人教版2020-2021学年度上学期期末考试数学试卷(Word版 含解析)

合集下载

2020-2021学年山东省青岛市高一(上)期末数学试卷 (含解析)

2020-2021学年山东省青岛市高一(上)期末数学试卷 (含解析)
所以A∩B={0,1}.
故选:B.
2.命题“对∀x∈R,都有sinx≤1”的否定为( )
A.对∀x∈R,都有sinx>1B.对∀x∈R,都有sinx≤﹣1
C.∃x0∈R,使得sinx0>1D.∃x0∈R,使得sinx≤1
解:∵全称命题的否定是特称命题,
∴命题“对∀x∈R,都有sinx≤1”的否定为:∃x0∈R,使得sinx0>1;
=(sin2x﹣cos2x)(sin2x+cos2x)+2sinxcosx
=sin2x+sin2x﹣cos2x=sin2x﹣cos2x
= sin(2x﹣ ),
则最小正周期T= ,
故选:C.
5.已知a=sin160°,b=cos50°,c=tan110°,则a,b,c的大小关系为( )
A.a<b<cB.c<b<aC.c<a<bD.a<c<b
(1)写出f(x)=sinx和g(x)=cosx在[0,π]上的一个“Ω区间”(无需证明);
(2)若f(x)=x3,[﹣1,1]是f(x)和g(x)的“Ω区间”,证明:g(x)不是偶函数;
(3)若 ,且f(x)在区间(0,1]上单调递增,(0,+∞)是f(x)和g(x)的“Ω区间”,证明:g(x)在区间(0,+∞)上存在零点.
C.f(﹣x)=3﹣x﹣3x=﹣(3x﹣3﹣x)=﹣f(x),则函数f(x)是奇函数,在R上是增函数,满足条件,
D.f(﹣x)=﹣xcos(﹣x)=﹣xcosx=﹣f(x),则f(x)是奇函数,f(0)=0,f(π)=﹣π,则f(x)不是增函数,不满足条件.
故选:AC.
11.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则下列正确的是( )

