初一数学竞赛讲座(三)
初一数学竞赛讲座

初一数学竞赛讲座第3讲奇偶分析我们知道,全体自然数按被2除的余数不同可以划分为奇数与偶数两大类。
被2除余1的属于一类,被2整除的属于另一类。
前一类中的数叫做奇数,后一类中的数叫做偶数。
关于奇偶数有一些特殊性质,比如,奇数≠偶数,奇数个奇数之和是奇数等。
灵活、巧妙、有意识地利用这些性质,加上正确的分析推理,可以解决许多复杂而有趣的问题。
用奇偶数性质解题的方法称为奇偶分析,善于运用奇偶分析,往往有意想不到的效果。
例1 右表中有15个数,选出5个数,使它们的和等于30,你能做到吗?为什么?分析与解:如果一个一个去找、去试、去算,那就太费事了。
因为无论你选择哪5个数,它们的和总不等于30,而且你还不敢马上断言这是做不到的。
最简单的方法是利用奇偶数的性质来解,因为奇数个奇数之和仍是奇数,表中15个数全是奇数,所以要想从中找出5个使它们的和为偶数,是不可能的。
例2 小华买了一本共有96张练习纸的练习本,并依次将它的各面编号(即由第1面一直编到第192面)。
小丽从该练习本中撕下其中25张纸,并将写在它们上面的50个编号相加。
试问,小丽所加得的和数能否为2000?解:不能。
由于每一张上的两数之和都为奇数,而25个奇数之和为奇数,故不可能为2000。
说明:“相邻两个自然数的和一定是奇数”,这条性质几乎是显然的,但在解题过程中,能有意识地运用它却不容易做到,这要靠同学们多练习、多总结。
例3 有98个孩子,每人胸前有一个号码,号码从1到98各不相同。
试问:能否将这些孩子排成若干排,使每排中都有一个孩子的号码数等于同排中其余孩子号码数的和?并说明理由。
解:不能。
如果可以按要求排成,每排中都有一个孩子的号码数等于同排中其余孩子号码数的和,那么每一排中各号码数之和都是某一个孩子号码数的2倍,是个偶数。
所以这98个号码数的总和是个偶数,但是这98个数的总和为1+2+…+98=99×49,是个奇数,矛盾!所以不能按要求排成。
七年级数学上培优辅导讲座 第03讲 有理数的加减乘除运算拔尖训练能力提升竞赛辅导试题含答案

第三讲 有理数的加减乘除运算培优训练 1.(2013,南京),计算12-7×(-4)+8÷(-2)的结果是( ). A . -24 B .-20 C .6 D .36 2.(2012,绍兴)在一条笔直的公路边,有一些树和灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离都是10 m ,如图,第一棵树左边5m 处有一个路牌,则从此路牌起向右510 m ~550 m 之间树与灯的排列顺序是( ).3(2013,杭州)32 ×3.14+3×(-9.42)= . 4.计算:0-(-2)= ;(12-1)×(23-)= ;4-÷ =-2 5如果2(a 1)20b -++=,则220082007(b a)(a b)2(a b)ab -++++= .6.计算:(1)(-16.75)- 435-+( 1164+)+4.4; (2)-32÷3+(1223-)×12-32.7.计算:(1)-16-(-8)+(-11)-2; (2)(-22)+(-2÷12)- 3-×(-1)2011.8.初一某班有60名学生,在周练中分数超过90分的部分用正分表示,不足90分的部分用负分表示,在与90分的差值(单位:分) -26 -18 -8 0 8 15 人数481218108(1)该班的最高分与最低分相差____;(2)该班成绩低于90分的同学占全班同学的百分比是多少? (3)计算出该班这次数学周练的平均成绩.9.(武汉二中)10月,武汉二中广雅中学举行秋季运动会,初一某班选取36名同学参加入场式,若以160cm(1)有一栏记录被墨迹盖住,请求出该身高的同学有几人? (2)这36名同学的平均身高是多少?10.已知a ,b 互为相反数,c ,d 互为倒数,12x -=.求(a b)x cdx x++-的值.竞赛训练11.(华师一附中理科招生)若实数x ,y 使得x +y ,x -y ,xy ,xy这四个数中的三个数相等,则y x -的值等于( ).A . 12-B .0C .12D .3212.(2011,“城市杯”竞赛) 1111120023003400460068008+++-=( ) A .16006 B . 17007- C . 98008 D . 19009-13.(2013,武汉市武珞路中学)让我们轻松一下,做一个抽签游戏.有一个盒子里面有三张纸签,每个纸签上分别写有一个数,它们分别是-0.31,-3.69,+122,甲从中抽出一个纸签,看完纸签上的数后放回盒子中,将盒子中的纸签摇匀后,再抽出一个纸签看完纸签上的数后,将两次的数相乘,再放回盒子中,你能算出所有这样的乘积的总和吗? 答案:总和为____(填一填).14. (2013,武汉二中):将1,2,3,…,40,这40个自然数,任意分成20组,每组两个数,现将每组两个数中任一数值记作a ,另一个记作b (a >b )代入式子1(a b)2a b -++中进行计算,求出其结果,代入后可求得20个值,求这20个值的和的最大值____.15.