应用一、原理介绍十字交叉法(Cross Impact Matrix)是一种定量分析方法,用于评估不同事件或因素之间的相互影响关系。

该方法通过构建矩阵模型来量化不同变量之间的交叉影响,从而帮助决策者更好地理解复杂系统中的相互作用和潜在结果。

在十字交叉法中,我们将需要考虑的因素或事件定义为行和列,通过一个交叉矩阵来展现它们之间的关系。

交叉矩阵中的每个单元格都代表着相应行和列代表的因素之间的交叉影响程度,常用数字来表示。

通过分析交叉矩阵,我们可以评估每个因素对于其他因素的影响程度,并最终得出相互作用的影响结构。

二、应用场景十字交叉法可以应用于各个领域的决策分析和预测,下面列举了几个主要应用场景:1.风险管理:在风险管理过程中,我们可以使用十字交叉法来评估不同的风险因素之间的相互影响。

通过分析交叉矩阵,我们可以了解不同风险因素之间的潜在关联,并根据这些关联来制定相应的风险管理策略。

2.市场分析:在市场分析中,我们可以利用十字交叉法来评估市场因素对于产品或服务销售的潜在影响。

通过分析交叉矩阵,我们可以了解到不同市场因素之间的交互作用,从而更好地了解市场发展趋势,并制定相应的市场推广策略。

3.项目管理:在项目管理中,我们可以使用十字交叉法来评估项目中的不同因素之间的相互关系。

通过分析交叉矩阵,我们可以了解到不同因素之间的关联,从而更好地规划和管理项目,降低风险。

4.政策制定:在政策制定过程中,我们可以使用十字交叉法来评估不同政策因素之间的相互影响。

通过分析交叉矩阵,我们可以了解到不同政策因素之间的潜在关系,并制定更有效的政策。

三、具体步骤使用十字交叉法进行分析时,可以按照以下步骤进行:1.确定需要评估的因素或事件:首先,确定需要评估的因素或事件,并明确它们之间的关系。

2.构建交叉矩阵:在纸上或电子表格中,构建一个交叉矩阵。

将需要评估的因素或事件作为行和列,并在每个单元格中留出空间。

3.评估交叉影响程度:对于每个单元格,评估行和列代表的因素之间的交叉影响程度。

中考化学十字交叉法的原理及应用

中考化学十字交叉法的原理及应用

中考化学十字交错法的原理及应用
中考化学十字交错法的原理及应用
十字交错法可用于溶液浓度的计算,比如溶液的稀释、浓缩
或混淆等计算题。

使用此法,使解题过程简易、迅速、正确。

下边经过例题介绍十字交错法的原理。

同一物质的甲、乙两溶液的百分比浓度分别为 a%、b%(a%
b%),现用这两种溶液配制百分比浓度为c%的溶液。

问取这两种溶液的质量比应是多少?
同一物质的溶液,配制前后溶质的质量相等,利用这一原理可列式求解。

设甲、乙两溶液各取m1、m2克,两溶液混淆后的溶液质量
是(m1+m2)。

列式m1a%+m2b%=(m1+m2)c%把此式整理得:
m1m2=c-ba-c,m1m2就是所取甲、乙两溶液的质量比。

为了便于记忆和运算,若用C浓取代a,C稀取代b,C混代
替C,m浓取代m1,m稀取代m2,把上式写成十字交错法的一般形式,图示以下:
图示中m浓m稀就是所求的甲、乙两溶液的质量比。

这类运算方法,叫十字交错法。

在运用十字交错法进行计算时要注意,斜找差数,横看结果。

十字交错法的应用
1.相关混淆溶液的计算例1.现有20%和5%的两种盐酸溶
第1 页
液,若要配制600克15%的盐酸溶液,各需20%和5%的盐酸溶液多少克?
剖析与解:此题是用两种已知浓度的溶液来配制所需浓度的溶液,看似是求溶液的质量,本质是先求出两种浓度溶液的质量比,而后问题就水到渠成。