2020-2021学年甘肃省兰州市第一中学高一上学期期末考试数学试题 Word版

2020-2021学年甘肃省兰州市第一中学高一上学期期末考试数学试题 Word版

兰州一中2020-2021-1学期期末考试试题高一数学命题人:陈小豹 审题人:刘雪峰说明:本试卷分第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分.满分150分,考试时间120分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.............) 1.如图,A B C '''∆是水平放置的△ABC 的斜二测直观图,其中2O C O A O B ''''''==,则以下说法正确的是( )A .△ABC 是钝角三角形B .△ABC 是等腰三角形,但不是直角三角形C .△ABC 是等腰直角三角形D .△ABC 是等边三角形2.已知直线l 1:2x +(a +5)y -8=0,l 2:(a +3)x +4y +3a -5=0平行,则实数a 的值为( )A .﹣1或﹣7B .﹣7C .﹣1D .133- 3. 用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是( )A .圆锥B .圆柱C .三棱锥D .正方体4.已知三条直线a ,b ,c 满足:a 与b 平行,a 与c 异面,则b 与c ( )A .一定异面B .一定相交C .不可能平行D .不可能相交5.在三棱锥A ﹣BCD 中,若AD ⊥BC ,AD ⊥BD ,那么必有( )A .平面ADC ⊥平面BCDB .平面ABC ⊥平面BCDC .平面ABD ⊥平面ADC D .平面ABD ⊥平面ABC 6.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,AD 的中点,则异面直线B 1C 与EF 所成角的大小为( )A .30°B .45°C .60°D .90°7.过点A (2,1),B (m ,3)的直线的倾斜角α的范围是0045135α<<,则实数m 的取值范围是( )A .0<m ≤2B .0<m <4C .2≤m <4D .0<m <2或2<m <48.已知l ,m 是两条不同的直线,α,β是两个不同的平面,且l ∥α,m ⊥β,则下列命题中不正确的是( )A .若α∥β,则m ⊥αB .若α∥β,则l ⊥mC .若l ⊥m ,则l ∥βD .若m ∥α,则α⊥β 9.若三条直线x ﹣2y +2=0,x =2,x +ky =0将平面划分成6个部分,则k 可能的取值情况是 ( )A .只有唯一值B .有两个不同的值C.有三个不同的值D.无穷多个值10.已知某几何体是由正四棱柱割去两部分后得到,其三视图如图所示,则该几何体的表面积和体积为()A.573,3+,B.73,5+C.533,3+D.13,5+11.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵ABC﹣A1B1C1中,已知AB=3,BC=4,AC=5,若阳马C1﹣ABB1A1的外接球的表面积等于50π,则鳖臑C1﹣ABC的所有棱中,最长的棱的棱长为()A.5B.41C.52D.812.在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A.2B.1C.83D.43第Ⅰ卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上..........)13.已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则它的母线长为.14.已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为________.15.如图,在四面体A-BCD中,已知棱AC的长为2,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.16.已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a=________.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)根据所给条件求直线的方程:(1)直线过点(-3,4),且在两坐标轴上的截距之和为12;(2)直线过点(5,10),且到原点的距离为5.18.(本小题满分12分)在一个如图所示的直角梯形ABCD内挖去一个扇形,E恰好是梯形的下底边的中点,将所得平面图形绕直线DE旋转一圈,求所得几何体的表面积和体积.19.(本小题满分12分)如图,在直四棱柱1111D C B A ABCD -中,底面ABCD 是边长为2的正方形,F E ,分别为线段BD DD ,1的中点.(1)求证:∥EF 平面11D ABC ;(2)四棱柱1111D C B A ABCD -的外接球的表面积为π16,求异面直线EF 与BC 所成的角的大小.20.(本小题满分12分)在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠BAC 的角平分线所在的直线方程为y =0.若点B 的坐标为(1,2),求点A 和点C 的坐标.21.(本小题满分12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,底面ABCD为菱形,E 为CD 的中点.(1)求证:BD ⊥PC ;(2)在棱PB 上是否存在点F ,使得CF ∥平面P AE ?若存在描述F 的位置并证明,若不存在,说明理由.22.(本小题满分12分)如图,在正三棱柱ABC ﹣A 1B 1C 1(侧棱垂直于底面,且底面是正三角形)中,AC=CC1=6,M是棱CC1的中点.(1)求证:平面AB1M⊥平面ABB1A1;(2)求A1M与平面AB1M所成角的正弦值.兰州一中2020-2021-1学期期末考试试题高一数学命题人:陈小豹审题人:刘雪峰说明:本试卷分第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分.满分150分,考试时间120分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.............)1.如图,△A′B′C′是水平放置的△ABC的斜二测直观图,其中O′C′=O′A′=2O′B′,则以下说法正确的是()A.△ABC是钝角三角形B.△ABC是等腰三角形,但不是直角三角形C.△ABC是等腰直角三角形D.△ABC是等边三角形答案C2.已知直线l1:2x+(a+5)y-8=0,l2:(a+3)x+4y+3a-5=0平行,则实数a的值为()A.﹣1或﹣7B.﹣7C.﹣1D.−133答案B3. 用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A.圆锥B.圆柱C.三棱锥D.正方体答案B4.已知三条直线a,b,c满足:a与b平行,a与c异面,则b与c()A.一定异面B.一定相交C.不可能平行D.不可能相交答案C5.在三棱锥A﹣BCD中,若AD⊥BC,AD⊥BD,那么必有()A.平面ADC⊥平面BCD B.平面ABC⊥平面BCDC.平面ABD⊥平面ADC D.平面ABD⊥平面ABC答案A6.在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF 所成角的大小为()A.30°B.45°C.60°D.90°答案C7.