(华师一附中理科招生)整数x 0,x 1,x 2,…,x 2008满足条件:x 0=1,101x x =+,211x x =+,…,200820071x x =+,则0122008...x x x x ++++的最小值为16(2011,长郡中学自主招生)用数字1,2,3,4,5,6,7,8不重复地填写在下面连等式的方框中,使这个连等式成立:1+口+口=9+口+口 =8+口+口 =6+口+口 17.(2011,蚌自主招生)按下列程序进行运算.规定:程序运行到“判断结果是否大于244”为一次运算,若x =5,则运算进行____次才停止;若运算进行了5次才停止,则x 的取值范围是____.18.图中显示的填数“魔方”只填了一部分,将下列9个数:14,12,1,2,4,8,16, 32, 64填入方格中,使得所有行、列及对角线上各数相乘的积相等.求图中x 的值. 32 x64参考答案: 1.D2. B [提示:因为相邻的树与树,树与灯闻的距离都是10 m ,所以相邻两灯之间是40m .12×40=480,13×40= 520.而第一棵树左边5m 处有一个路牌,所以从此路牌起向右510 m -550m 之间树与灯的排列顺序是B ]3.0. 4. 2;1;-2.5.- 2.[提示;易知a =1,b =-2,则220082007()()2()ba ab ab a b = 220082007(21)(12)21(2)(12)= 9141=-2]6.(1)原式=-16.75-3.8+16.25+4. 4=-0.1.(2)原式=-9÷3+(-16)×12-9=-3-2-9=-14.7.(1)原式=-16+8-11-2=-21.(2)原式=-4+(-4)-3×(-1)=-8+3=-5. 8. (1)41. (2)(4+8+12) ÷60=24÷60=40%. (3)90+(26)4(18)8(8)1281015860= 90+(-2.4)=87.6(分).9.(1)36-5-4- 5-5= 17(人).(2)3554(1)1725(2)536+160=160.5(cm ).10.∵ a .b 互为相反数,c ,d 互为倒数,∴a +b =0,cd =1∵12x -=,∴x =3或-1.当x =3时,(a b)x cd x x++-=13+0- 3=-223;当x =-1时,(a b)x cd x x++-=11+0-1=-211.C [提示:若x +y =x -y ,则y =0,这与x y 有意义矛盾,∴x +y ≠x -y ,则x +y =xy =x y 或x -y =xy =xy.由xy =xy可知xy 2=x , ∴x =0或y =±1.若x =0,则y =0,不合题意;若y =1, 则x +1=x ,不合题意;若y =-1,则x -1=-x ,故x =12,此时y =-1,∴y -x =1-12=12]12.C [提示:原式=11001(12+13+14+16-18)=11001×98=98008] 13.2. 25.[提示:总和为(-0.31-3.69+212)2=(-1.5)2 =2.25.]14. 610.[提示:∵a >b ,∴12(a b +a +b )=12(a -b +a +b )=a ,故分组时,只要这20组中的a 对应的数分别为40,39,38,…,21时,和最大.] 15.8.16. 1+8+6=9+5+1=8+3+4=6+7+2.17.4;2<x ≤4. [提示:(1)x =5,第一次:5×3-2=13, 第二次:13×3-2= 37,第三次:37×3-2=109, 第四次:109×3-2=325>244→停止. (2)第1次,结果是3x -2.第2次,结果是3×(3x -2)-2=9x -8;第3次,结果是3×(9x-8)-2=27x-26;第4次,结果是3×(27x-26) -2=81x-80;第5次,结果是3×(81x-80) -2=243x-242;∴243x-242>244……①,81x-80≤244……②,由①式子得x>2;由②式子得x≤4.∴2<x≤4,即5次停止的x的取值范围是2<x≤4.]18.这9个数的积为14×12×1×2×…×64=643所以每行、每列、每条对角线上三个数字之积为64 得ac=1,ef=1,ax=2.所以a,c,e,f分别为14,4,2,12,故x=8(如图所示)第18题图。
人教七年级上学期竞赛入门辅导讲义,共十讲,很实用

又如7007700-14=686,68-12=56(能被7整除)
能被11整除的数的特征:
①抹去个位数②减去原个位数③其差能被11整除
如1001100-1=99(能11整除)
又如102851028-5=1023102-3=99(能11整除)
二、例题
例1已知两个三位数328和2x9的和仍是三位数5y7且能被9整除.求x,y
第一讲数的整除
一、内容提要:
如果整数A除以整数(B≠0)所得的商A/B是整数,那么叫做A被B整除.