用十字交错法
由图示可知,20%盐酸溶液与5%盐酸溶液的质量比应为
2∶1
第2 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“十字交叉”法的妙用化学计算是从数量的角度研究物质的组成、结构、性质变化,涉及到的化学基本概念多,解法灵活多变,且需要跨学科的知识和思维方法,所以该知识点一直是中学化学教与学的难点,但因能较好地训练学生的逻辑思维能力和思维的敏捷性,又能考察学生的双基知识,所以是教学重点,也是各种考试的热点。

如何进行这方面知识的教学,使学生理解和掌握这些知识、发展学力,一直是各位老师研究的热门话题。

本文拟就教学中所得,粗浅地谈一谈“十字交叉法”在化学计算中的应用。

一、适用范围:“十字交叉法”适用于两组分混合物(或多组分混合物,但其中若干种有确定的物质的量比,因而可以看做两组分的混合物),求算混合物中关于组分的某个化学量(微粒数、质量、气体体积等)的比值或百分含量。

例1:实验测得乙烯与氧气的混合气体的密度是氢气的14.5倍。

可知其中乙烯的质量分数为( )A.25.0%B.27.6%C.72.4%D.75.0%解析:要求混合气中乙烯的质量分数可通过十字交叉法先求出乙烯与氧气的物质的量之比(当然也可以求两组分的质量比,但较繁,不可取),再进一步求出质量分数。

这样,乙烯的质量分数是:ω(C 2H 4)=321283283⨯+⨯⨯×100 %=72.4% 答案:C 。

(解毕)二、十字交叉法的解法探讨:1.十字交叉法的依据:对一个二元混合体系,可建立一个特性方程: ax+b(1-x)=c(a 、b 、c 为常数,分别表示A 组分、B 组分和混合体系的某种平均化学量,如:单位为g/mol 的摩尔质量、单位为g/g 的质量分数等) ;x为组分A 在混合体系中某化学量的百分数(下同)。

如欲求x/(1-x)之比值,可展开上述关系式,并整理得: ax -bx=c -b 解之,得: b a c a x b a b c x --=---=1, 即:ca b c x x --=-1 2.十字交叉法的常见形式:为方便操作和应用,采用模仿数学因式分解中的十字交叉法,记为:3.解法关健和难点所在:c C 2H 4 28 O 2 32 29 3 1组分1 a c -b 混合物组分2 b a -c C十字交叉法应用于解题快速简捷,一旦教给了学生,学生往往爱用,但是也往往出错。

究其原因,无外乎乱用平均量(即上述a 、b 、c 不知何物)、交叉相减后其差值之比不知为何量之比。

关于上述a 、b 、c 这些化学平均量,在这里是指其量纲为(化学量1 ÷化学量2)的一些比值,如摩尔质量(g/mol )、溶液中溶质的质量分数(溶质质量÷溶液质量)或关于物质组成、变化的其它化学量等等。

设计这些平均量时应优先考虑待求量和题给条件,一般情况下尽可能的将待求量设计为上述化学量2(分数中的分母) ,至于化学量1则依题给条件选取最容易获得的化学量(分数中的分子),这样上述第1论点中的a 、b 、c 应该是分别这样的一些化学平均量(如下图):1和组分2的化学平均量的量纲中化学 量2 [如a 、b 、c 为摩尔质量(g/mol )时,便是物质的量 mol]的比值。