过点A(2,1),B(m,3)的直线的倾斜角α的范围是,则实数m的取值范围是()A.0<m≤2B.0<m<4C.2≤m<4D.0<m<2或2<m<4答案B8.已知l,m是两条不同的直线,α,β是两个不同的平面,且l∥α,m⊥β,则下列命题中不正确的是()A.若α∥β,则m⊥αB.若α∥β,则l⊥mC.若l⊥m,则l∥βD.若m∥α,则α⊥β答案C9.若三条直线x﹣2y+2=0,x=2,x+ky=0将平面划分成6个部分,则k可能的取值情况是()A.只有唯一值B.有两个不同的值C.有三个不同的值D.无穷多个值答案C10.已知某几何体是由正四棱柱割去两部分后得到,其三视图如图所示,则该几何体的表面积和体积为()A.,B.,5C.,D.,5答案A11.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵ABC﹣A1B1C1中,已知AB=3,BC=4,AC=5,若阳马C1﹣ABB1A1的外接球的表面积等于50π,则鳖臑C1﹣ABC的所有棱中,最长的棱的棱长为()A.5B.C.D.8答案C12.在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB 的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A.2B.1C.D.答案D第Ⅰ卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上..........)13.已知圆锥的表面积为3π,且它的侧面展开图是一个半圆,则它的母线长为2.答案 2.14.已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为________.答案3 215.如图,在四面体A-BCD中,已知棱AC的长为2,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.答案3 316.已知直线l1:ax-2y=2a-4,l2:2x+a2y=2a2+4,当0<a<2时,直线l1,l2与两坐标轴围成一个四边形,当四边形的面积最小时,实数a=________.答案1 2三、解答题(本大题共6小题,共70分)18.(本小题满分10分)根据所给条件求直线的方程:(1)直线过点(-3,4),且在两坐标轴上的截距之和为12;(2)直线过点(5,10),且到原点的距离为5.解 (1)由题设知纵横截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0.(2)当斜率不存在时,所求直线方程为x -5=0满足题意;当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5),即kx -y +10-5k =0. 由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.22.(本小题满分12分)在一个如图所示的直角梯形ABCD 内挖去一个扇形,E 恰好是梯形的下底边的中点,将所得平面图形绕直线DE 旋转一圈,求所得几何体的表面积和体积.【解答】解:根据题意知,将所得平面图形绕直线DE 旋转一圈后,所得几何体是上部是圆锥,下部是圆柱挖去一个半球体的组合体;则该组合体的表面积为S 组合体=S 圆锥侧+S 圆柱侧+S 半球=π×3×3+2π×3×3+×4π×32=(9+36)π;组合体的体积为V 组合体=V 圆锥+V 圆柱﹣V 半球=×π×32×3+π×32×3﹣××π×33=18π.23.(本小题满分12分)如图,在直四棱柱1111D C B A ABCD 中,底面ABCD 是边长为2的正方形,F E ,分别为线段BD DD ,1的中点.(1)求证:∥EF 平面11D ABC ;(2)四棱柱1111D C B A ABCD -的外接球的表面积为π16,求异面直线EF 与BC 所成的角的大小.证明:(1)连接1BD ,在B DD 1∆中,F E ,分别为线段BD DD ,1的中点,∴EF 为中位线,∴B D EF 1∥,而⊂B D 1面11D ABC ,⊄EF 面11D ABC ,∴∥EF 平面11D ABC .………………6分(2)由(1)知B D EF 1∥,故BC D 1∠即为异面直线EF 与BC 所成的角. ∵四棱柱1111D C B A ABCD -的外接球的表面积为π16,∴四棱柱1111D C B A ABCD -的外接球的半径2=R ,设a AA =1,则244212=++a ,解得22=a ,在直四棱柱1111D C B A ABCD -中,∵⊥BC 平面11C CDD ,⊄1CD 平面11C CDD , ∴1CD BC ⊥,在C C D RT 11∆中,BC C D CD BC ⊥==11,32,2 ,∴60,3tan 111=∠∴==∠BC D BC C D BC D ,∴异面直线EF 与BC 所成的角为 60.………………12分24.(本小题满分12分)在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠BAC 的角平分线所在的直线方程为y =0.若点B 的坐标为(1,2),求点A 和点C 的坐标.解:由方程组⎩⎪⎨⎪⎧ x -2y +1=0,y =0,得⎩⎪⎨⎪⎧x =-1,y =0. 所以点A 的坐标为(-1,0).所以直线AB 的斜率k AB =1,又x 轴是∠BAC 的角平分线,所以k AC =-1,则AC 边所在直线的方程为y =-(x +1). ①又已知BC 边上的高所在直线的方程为x -2y +1=0,故直线BC 的斜率k BC =-2,所以BC 边所在的直线方程为y -2=-2(x -1). ②由①②得⎩⎪⎨⎪⎧x =5,y =-6, 即点C 的坐标为(5,-6).25.(本小题满分12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥PC ;(2)在棱PB 上是否存在点F ,使得CF ∥平面P AE ?若存在,求出PF 的位置,若不存在,说明理由.【解答】解:(1)证明:P A ⊥平面ABCD ,BD Ⅰ平面ABCD , 所以P A ⊥BD ,又底面ABCD 为菱形,所以AC ⊥BD ,又P A ∩AC =A ,所以BD ⊥平面P AC ,所以BD ⊥PC ;(2)当F 为PB 中点时,CF ∥平面P AE理由如下:设AB的中点为M,连接MF,MC,CF,M,F分别是AB,PB的中点,MF∥P A,又AM∥EC,AM=CE,即四边形AMCE是平行四边形所以MC∥AE,又MF∩MC=M,P A∩PE=A,所以平面MFC∥平面P AE,CF⊂平面MFC,所以CF∥平面P AE.22.(本小题满分12分)如图,在正三棱柱ABC﹣A1B1C1(侧棱垂直于底面,且底面是正三角形)中,AC=CC1=6,M是棱CC1的中点.(1)求证:平面AB1M⊥平面ABB1A1;(2)求A1M与平面AB1M所成角的正弦值.【解答】(1)证明:连接A1B交AB1于O,连接MO,易得O为A1B,AB1的中点.∵CC1⊥平面ABC,AC⊂平面ABC,∴CC1⊥AC.又M为CC1中点,AC=CC1=6,∴.同理可得,∴MO⊥AB1.连接MB,同理可得,∴MO⊥A1B.又AB1∩A1B=O,AB1,A1B⊂平面ABB1A1,∴MO⊥平面ABB1A1,又MO⊂平面AB1M,∴平面AB1M⊥平面ABB1A1.(2)解:易得A1O⊥AB1,由(1)平面AB1M⊥平面ABB1A,平面AB1M∩平面ABB1A1=AB1,A1O⊂平面ABB1A1,∴A1O⊥平面AB1M.∴∠A1MO即为A1M与平面AB1M所成的角.在Rt△AA1B1中,,在Rt△A1OM中,.所以A1M与平面AB1M所成角的正弦值为.。