0能被所有非零的整数整除.
一些数的整除特征
除数
2或5
4或25
8或125
3或9
11
能被整除的数的特征
末位数能被2或5整除
末两位数能被4或25整除
末三位数能被8或125整除
各位上的数字和被3或9整除(如771,54324)
数和最犬的公约数.
6.公约数只有1的两个正整数叫做互质数(例如15与28互质).
7.在有余数的除法中,
被除数=除数×商数+余数若用字母表示可记作:
A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除
例如23=3×7+2则23-2能被3整除.
二、例题
例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以应用:
9从1到100这100个自然数中,能同时被2和3整除的共_____个,
能被3整除但不是5的倍数的共______个.
10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不
能被3整除的数共有几个?为什么?
11己知五位数1234A能被15整除,试求A的值.
七年级数学竞赛讲座 线段与角

线段与角【知识要点】1. 线段线段具有比两个端点,是直线的一部分;把线段向一方无限延伸就可以得到射线。
线段与直线的重要性质: (1) 两点之间,线段最短;(2) 经过两点有一条直线,并且只有一条直线。
分线段计数公式:在线段上取n-2个点,若端点记在内时,线段上共有n 个点,此线段被分成的各类线段总条数:(1)(1)212n n n --+⋅⋅⋅++=2. 角角看做一条射线绕着它的端点旋转而成的图形。
小于平角的角可以分为:锐角、直角、钝角。
它们的范围:0°﹤锐角﹤90°,直角=90°,90°﹤钝角﹤180°。
(1) 两个角的和等于90°(直角),就说这两个角互为余角;两个角的和等于180°(平角),就说这两个角互为补角。
(2) 同角(或等角)的余角(或补角)相等。
【例题讲解】例1 已知:AB ∶BC ∶CD=2∶3∶4,E ,F 分别是AB 和CD 的中点,且EF=12厘米(cm),求AD 的长(如图1-6).例2 在直线l 上取 A ,B 两点,使AB=10厘米,再在l 上取一点C ,使AC=2厘米,M ,N 分别是AB ,AC 中点.求MN 的长度(如图1-7).例3 如图1-8所示.在一条河流的北侧,有A,B两处牧场.每天清晨,羊群从A出发,到河边饮水后,折到B处放牧吃草.请问,饮水处应设在河流的什么位置,从A到B羊群行走的路程最短?例4将长为10厘米的一条线段用任意方式分成5小段,以这5小段为边可以围成一个五边形.问其中最长的一段的取值范围.例6若时钟由2点30分走到2点50分,问时针、分针各转过多大的角度?例7时钟里,时针从5点整的位置起,顺时针方向转多少度时,分钟与时针第一次重合(图1-11)?例8 在4点与5点之间,时针与分针在何时(1)成120°(图1-12);(2)成90°(图1-12).练习十一1.如图1-14所示.B,C是线段AD上两点,M是AB的中点,N是CD的中点.若MN=a,BC=b,求AD.2.如图1-15所示.A2,A3是线段A1A4上两点,且A1A2=a1,A1A3=a2,A1A4=a3.求线段A1A4上所有线段之和.3.如图1-16所示.两个相邻墙面上有A,B两点,现要从A点沿墙面拉一线到B点.问应怎样拉线用线最省?4.互补的两角之差是28°,求其中一个角的余角.5.如图1-17所示.OB平分∠AOC,且∠2∶∠3∶∠4=2∶5∶3.求∠2,∠3,∠4.6.在晚6点到7点之间,时针与分针何时成90°角?7.在4点到6点之间,时针与分针何时成120°角?。
面积与面积解题——初一数学竞赛系列讲座(3)

b。SN F P D— c— b .