例2:把CaCO 3和MgCO 3组成的混合物充分加热到质量不再减少时,称得残留物的质量是原混合物质量的一半。

则残留物中钙和镁两元素原子的物质的量之比是A.1:4B.1:3C.1:1D.1:2解析:上述问题是计算两组分混合物中某两个化学量之比,可用十字交叉法解题。

解题时先设计混合物的平均化学量c ,该题中要求钙和镁两元素原子的物质的量之比(即原子个数比),而平均量中分母(即上述化学量y(组分2))与题给条件相差甚远,故以一摩尔组分质量为分母,一摩尔物质分解后残留物质量为分子而得如下的几个平均量:a=56g÷100g ; b=40g÷84g; c=1/2应用于十字交叉法:即: 所以,原混合物中两组分CaCO 3和MgCO 3物质的量之比(即残留物中Ca 和Mg 的物质的量之比为:n(Ca)∶n(Mg)=(1/42)g ÷100g/mol ∶(3/50) g÷84 g/mol =1∶3答案:B (解毕)注:熟练后或在要表达的计算题中可略去上图,而只以比例式表示,为防止出错,也可在草稿中画上述十字交叉图。

三、十字交叉法的应用与例析:1.两组分混合物中已知组分及混合体系的摩尔质量(或式量),求组分的物质的量之比(或组分气体的体积比、组分物质的微粒数之比):解答这类问题,需设计的平均化学量a 、b 、c 就直接用摩尔质量(g /mol )。

而用十字交叉法交叉相减后所得差值之比是组分的物质的量之比(或微粒数之比),或依阿伏加德罗定律,也等于(相同状态下)气态混合体系中组分气体的体积比。

例3.硼的平均相对原子质量为10.8,硼在自然界中有种同位素:105B 与115B ,则这两种同位素105B 、组分CaCO 3 56/100 1/42 混合物组分MgCO 3 40/84 3/50 1/2 m(MgCO3)11B在自然界中的原子个数比为5A. 1∶2B.1∶4C.1∶6D.1∶8解析:相对原子质量与原子的摩尔质量数值上相等,故元素或原子的相对原子质量可看做十字交叉法中的平均化学量,量纲为g•mol-1,交叉相减后所得差值之比为两同位素的物质的量(即原子数)之比。

答案:B 解毕)2.两种溶液(同溶质)相混合,已知两溶液及混合溶液中溶质的质量分数,求两溶液的质量比:例4.将密度为1.84g•cm-3,质量分数为98%的浓硫酸与水配制成30%的稀溶液,应怎么配制?解析:要配制这种硫酸,必须先求出浓硫酸与水的比例。

因为溶液中溶质的质量分数为溶质质量占溶液质量的分数,所以质量分数实际上也是一种平均化学量,可用于十字交叉法求出浓硫酸和水的质量比。

这样,上述平均化学量a、b、c中的化学量2最好就设计为溶液质量,而化学量1取最方便的就是溶质质量,即平均化学量a、b、c就是溶液中溶质的质量分数,应用于十字交叉法(图略),记为:m(浓硫酸)∶m(水)=(30%-0)∶(98%-30%)=15∶34即取15份质量的浓硫酸与34份质量的水混合得此稀硫酸。

(解毕)3.两可燃物组成的混合体系,已知其组分及混合物的燃烧热,求组分的物质的量之比或百分含量。

例5.在一定条件下,CO和CH4燃烧的热化学方程式分别为:2CO(气)+O2(气)=2CO2(气)+566KJ;CH4(气)+2O2(气)=CO2(气)+2H2O(液)+890KJ现有CO和CH4组成的气体混合物89.6L(标准状态下测定),在上述条件下燃烧,释放的热量为2953KJ,则CO和CH4的体积比为()A. 1∶3B. 3∶1C.1∶2D.2∶1解析:可燃物的反应热以摩尔反应热来表示时,单位是:KJ/mol,因此也可以看做是一个平均化学量,两可燃组分及混合物的反应热可当做十字交叉法基本形式中的a、b、c进行十字交叉,交叉相减后所得差值之比即为两可燃组分的物质的量之比。