人教版2022-2023学年度上学期八年级期末测试数学试卷1(含解析)

人教版2022-2023学年度上学期八年级期末测试数学试卷1(含解析)

2022-2023学年八年级上期期末试卷(1)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中是轴对称图形的是()A.B.C.D.2.(3分)正六边形的每一个外角等于()A.30°B.60°C.120°D.135°3.(3分)如图,△ABC≌△DEF,若∠A=130°,∠FED=15°,则∠C等于()A.15°B.25°C.35°D.45°4.(3分)若分式的值为0,则x的取值为()A.x=1B.x=±1C.x=﹣1D.x=05.(3分)若分式有意义,则x的取值范围是()A.x>2B.x<2C.x≠2D.x=26.(3分)如图所示,在四边形ABCD中.AD∥BC,AC=1,BD=,直线MN为线段AD 的垂直平分线,P为MN上的一个动点.则PC+PD的最小值为()A.1B.C.D.37.(3分)题目:“如图,∠B=45°,BC=4,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d=3,乙答:d≥4,丙答:d=,则正确的是()A.只有乙答的对B.乙、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整8.(3分)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.B.C.D.9.(3分)如图,在格点中找一点C,使得△ABC是等腰三角形,且AB为其中一条腰,这样的点C个数为()A.8B.9C.10D.1110.(3分)如图,△ABC中,∠BAC=90°,AB=AC、BM是AC边的中线,有AD⊥BM;垂足为点E交BC于点D.且AH平分∠BAC交BM于N.交BC于H.连接DM.则下列结论:①∠AMB=∠CMD;②HN=HD;③BN=AD;④∠BNH=∠MDC;错误的有()个.A.0B.1C.3D.4二.填空题(共5小题,满分15分,每小题3分)11.(3分)点A(﹣5,m)和B(n,﹣3)关于y轴对称,m+n=.12.(3分)如图,BO平分∠ABC,CO平分∠ACB,MN∥BC,AB=5,AC=7,则△AMN 的周长为.13.(3分)一个正多边形的内角和是它的外角和的3倍,则这个多边形的边数是.14.(3分)已知(a2+b2+3)(a2+b2﹣3)=7,ab=3,则(a+b)2=.15.(3分)如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.三.解答题(共14小题,满分75分)16.(8分)先化简,再求值:(1﹣)÷,x取一个合适的值代入.17.(8分)如图,在所给的平面直角坐标系中,正方形网格单位长度是1,△ABC的顶点都在格点上、(1)已知A(﹣5,0),B(﹣1,0),C(﹣3,2),作出△ABC关于y轴对称的△A'B'C’,并写出点A',B’,C’的坐标;(2)在y轴上作出点P,使P A+PC最小.18.(8分)如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.19.(9分)我阅读:类比于两数相除可以用竖式运算,多项式除以多项式也可以用竖式运算,其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时,运算终止,得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5,余式是;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除,请直接写出a、b的值.20.(10分)两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.21.(10分)第24届冬奥会将于2022年2月4日在北京市和张家口市举行,某经销商预测有“冰墩墩”吉祥物标志的甲、乙两种纪念品能畅销.经核算,用1650元购买甲种纪念品的数量比用4400元购买乙种纪念品的数量多10个,且乙种纪念品的单价是甲种纪念品的4倍.(1)求甲、乙两种纪念品的单价;(2)现该经销商计划购买甲、乙两种纪念品共2100个,购买甲种纪念品的数量不超过800个,且甲种纪念品的数量不低于乙种纪念品的数量的一半,求购买甲种纪念品的数量的取值范围.22.(10分)如图,已知△ABC是等边三角形,点D是BC边上一点.(1)如图1,以AD为边构造等边△ADE(其中点D、E在直线AC两侧),猜想CE与AB的位置关系,并证明你的结论;(2)如图2,过点C作CM∥AB,在CM上取一点F,连接AF、DF,使得∠ADF=60°,猜想△ADF的形状,并证明你的结论.23.(12分)如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD 上两点,且∠BEC=∠CF A=α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.①如图1,若∠BCA=90°,α=90°,则BE CF;②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.2022-2023学年八年级上期期末试卷(1)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列图形中是轴对称图形的是()A.B.C.D.【解答】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.2.(3分)正六边形的每一个外角等于()A.30°B.60°C.120°D.135°【解答】解:正六边形的每一个外角等于360°÷6=60°,故选:B.3.(3分)如图,△ABC≌△DEF,若∠A=130°,∠FED=15°,则∠C等于()A.15°B.25°C.35°D.45°【解答】解:∵△ABC≌△DEF,∠FED=15°,∴∠B=∠DEF=15°,∴∠C=180°﹣∠B﹣∠A=180°﹣15°﹣130°=35°,故选:C.4.(3分)若分式的值为0,则x的取值为()A.x=1B.x=±1C.x=﹣1D.x=0【解答】解:∵分式的值为0,∴2x+2≠0且x2﹣1=0.∴x=1.故选:A.5.(3分)若分式有意义,则x的取值范围是()A.x>2B.x<2C.x≠2D.x=2【解答】解:依题意得:x﹣2≠0,解得x≠2.故选:C.6.(3分)如图所示,在四边形ABCD中.AD∥BC,AC=1,BD=,直线MN为线段AD 的垂直平分线,P为MN上的一个动点.则PC+PD的最小值为()A.1B.C.D.3【解答】解:∵直线MN为线段AD的垂直平分线,P为MN上的一个动点,∴点A与点D关于直线MN对称,∴AC与这些MN的交点即为点P,PC+PD的最小值=AC的长度=1,故选:A.7.(3分)题目:“如图,∠B=45°,BC=4,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d=3,乙答:d≥4,丙答:d=,则正确的是()A.只有乙答的对B.乙、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整【解答】解:由题意知,当CA⊥BA或CA>BC时,能作出唯一一个△ABC,①当CA⊥BA时,∵∠B=45°,BC=4,∴AC=BC•sin45°=4×=2,即此时d=2,②当CA=BC时,∵∠B=45°,BC=4,∴∠CAB=45°,∠ACB=90°,∴AC=4,即d≥4,综上,当d=2或d≥4时能作出唯一一个△ABC,故选:B.8.(3分)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.B.C.D.【解答】解:A、=≠,故A不符合题意.B、≠,故B不符合题意.C、=,故C不符合题意.D、=,故D符合题意.故选:D.9.(3分)如图,在格点中找一点C,使得△ABC是等腰三角形,且AB为其中一条腰,这样的点C个数为()A.8B.9C.10D.11【解答】解:如图所示:满足条件的点C有9个,故选:B.10.(3分)如图,△ABC中,∠BAC=90°,AB=AC、BM是AC边的中线,有AD⊥BM;垂足为点E交BC于点D.且AH平分∠BAC交BM于N.交BC于H.连接DM.则下列结论:①∠AMB=∠CMD;②HN=HD;③BN=AD;④∠BNH=∠MDC;错误的有()个.A.0B.1C.3D.4【解答】解:如图,作KC⊥CA交AD的延长线于K.∵AB=AC,∠BAC=90°,AH平分∠BAC,∴AH⊥BC,BH=CH,∴AH=BH=CH,∵AD⊥BM,∴∠BHN=∠AEN=∠AHD=90°,∵∠BNH=∠ANE,∴∠HBN=∠DAH,∴△BHN≌△AHD(ASA),∴HN=DH,BN=AD,∠BNH=∠ADH=∠CDK,故②③正确,∵∠BAM=∠ACK=90°,∴∠BAE+∠CAK=90°,∴∠BAE+∠ABM=90°,∴∠ABM=∠CAK,∵AB=AC,∴△ABM≌△CAK(ASA),∴∠AMB=∠K,AM=CK=CM,∵∠DCM=∠DCK=45°,CD=CD,∴△CDM≌△CDK(SAS),∴∠CDK=∠CDM,∠K=∠CMD,∴∠AMB=∠CMD,∠BNH=∠MDC,故①④正确.