‘
.
、.
Ⅳ : 尸
b D M ;
r6 / : Q
L一/
由于 S QN 一 ( —b 一 ( a pR c ) d— )一 ( a+c 一 )
反 思 : 番 与分 割 、 接 是 解 复 杂 图 形 面 积 的 重 拼
重要 方 法.
.
。
Ⅳ
}
b M ' O
r
‘
饼 例2 如图41, ()在半径为4m的圆0 c
i 一
中, AB 弦 上C 于 N , D AB, D 把 圆分 成 四块 , C 圆心
0 落在 f块 中 ,M上C 于 M , oM一1c 点 M O D 且 m,
1 .平行 该 底边 上 h( h为
的高 )
2 三角形面积 一去n ( . ;n为三角形的底边长, h为该底边上的高) 3 .梯形面积一去( +bh—mh 口6m分别为上底、 口 ) ;(,, 下底、 中位
线 的长 , h为高 ) 4 .圆的 面积 一 7 ;r 圆 的半径 ) c (为 5 .扇 形面 积 一 .( 为 圆的半 径 , 为扇形 的 圆心 角的度 数 ) r
维普资讯
,
解 得 , 一 1 故 5 e 一 . △
,
K △ s 眦 一 ,则 5 c H 一 2 △ ,5 n H = 一 .由 5 一 △e = = △
2 AB 得 方 程 一 一 2× 3 . 得 , 一 1 故 ,FH = 5 一 S CH 解 56 = △ =
初一数学竞赛讲座(三)数字、数位及数谜问题

初一数学竞赛讲座(三)数字、数位及数谜问题一、一、知识要点1、整数的十进位数码表示一般地,任何一个n 位的自然数都可以表示成:122321*********a a a a a n n n n +⨯+⨯++⨯+⨯---其中,a i (i=1,2,…,n )表示数码,且0≤a i ≤9,a n ≠0。
对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n -2、正整数指数幂的末两位数字(1) (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末位数字就是a n 的末位数字。
(2) (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末位数字与m q 的末位数字相同。
3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。
这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑"、“猜”的方法求解,是一种有趣的数学游戏。
二、二、例题精讲例1、有一个四位数,已知其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数.分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。
解:设所求的四位数为a ⨯103+b ⨯102+c ⨯10+d ,依题意得:(a ⨯103+b ⨯102+c ⨯10+d)+( d ⨯103+c ⨯102+b ⨯10+a)=9988∴ (a+d ) ⨯103+(b+c) ⨯102+(b+c) ⨯10+ (a+d )=9988比较等式两边首、末两位数字,得 a+d=8,于是b+c18又∵c —2=d,d+2=b ,∴b-c=0从而解得:a=1,b=9,c=9,d=7故所求的四位数为1997评注:将整数用十进位数码表示,有助于将已知条件转化为等式,从而解决问题.例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数",试求所有的三位“新生数”。
初中七年级数学竞赛培优讲义

初中七年级数学竞赛培优讲义《初中七年级数学竞赛培优讲义》哎呀,一提到数学竞赛培优讲义,我这心里就像揣了只小兔子,怦怦直跳!为啥?因为这可真是个充满挑战又超级有趣的东西啊!你想想,数学就像一座神秘的城堡,里面藏着无数的宝藏和秘密。
而七年级的数学竞赛培优讲义,那就是打开这座城堡大门的一把神奇钥匙!我们先来说说那些有趣的几何图形吧。
三角形、四边形、圆形,它们就像是城堡里不同形状的房间。
三角形稳定得像泰山,不管怎么推怎么挤,它都稳稳当当的,难道这还不够神奇吗?四边形呢,有时候像个调皮的孩子,轻轻一拉就变形了。
圆形就更妙啦,像个超级大皮球,从哪个角度看都那么圆润可爱。
再讲讲代数部分,那些字母和数字的组合,就像是一场精彩的魔术表演。