解题时设计并先求算气体混合物的反应热:混合气体的物质的量:n=89.6L÷22.4L•mol-1=4.00mol∴混合气体的平均反应热:Q(混合物)=2953KJ÷4.00mol=738.3KJ•mol-1双两组分的反应热分别为:Q(CO)=566KJ÷2mol=283KJ•mo-1;Q(CH4)=890KJ•mol-1这样,十字交叉法就记为:n(CO)∶n(CH4)=(890-738.3)∶(738.3-283)≈1∶3答案:B 。

(解毕)4.其它有关物质组成、变化关系的两组分混合体系,依题意,设计适当的平均化学量,也可用十字交叉法求算两组分的某个化学量的比值或百分含量。

例6.在一定条件下,将25 gCO 2和CO 的混合气体通过灼热的碳粉,使之充分反应,测知所得气体在标准状态下的体积为22.4 L ,则在相同状态下原混合气体中CO 2和CO 的体积比为A.1∶4B.1∶3C.1∶2D.2∶1解析:本题所求为两组分混合气体中组分气体的体积之比(按阿伏加德罗定律,即为两组分气体的物质的量之比),依 ,CO 不与C 反应。

又从反应后的气体体积22.4 L(标态),是1 mol 纯净CO ,总质量为28 g ,即上述反应中气体质量增加了28g -25g=3g ,应用差量法可求得原混合气体的物质的量为:1mol -3 g ÷12 g/mol=0.75mol即原混合气体的摩尔质量是:25g ÷0.75mol=33.3g/mol,将两组分及混合气体的摩尔质量应用于十字交叉法(如下图):∴原混合气体中CO 2与CO 的体积比为:n(CO 2)∶n(CO)=1∶2答案:C 。

(解毕)值得注意的是,有时因题给条件的限制,无法将待求量设计为平均化学量的分母(即化学量2),此时就应以与已知量有关又容易换算为待求量的其它化学量做为平均量中的化学量2例7.KHCO 3和CaCO 3的混合物和等质量的NaHCO 3分别与盐酸完全反应时,所消耗的酸的量相等,则混合物中KHCO 3的质量分数是A.50%B.68%C.81%D.90%解析:根据KHCO 3和CaCO 3分别与酸反应的化学方程式:KHCO 3+HCl=KCl+H 2O+CO 2↑ CaCO 3+2HCl=CaCl 2+H 2O+CO 2↑依题意,上述混合物每消耗1摩尔HCl 需质量84 g,而组分KHCO 3和CaCO 3 每消耗1摩尔HCl 需质量分别是100g 和50g ,这样就可以把反应中消耗的HCl 设计为上述平均化学量中化学量2,而与HCl 反应消耗的固体物质质量设计为化学量1,应用于十字交叉法并记为 :即:又从上述化学方程式可看出,每消耗1mol 酸需KHCO 3 1mol,而CaCO 3则需0.5 mol 。

所以混合物中两组分KHCO 3和CaCO 3物质的量之比是:n(KHCO 3)∶n(CaCO 3)=17∶(8÷2)=17∶4混合物中KHCO 3的质量分数是:KHCO 3100 CaCO 3 5084 34 16 CO 2+C===== 2CO 高温答案:C 。

(解毕)例8.使乙烷和丙烷的混合气体完全燃烧后,可得CO 2 3.52 g ,H 2O 1.92 g ,则该混合气体中乙烷和丙烷的物质的量之比为A.1∶2B.1∶1C.2∶3D.3∶4解析:该题已知混合气体完全燃烧后生成CO 2和H 2O 的质量,从中可以计算出这两种物质的物质的量,n(CO 2)=3.52g÷44g/mol=0.08mol 、n(H 2O)=1.92g ÷18g/mol=0.11mol ;进而求出混合气体中每含1摩C 所含H 的物质的量,0.11mol ×2÷0.08mol=11/4;而组分气体中乙烷和丙烷的同样定义的化学量分别是,乙烷C 2H 6为3,丙烷C 3H 8为8/3;将这些平均量应用于十字交叉法可得这两组分气体在混合气体中所含C 原子数之比。

相关文档
最新文档