故选:A.二.填空题(共5小题,满分15分,每小题3分)11.(3分)点A(﹣5,m)和B(n,﹣3)关于y轴对称,m+n=2.【解答】解:∵点A(﹣5,m)和B(n,﹣3)关于y轴对称,∴n=5,m=﹣3,∴m+n=2,故答案为:2.12.(3分)如图,BO平分∠ABC,CO平分∠ACB,MN∥BC,AB=5,AC=7,则△AMN 的周长为12.【解答】解:∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠ABO=∠MOB,∠ACO=∠NOC,∴MO=MB,NO=NC,∵AB=5,AC=7,∴△AMN的周长=AM+MN+AN=AM+MO+ON+AN=AM+MB+NC+AN=AB+AC=5+7=12,故答案为:12.13.(3分)一个正多边形的内角和是它的外角和的3倍,则这个多边形的边数是八.【解答】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.14.(3分)已知(a2+b2+3)(a2+b2﹣3)=7,ab=3,则(a+b)2=10.【解答】解:∵(a2+b2+3)(a2+b2﹣3)=7,ab=3,即(a2+b2)2﹣32=7,∴(a2+b2)2=7+9=16,∴a2+b2=4,∴(a+b)2=a2+b2+2ab=4+2×3=4+6=10.故答案为:10.15.(3分)如图,△ABC中,AB=AC,∠BAC=54°,点D为AB中点,且OD⊥AB,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.【解答】解:法一:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.法二:证明点O是△ABC的外心,推出∠BOC=108°,根据OB=OC,推出∠OCE=36°可得结论.故答案为:108.三.解答题(共14小题,满分75分)16.(8分)先化简,再求值:(1﹣)÷,x取一个合适的值代入.【解答】解:原式=(﹣)•=•=,由分式有意义的条件可知:x可取0,∴原式==﹣1.17.(8分)如图,在所给的平面直角坐标系中,正方形网格单位长度是1,△ABC的顶点都在格点上、(1)已知A(﹣5,0),B(﹣1,0),C(﹣3,2),作出△ABC关于y轴对称的△A'B'C’,并写出点A',B’,C’的坐标;(2)在y轴上作出点P,使P A+PC最小.【解答】解:(1)如图,△A'B'C’为所作,A′(5,0),B′(1,0),C′(3,2);(2)如图,点P为所作.18.(8分)如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.【解答】(1)证明:∵AF平分∠DAC,∴∠DAF=∠CAF,∵AF∥BC,∴∠DAF=∠B,∠CAF=∠ACB,∴∠B=∠ACB,∴△ABC是等腰三角形;(2)解:∵AB=AC,∠B=40°,∴∠ACB=∠B=40°,∴∠BAC=100°,∴∠ACE=∠BAC+∠B=140°,∵CG平分∠ACE,∴ACE=70°,∵AF∥BC,∴∠AGC=180°﹣∠BCG=180°﹣40°﹣70°=70°.19.(9分)我阅读:类比于两数相除可以用竖式运算,多项式除以多项式也可以用竖式运算,其步骤是:(i)把被除式和除式按同一字母的降幂排列(若有缺项用零补齐).(ii)用竖式进行运算.(ii)当余式的次数低于除式的次数时,运算终止,得到商式和余式.我会做:请把下面解答部分中的填空内容补充完整.求(5x4+3x3+2x﹣4)÷(x2+1)的商式和余式.解:答:商式是5x2+3x﹣5,余式是﹣x+1;我挑战:已知x4+x3+ax2+x+b能被x2+x+1整除,请直接写出a、b的值.【解答】解:我阅读:(iii)余式是﹣x+1,故答案为:0x2,﹣5x2,﹣5x2,﹣5x2+0x﹣5,﹣x+1;我挑战:∴x4+x3+ax2+x+b=(x2+x+1)(x2+a﹣1)+(2﹣a)x+b﹣a+1,∵x4+x3+ax2+x+b能被x2+x+1整除,∴(2﹣a)x+b﹣a+1=0,∴2﹣a=0且b﹣a+1=0,解得a=2,b=1.20.(10分)两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.【解答】解:(1)由图可得,S1=a2﹣b2,S2=a2﹣a(a﹣b)﹣b(a﹣b)﹣b(a﹣b)=2b2﹣ab;(2)S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,∵a+b=10,ab=20,∴S1+S2=a2+b2﹣ab=(a+b)2﹣3ab=100﹣3×20=40;(3)由图可得,S3=a2+b2﹣b(a+b)﹣a2=(a2+b2﹣ab),∵S1+S2=a2+b2﹣ab=30,∴S3=×30=15.21.(10分)第24届冬奥会将于2022年2月4日在北京市和张家口市举行,某经销商预测有“冰墩墩”吉祥物标志的甲、乙两种纪念品能畅销.经核算,用1650元购买甲种纪念品的数量比用4400元购买乙种纪念品的数量多10个,且乙种纪念品的单价是甲种纪念品的4倍.(1)求甲、乙两种纪念品的单价;(2)现该经销商计划购买甲、乙两种纪念品共2100个,购买甲种纪念品的数量不超过800个,且甲种纪念品的数量不低于乙种纪念品的数量的一半,求购买甲种纪念品的数量的取值范围.【解答】解:(1)设甲种纪念品的单价为x元,则乙种纪念品的单价为4x元,由题意得:﹣=10,解这个分式方程得:x=55,经检验,x=55是原方程的解,且符合题意,∴4x=4×55=220,答:甲种纪念品的单价为55元,乙种纪念品的单价为220元;(2)设购买甲种纪念品的数量为a个,则购买乙种纪念品的数量为(2100﹣a)个,由题意得:,解这个不等式组得:700≤a≤800,∴甲种纪念品的数量a的取值范围为700≤a≤800,且a为正整数.22.(10分)如图,已知△ABC是等边三角形,点D是BC边上一点.(1)如图1,以AD为边构造等边△ADE(其中点D、E在直线AC两侧),猜想CE与AB的位置关系,并证明你的结论;(2)如图2,过点C作CM∥AB,在CM上取一点F,连接AF、DF,使得∠ADF=60°,猜想△ADF的形状,并证明你的结论.【解答】解:(1)CE∥AB,理由如下:∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠ABC=60°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,∴∠BAC=∠ACE,∴CE∥AB;(2)△ADF是等边三角形,理由如下:在BA上取点G,使BG=BD,连接DG,则△BDG是等边三角形,∴∠BGD=60°,BG=DG,∴∠AGD=120°,∵CM∥AB,∴∠DCF=180°﹣∠B=120°,∴∠AGD=∠DCF,∵∠ADF=∠B=60°,∴∠CDF+∠ADB=∠ADB+∠BAD,∴∠CDF=∠BAD,∵AB=BC,BG=BD,∴AG=CD,在△AGD和△DCF中,,∴△AGD≌△DCF(ASA),∴AD=DF,∵∠ADF=60°,∴△ADF是等边三角形.23.(12分)如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E、F分别是直线CD 上两点,且∠BEC=∠CF A=α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上.①如图1,若∠BCA=90°,α=90°,则BE=CF;②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件α+∠BCA=180°,使①中的结论仍然成立,并说明理由;(2)如图3,若直线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.【解答】解:(1)①∵∠BEC=∠CF A=α=90°,∴∠BCE+∠CBE=180°﹣∠BEC=90°.又∵∠BCA=∠BCE+∠ACF=90°,∴∠CBE=∠ACF.在△BCE和△CAF中,∴△BCE≌△CAF(AAS).∴BE=CF.②α+∠BCA=180°,理由如下:∵∠BEC=∠CF A=α,∴∠BEF=180°﹣∠BEC=180°﹣α.又∵∠BEF=∠EBC+∠BCE,∴∠EBC+∠BCE=180°﹣α.又∵α+∠BCA=180°,∴∠BCA=180°﹣α.∴∠BCA=∠BCE+∠ACF=180°﹣α.∴∠EBC=∠FCA.在△BCE和△CAF中,∴△BCE≌△CAF(AAS).∴BE=CF.(2)EF=BE+AF,理由如下:∵∠BCA=α,∴∠BCE+∠ACF=180°﹣∠BCA=180°﹣α.又∵∠BEC=α,∴∠EBC+∠BCE=180°﹣∠BEC=180°﹣α.∴∠EBC=∠FCA.在△BEC和△CF A中,∴△BEC≌△CF A(AAS).∴BE=CF,EC=F A.∴EF=EC+CF=F A+BE,即EF=BE+AF.。