X、Y 一会儿变大,一会儿变小,一会儿又消失不见,然后又突然冒出来,这难道不像魔术师手中的道具,让人眼花缭乱又惊喜连连?我们在课堂上,老师拿着培优讲义,就像拿着一本武功秘籍,给我们传授着一招一式。
“同学们,这道题可不容易哦,大家好好想想!”老师这么一说,大家都皱起了眉头,开始苦思冥想。
我心里想:“哼,我就不信我解不出来!”然后和同桌小声嘀咕:“你觉得从哪里入手好?”同桌挠挠头:“我也不太清楚呢,咱们再看看。
”小组讨论的时候那才热闹呢!“我觉得应该这样做。
”“不对不对,应该那样。
”大家争得面红耳赤,可谁也不服谁。
最后老师来给我们指点迷津,一下子就恍然大悟,那种感觉,就像在黑暗中突然看到了光明,别提多兴奋啦!做数学竞赛题,有时候就像爬山。
一开始觉得山坡好陡啊,怎么爬都爬不上去。
可是当你咬咬牙,坚持一下,突然就发现找到了一条小路,然后顺着这条路,一下子就爬到了山顶,那种成就感,简直无与伦比!数学竞赛培优讲义里的每一道题,都是一个小怪兽,我们就是勇敢的战士,拿着知识的武器去打败它们。
有时候会被小怪兽打得晕头转向,但是只要不放弃,总有战胜它们的时候。
经过这么长时间的学习和努力,我深深地觉得,数学竞赛培优讲义虽然难,但是它就像一个超级好玩的游戏,只要你用心去玩,就能从中获得无尽的乐趣和收获。
初中数学竞赛辅导专题讲座

初中数学竞赛辅导专题讲座标题:初中数学竞赛辅导专题讲座尊敬的各位家长和同学们,欢迎来到这次专题讲座。
本次讲座旨在为各位同学提供初中数学竞赛辅导,帮助大家更好地备战比赛,提升数学能力和自信心。
一、认识初中数学竞赛初中数学竞赛是一项以初中学生为参赛对象的数学竞赛活动,其目的是通过竞赛激发学生学习数学的兴趣和积极性,提高学生的数学思维能力和解决问题的能力。
竞赛内容涉及几何、代数、概率与统计等多个领域,对参赛者的数学基础和解题能力有较高的要求。
二、辅导方法1.题目练习:通过做题的方式,加深对知识点的理解和掌握。
建议同学们选择一些经典的数学竞赛题目进行练习,以达到举一反三的效果。
2.思路讲解:在解题过程中,引导学生思考,找出解题的方法和思路。
通过讲解,让学生理解解题的思路和步骤,提高解题效率。
3.知识点梳理:将竞赛内容按照知识点进行分类,帮助学生梳理知识体系,让学生对知识点有一个全面的了解。
4.团队协作:在辅导过程中,鼓励学生进行讨论和交流,培养团队协作精神。
通过合作,让学生互相学习,发现自己的不足之处,提高自己的解题能力。
三、重点难点分析1.重点:初中数学竞赛的重点在于掌握数学的基本知识和解题方法,学会灵活运用知识点进行解题。
此外,还需要具备较强的思维能力和逻辑推理能力。
2.难点:初中数学竞赛的难点在于题目难度较高,需要学生有较好的数学基础和较强的思维能力。
同时,题目涉及的领域较广,需要学生具备综合运用知识的能力。
四、总结与展望通过本次讲座,同学们可以更好地了解初中数学竞赛的内容和方法,掌握一些解题技巧和思路,提高自己的数学能力和解题效率。
也希望大家能够在平时的学习中,多加练习,积累经验,为日后的数学学习和竞赛打下坚实的基础。
最后,祝愿各位同学能够在数学竞赛中取得优异的成绩,为自己的未来发展添砖加瓦!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学竞赛讲座(三)数字、数位及数谜问题一、一、知识要点1、整数的十进位数码表示一般地,任何一个n 位的自然数都可以表示成:122321*********a a a a a n n n n +⨯+⨯++⨯+⨯---其中,a i (i=1,2,…,n)表示数码,且0≤a i ≤9,a n ≠0.对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n -2、正整数指数幂的末两位数字(1) (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末位数字就是a n 的末位数字。
(2) (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末位数字与m q 的末位数字相同。
3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。
这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜”的方法求解,是一种有趣的数学游戏。
二、二、例题精讲例1、有一个四位数,已知其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。
分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。