2020-2021学年人教版三年数(上)期末数学试卷(附答案)

2020-2021学年人教版三年数(上)期末数学试卷(附答案)

【答案】见试题解答内容
15.(2 分)0 和任何数相乘都得 0. √ .(判断对错) 【答案】见试题解答内容
16.(2 分)将两根同样长的铁丝,分别围成一个长方形和一个正方形,长方形的周长比正
方形的周长长. × .(判断对错)
【答案】见试题解答内容
三、选择题(10 分). 17.(2 分)你认为 1 分钟最有可能完成下列哪件事( )
24.(6 分)脱式计算. 45÷5+238 900﹣128×5 205+87﹣196. 【答案】见试题解答内容
五、操作题(12 分) 25.(6 分)在边长是 1 厘米的方格纸上,画周长是 14 厘米的长方形,有几种画法,试一试.
【答案】见试题解答内容 26.(6 分)涂色表示分数.
【答案】见试题解答内容 六、解决问题(20 分) 27.(4 分)三年级 270 个同学乘 5 辆车去动物园,前 4 辆车各坐 56 个同学,第 5 辆车要坐
.(判断对错)
15.(2 分)0 和任何数相乘都得 0.
.(判断对错)
16.(2 分)将两根ห้องสมุดไป่ตู้样长的铁丝,分别围成一个长方形和一个正方形,长方形的周长比正
方形的周长长.
.(判断对错)
三、选择题(10 分).
17.(2 分)你认为 1 分钟最有可能完成下列哪件事( )
A.打一场篮球比赛
B.步行一千米
C.计算 10 道口算题
20.(2 分)如图,两个图形的周长( )
A.甲图周长长 【答案】C
B.乙图周长长
C.一样长
D.无法比较
21.(2 分)下面涂色部分不能用分数 表示的是( )
A.
B.
C. 【答案】B 四、计算(27 分) 22.(8 分)直接写出得数.