解:设所求的四位数为a ⨯103+b ⨯102+c ⨯10+d ,依题意得:(a ⨯103+b ⨯102+c ⨯10+d)+( d ⨯103+c ⨯102+b ⨯10+a)=9988∴ (a+d) ⨯103+(b+c) ⨯102+(b+c) ⨯10+ (a+d)=9988比较等式两边首、末两位数字,得 a+d=8,于是b+c18又∵c-2=d ,d+2=b ,∴b-c=0从而解得:a=1,b=9,c=9,d=7故所求的四位数为1997评注:将整数用十进位数码表示,有助于将已知条件转化为等式,从而解决问题。
例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。
分析:将所有的三位“新生数”写出来,然后设出最大、最小数,求差后分析求出所有三位“新生数”的可能值,再进行筛选确定。
解:设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c(a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为cba 。
由“新生数”的定义,得 N=()()()c a a b c c b a cba abc -=++-++=-991010010100 由上式知N 为99的整数倍,这样的三位数可能为:198,297,396,495,594,693,792,891,990。
这9个数中,只有954-459=495符合条件。
故495是唯一的三位“新生数”评注:本题主要应用“新生数”的定义和整数性质,先将三位“新生数”进行预选,然后再从中筛选出符合题意的数。
这也是解答数学竞赛题的一种常用方法。
例3 从1到1999,其中有多少个整数,它的数字和被4整除?将每个数都看成四位数(不是四位的,在左面补0),0000至1999共2000个数。
千位数字是0或1,百位数字从0到9中选择,十位数字从0到9中选择,各有10种。
在千、百、十位数字选定后,个位数字在2到9中选择,要使数字和被4整除,这时有两种可能:设千、百、十位数字和为a ,在2,3,4,5中恰好有一个数b ,使a+b 被4整除(a+2、a+3、a+4、a+5除以4,余数互不相同,其中恰好有一个余数是0,即相应的数被4整除);在6,7,8,9中也恰好有一个数c(=b+4),使a+c 被4整除。
因而数字和被4整除的有:2⨯10⨯10⨯2=400个再看个位数字是0或1的数。
千位数字是0或1,百位数字从0到9中选择,在千、百、个位数字选定后,十位数字在2到9中选择。
与上面相同,有两种可能使数字和被4整除。
因此数字和被4整除的又有:2⨯2⨯10⨯2=80个。
在个位数字、十位数字、千位数字均为0或1的数中,百位数字在2到9中选择。
有两种可能使数字和被4整除。
因此数字和被4整除的又有:2⨯2⨯2⨯2=16个。
最后,千、百、十、个位数字为0或1的数中有两个数,数字和被4整除,即1111和0000,而0000不算。
于是1到1999中共有400+80+16+1=497个数,数字和被4整除。
例4 圆上有9个数码,已知从某一位起把这些数码按顺时针方向记下,得到的是一个9位数并且能被27整除。
证明:如果从任何一位起把这些数码按顺时针方向记下的话,那么所得的一个9位数也能被27整除。
分析:把从某一位起按顺时针方向记下的9位数记为:9321a a a a ,其能被27整除。
只需证明从其相邻一位读起的数:1932a a a a 也能被27整除即可。
证明:设从某一位起按顺时针方向记下的9位数为:9321a a a a 依题意得:9321a a a a =987281101010a a a a +⨯++⨯+⨯ 能被27整除。
为了证明题目结论,只要证明从其相邻一位读起的数:1932a a a a 也能被27整除即可。
1932a a a a =197382101010a a a a +⨯++⨯+⨯∴10•9321a a a a -1932a a a a=10(987281101010a a a a +⨯++⨯+⨯ )-(197382101010a a a a +⨯++⨯+⨯ ) =101010109738291⨯++⨯+⨯+⨯a a a a -(197382101010a a a a +⨯++⨯+⨯ ) =()()13191911100011010a a a a -=-=-⨯∵()()()1100010009991100010001100011000223++=++-=- 而999能被27整除,∴10003-1也能被27整除。
因此,1932a a a a 能被27整除。
从而问题得证。
评注:本题中,109-1难以分解因数,故将它化为10003-1,使问题得到顺利解决。
这种想办法降低次数的思想,应注意领会掌握。
例5 证明:111111+112112+113113能被10整除分析:要证明111111+112112+113113能被10整除,只需证明111111+112112+113113的末位数字为0,即证111111,112112,113113三个数的末位数字和为10。
证明:111111的末位数字显然为1;112112=(1124)28,而1124的末位数字是6,所以112112的末位数字也是6;113113=(1134)28•113,1134的末位数字是1,所以113113的末位数字是3;∴111111,112112,113113三个数的末位数字和为1+6+3=10∴111111+112112+113113能被10整除评注:本题是将证明被10整除转化为求三数的末位数字和为10。
解决数学问题时,常将未知的问题转化为熟知的问题、复杂的问题转化为简单的问题,这是化归思想。
例6 设P (m)表示自然数m 的末位数,()()n P n P a n -=2 求199521a a a ++的值。
解:199521a a a ++=()()112P P -+()()222P P -+…+()()199519952P P - =()()()[]()()()[]199521199521222P P P P P P +++-+++ =()()199521199521222+++-+++ P P ∵1995=10⨯199+5,又因为连续10个自然数的平方和的末位数都是5∴()()()51995432119952122222222⨯+++++=+++P P P =5+5=10又()⎪⎭⎫ ⎝⎛⨯=+++219961995199521P P =0 ∴199521a a a ++=10评注:本题用到了连续10个自然数的平方和的末位数都是5这个结论。
例7 1111111=+++++?????? 请找出6个不同的自然数,分别填入6个问号中,使这个等式成立。
(第三届华杯赛口试题)分析:分子为1分母为自然数的分数称作单位分数或埃及分数,它在很多问题中经常出现。
解决这类问题的一个基本等式是:()11111+++=n n n n ,它表明每一个埃及分数都可以写成两个埃及分数之和。
解:首先,1=2121+ 从这个式子出发,利用上面给出的基本等式,取n=2可得: 613121+= ∴1=613121++又利用上面给出的基本等式,取n=3可得:1214131+= ∴ 1=611214121+++ 再利用上面给出的基本等式,取n=4可得:2015141+=∴ 1=611212015121++++最后再次利用上面给出的基本等式,取n=6可得:4217161+= ∴ 1=421711212015121+++++即可找出2,5,20,12,7,42六个自然数分别填入6个问号中,使等式成立。
评注:1、因为问题要求填入的六个自然数要互不相同,所以每步取n 时要适当考虑,如:最后一步就不能取n=5,因为n=5将产生30161+,而61已出现了。
2、本题的答案是不唯一的,如最后一步取n=12,就可得:1=6115611312015121+++++例8 如图,在一个正方体的八个顶点处填上1到9这些数码中的8个,每个顶点处只填一个数码,使得每个面上的四个顶点处所填的数码之和都相等,并且这个和数不能被那个未被填上的数码整除。
求所填入的8个数码的平方和。
(第12届“希望杯”数学竞赛培训题)解:设a 是未填上的数码,s 是每个面上的四个顶点处所填的数码之和,由于每个顶点都属于3个面,所以6s=3(1+2+3+4+5+6+7+8+9)-3a即6s=3•45-3a ,于是2s=45-a ,可以断定a 是奇数而a 不整除s ,所以a 只能是7,则填入的8个数码是1,2,3,4,5,6,8,9,它们的平方和是:12+22+32+42+52+62+82+92=236例9在右边的加法算式中,每个 表示一个数字,任意两个数字都不同。
试求A 和B 乘积的最大值。
+)A B分析:先通过运算的进位,将能确定的 确定下来,再来分析求出A 和B 乘积的最大值。
解:设算式为:ab c+) d e fg h A B显然,g=1,d=9,h=0a+c+f=10+B ,b+c=9+A, ∴A ≤62 (A+B)+19=2+3+4+5+6+7+8=35,∴A+B=8要想A •B 最大,∵ A ≤6,∴取A=5,B=3。