天津市西青区2020-2021学年高一上学期期末考试数学试卷 Word版含解析

天津市西青区2020-2021学年高一上学期期末考试数学试卷 Word版含解析

西青区2020~2021学年度第一学期期末考试高一数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.注意事项:答卷前务必将自己的姓名、准考号填写在答题卡上;答卷时,考生务必把答案涂写在答题卡各题目指定区域内相应的位置,答在试卷上的无效. 祝各位考生考试顺利!第Ⅰ卷一.选择题:本大题共9小题,每小题5分,共45分.1. 已知全集{}1,2,3,4U =,集合{}1,2,3A =,{}2,3,4B =,则()UA B =( )A. {}2,3B. {}1,2,3,4C. {}1,4D. {}2,3,4【答案】C 【解析】 【分析】利用补集和交集的定义可求得集合()UA B .【详解】已知全集{}1,2,3,4U =,集合{}1,2,3A =,{}2,3,4B =,{}2,3A B ∴=,因此,(){}1,4UA B ⋂=.故选:C.2. 下列四个函数中,在其定义域上既是奇函数又是递增函数的是( )A. x y e =B. sin y x =C. y =D. 3y x =【答案】D 【解析】 【分析】根据函数的解析式直接判断函数的奇偶性和单调性即可. 【详解】对A:xy e =它不奇函数也不是偶函数; 对B: sin y x =是奇函数,它在区间(2,2)()22k k k Z ππππ-+∈上递增,在定义域内不能说对C: y =对D:3y x =是奇函数,在定义域内是增函数. 故选:D .3. 设a ∈R ,则“1a >”是“2a a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 【详解】求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选:A.【点睛】本题主要考查二次不等式的解法,充分性和必要性的判定,属于基础题. 4. 下列说法正确的是( ) A. 若0a b >>,则22ac bc > B. 若a b >,则22a b > C. 若0a b <<,则22a ab b >> D. 若a b <,则11a b> 【答案】C 【解析】 【分析】根据已知条件结合不等式的性质可判断C 正确;举反例可判断ABD 错误. 【详解】对于A ,若0c,则22ac bc =,故A 错误;对于B ,若1,2a b ==-,则22a b <,故B 错误; 对于C ,若0a b <<,则22a ab b >>,故C 正确; 对于D ,若1,1a b =-=,则11a b<,故D 错误.5. 设函数1()ln (0),3f x x x x =->则()y f x =( ) A. 在区间1(,1),(1,e)e 内均有零点.B. 在区间1(,1),(1,e)e内均无零点.C. 在区间1(,1)e 内无零点,在区间(1,)e 内有零点.D. 在区间1(,1)e内有零点,在区间(1,)e 内无零点.【答案】C 【解析】 【分析】令()0f x =,画出函数13y x =和ln y x =的图像,观察两图像的交点所在的区间,即可得答案【详解】解:令()0f x =,得1ln 3x x =,作出函数13y x =和ln y x =的图像,如图所示根据图像可知,()y f x =区间1(,1)e内无零点,在区间(1,)e 内有零点,故选:C6. 已知函数()sin 12f x x π⎛⎫=++ ⎪⎝⎭,则( ) A. ()f x 是偶函数,最大值为1 B. ()f x 是偶函数,最大值为2 C. ()f x 是奇函数,最大值为1 D. ()f x 是奇函数,最大值为2【答案】B【分析】利用诱导公式进行化简,得到()cos 1f x x =+,结合余弦函数的性质,即可求解,得到答案. 【详解】由题意,函数()sin 1cos 12f x x x π⎛⎫=++=+ ⎪⎝⎭, 则()cos()1cos 1()f x x x f x -=-+=+=,所以()f x 是偶函数; 又由cos y x =的最大值为1,()f x ∴的最大值为2; 故选:B.【点睛】本题主要考查了三角函数的诱导公式,以及余弦函数的性质的应用,其中解答中熟记三角函数的诱导公式,以及三角函数的性质是解答的关键,着重考查了计算能力,属于基础题. 7. 设1ln2a =,12eb =,2c e -=,则a 、b 、c 的大小关系为( ) A. a c b << B. a b c << C. b c a << D. c a b <<【答案】A 【解析】 【分析】利用指数函数和对数函数的单调性比较a 、b 、c 三个数与0、1的大小关系,由此可得出a 、b 、c 的大小关系.【详解】1lnln102a =<=,10221eb =>=,2001c e e -<=<=,因此,a c b <<. 故选:A8. 对于函数()sin(2)6f x x π=+,下列命题①函数图象关于直线12x π=-对称; ②函数图象关于点(,0)对称;③函数图象可看作是把sin 2y x =的图象向左平移个单位而得到;④函数图象可看作是把sin()6y x π=+的图象上所有点的横坐标缩短到原来的倍(纵坐标不变)而得到;其中正确的命题的个数是( ▲ ) A. 0 B. 1 C. 2 D. 3【答案】C考点:正弦函数的对称性;函数y=Asin (ωx+φ)的图象变换. 专题:综合题. 分析:①把x=-π12代入函数的表达式,函数是否取得最大值,即可判定正误; ②把x=5π12,代入函数,函数值是否为0,即可判定正误; ③函数图象可看作是把y=sin2x 的图象向左平移个 π6单位,推出函数的表达式是否相同,即可判定;④函数图象可看作是把y=sin (x+π6)的图象上所有点的横坐标缩短到原来的 12倍,得到函数的表达式是否相同,即可判定正误.解答:解:①把x=-π12代入函数f (x )=sin (2x+π6)=0,所以,①不正确; ②把x=5π12,代入函数f (x )=sin (2x+π6)=0,函数值为0,所以②正确;③函数图象可看作是把y=sin2x 的图象向左平移π6个单位得到函数为f (x )=sin (2x+3π),所以不正确;④函数图象可看作是把y=sin (x+π6)的图象上所有点的横坐标缩短到原来的12倍,得到函数f (x )=sin (2x+π6),正确; 故选C .点评:本题是基础题,考查三角函数的基本性质的应用,考查逻辑推理能力,常考题型. 9. 定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且在[1,2]上是减函数,若α,β是锐角三角形的两个内角,则( ) A. f()sin αf >(cos β)B. f ()sin αf < (cos β)C. f (sin α)f > (sin β)D. f()cos αf <(cos β)【答案】A 【解析】 【分析】根据题意,分析可得f (﹣x )=f (x +2),即函数f (x )的图象关于直线x =1对称,据此分析可得f (x )在区间[0,1]上是增函数,由α,β是锐角三角形的两个内角便可得出sin α>cos β,从而根据f (x )在(0,1)上是增函数即可得出f (sin α)>f (cos β),即可得答案. 【详解】根据题意,定义在R 上的偶函数f (x )满足f (x +2)=f (x ), 则有f (﹣x )=f (x +2),即函数f (x )的图象关于直线x =1对称, 又由函数f (x )在[1,2]上是减函数,则其在[0,1]上是增函数, 若α,β是锐角三角形的两个内角, 则α+β2>π,则有α2>π-β,则有sin α>sin (2π-β)=cos β, 又由函数f (x )在[0,1]上是增函数, 则f (sin α)>f (cos β); 故选A .【点睛】本题考查函数的奇偶性、周期性与周期性的综合应用,注意分析函数在(0,1)上的单调性.第Ⅱ卷温馨提示:请将答案写在答题纸上,写在卷面上无效.二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知幂函数()y f x =的图象过点,则()f x =_____________.【答案】12x 【解析】 【分析】设出幂函数解析式,根据点(求得幂函数的解析式.【详解】由于()f x 为幂函数,设()f x x α=,将(代入得122αα==,所以()12f x x=.故答案为12x【点睛】本小题主要考查幂函数解析式的求法,属于基础题.11. 132327log 3log 48⎛⎫⋅+= ⎪⎝⎭______.【答案】112【分析】根据指数、对数的运算性质计算即可得答案.【详解】原式=1323227311log 3log 4log +2=822⎛⎫⋅++= ⎪⎝⎭.故答案为:11212. 命题“x ∀∈R ,*n ∃∈N ,使得2n x ≥”的否定形式是__________. 【答案】x ∃∈R ,*n ∀∈N ,使2n x < 【解析】因为“∀”的否定是“∃”,“∃”的否定是“∀”,“2n x ≥”的否定是“2n x <”,所以命题“x R ∀∈,*n N ∃∈,使得2n x ≥”的否定形式是x R ∃∈,*n N ∀∈,使2n x <,故答案为x ∃∈R ,*n ∀∈N ,使2n x <.13. 函数tan y x =的定义域为______;若tan 2x =,则5cos sin sin 2cos x xx x-=+______.【答案】 (1). ,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭(2). 34 【解析】 【分析】根据正切函数的性质可直接得出定义域,将5cos sin sin 2cos x xx x-+化为关于tan x 的式子即可求出.【详解】可知tan y x =的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭, tan 2x =,5cos sin 5tan 523sin 2cos tan 2224x x x x x x ---∴===+++.故答案为:,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭;34. 14. 用长度为28米的篱笆围成一边靠墙的矩形花园,墙长为16米,则矩形花园面积的最大值是______平方米.【解析】 【分析】设与墙平行的篱笆长为x 米,表示出矩形花园面积,利用二次函数的性质可求出. 【详解】设与墙平行的篱笆长为x 米,由题可得016x <≤, 则花园面积()2281149822x S x x -=⋅=--+,016x <≤, 则当14x =时,S 取得最大值为98,故矩形花园面积的最大值是98平方米. 故答案为:98.15. 已知函数()()232115,14ln ,1x a x x f x a a x x ⎧+-+≤=⎨-+>⎩,若对任意的1x 、2x R ∈,12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是______.【答案】8,23⎡⎤--⎢⎥⎣⎦【解析】 【分析】分析出函数()f x 为R 上的减函数,结合已知条件可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】设12x x <,则120x x -<,由()()12120f x f x x x -<-可得()()120f x f x ->,即()()12f x f x >,所以,函数()f x 为R 上的减函数.由于()()232115,14ln ,1x a x x f x a a x x ⎧+-+≤=⎨-+>⎩,由题意可知,函数()232115y x a x =+-+在(],1-∞上为减函数,则113a-≥, 函数ln 4y a x a =-在()1,+∞上为减函数,则0a <,且有()321154a a +-+≥-,所以11301624a a a a-⎧≥⎪⎪<⎨⎪+≥-⎪⎩,解得823a -≤≤-.因此,实数a 的取值范围是8,23⎡⎤--⎢⎥⎣⎦.故答案为:8,23⎡⎤--⎢⎥⎣⎦.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.三.解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.16. 已知,2παπ⎛⎫∈⎪⎝⎭,3sin 5α=.(1)求tan α的值; (2)求cos2α的值; (3)若0,2⎡⎤∈⎢⎥⎣⎦πβ,()5sin 13αβ+=-,求sin β. 【答案】(1)34-;(2)725;(3)5665. 【解析】 【分析】( 1 ) 根据同角的三角函数的关系即可求出; ( 2 ) 根据二倍角的正弦公式、二倍角的余弦公式以及两角差的余弦公式即可求出; ( 3 ) 由 β=[(α+β)−α] ,根据同角的三角函数的关系结合两角差的正弦公式即可求出. 【详解】(1)3sin 5α=,,2παπ⎛⎫∈ ⎪⎝⎭.4cos 5α∴==-.sin 3tan cos 4ααα∴==-. ( 2) 27cos 22cos 125αα=-=. (3)0,2⎡⎤∈⎢⎥⎣⎦πβ,,2παπ⎛⎫∈ ⎪⎝⎭322ππαβ∴<+<()5sin 13αβ+=-. 32ππαβ∴<+<()12cos 13αβ∴+==-. ()()()5412356sin sin sin cos cos sin 13513565βαβααβααβα⎛⎫=+-=+-+=-⨯-+⨯=⎡⎤ ⎪⎣⎦⎝⎭.17. 若()()211f x ax a x =-++,a R ∈.(Ⅰ)若()0f x <的解集为1,14⎛⎫⎪⎝⎭,求a 的值; (Ⅱ)求关于x 的不等式()0f x <的解集. 【答案】(Ⅰ)4a =;(Ⅱ)答案见解析. 【解析】 【分析】 (Ⅰ)14,1为方程()0f x =的两个根,用韦达定理构建方程解出来即可. (Ⅱ)(1)(1)0ax x -->,分0a <、0a =、01a <<、1a =和1a >五种情况讨论即可 【详解】(Ⅰ)()2110ax a x -++<的解集为1,14⎛⎫⎪⎝⎭,14,1是()2110ax a x -++=的解.1114114a aa+⎧+=⎪⎪⎨⎪=⎪⎩. 解得:4a =(Ⅱ)当0a =时,不等式的解为1x >,解集为{}1x x > 当0a ≠时,分解因式()()110x ax --<()()110x ax --=的根为11x =,21x a=. 当0a <时,11a >,不等式的解为1x >或1x a <;解集为11x x x a ⎧⎫><⎨⎬⎩⎭或.当01a <<时,11a <,不等式的解为11x a <<;解集为11x x a ⎧⎫<<⎨⎬⎩⎭.当1a >时,11a <,不等式的解为11x a <<;等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭. 当1a =时,原不等式为()210x -<,不等式的解集为∅. 综上:当0a =时,不等式的解集为{}1x x >; 当0a <时,不等式的解集为11x x x a ⎧⎫><⎨⎬⎩⎭或; 当01a <<时,不等式的解集为11x x a ⎧⎫<<⎨⎬⎩⎭; 当1a >时,不等式的解集为11xx a ⎧⎫<<⎨⎬⎩⎭; 当1a =时,不等式的解集为∅. 18. 已知函数log ay x =过定点(),m n ,函数()2xf x n x m=++的定义域为[]1,1-. (Ⅰ)求定点(),m n 并证明函数()f x 的奇偶性; (Ⅱ)判断并证明函数()f x 在[]1,1-上的单调性;(Ⅲ)解不等式()()210f x f x -+<.【答案】(Ⅰ)定点为()1,0,奇函数,证明见解析;(Ⅱ)()f x 在[]1,1-上单调递增,证明见解析;(Ⅲ)1|03x x ⎧⎫≤<⎨⎬⎩⎭. 【解析】 【分析】(Ⅰ)根据解析式可求得定点为()1,0,即可得()f x 的解析式,根据奇函数的定义,即可得证; (Ⅱ)利用定义法即可证明()f x 的单调性;(Ⅲ)根据()f x 的单调性和奇偶性,化简整理,可得()()21f x f x -<-,根据函数的定义域,列出不等式组,即可求得答案. 【详解】(Ⅰ)函数log ay x =过定点(),m n ,∴定点为()1,0,()21xf x x ∴=+,定义域为[]1,1-, ()()21xf x f x x -∴-==-+. ∴函数()f x 为奇函数.(Ⅱ)()f x 在[]1,1-上单调递增. 证明:任取[]12,1,1x x ∈-,且12x x <,则()()()()()()()()()()22122112121212222222121212*********x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++. []12,1,1x x ∈-,12x x <,120x x ∴-<,1210x x ->,∴()()120f x f x -<,即()()12f x f x <, ∴函数()f x 在区间[]1,1-上是增函数.(Ⅲ)()()210f x f x -+<,即()()21f x f x -<-, 函数()f x 为奇函数()()21f x f x ∴-<-()f x 在[]1,1-上为单调递增函数,12111121x x x x -≤-≤⎧⎪∴-≤-≤⎨⎪-<-⎩, 011113x x x ⎧⎪≤≤⎪∴-≤≤⎨⎪⎪<⎩,解得:103x ≤<.故不等式的解集为:1|03x x ⎧⎫≤<⎨⎬⎩⎭【点睛】解题的关键是熟练掌握函数奇偶性、单调性的定义,并灵活应用,在处理单调性、奇偶性综合问题时,需要注意函数所有的自变量都要在定义域内,方可求得正确答案. 19. 已知函数()2231f x x x =-+.(Ⅰ)函数()h x 是奇函数,当0x >时,()()h x f x =,求()h x 在x ∈R 上的解析式; (Ⅱ)若()()1g x f x mx =-++,当[]1,2x ∈时,若()g x 的最大值为2,求m 的值.【答案】(Ⅰ)()222310002310x x x h x x x x x ⎧---<⎪==⎨⎪-+>⎩;(Ⅱ)1.【解析】 【分析】(Ⅰ)首先设0x <,利用函数是奇函数,求函数的解析式;(Ⅱ)由(Ⅰ)可知()()223g x x m x =-++,讨论对称轴和定义域的关系,讨论函数的最大值,列式求m 的值.【详解】(Ⅰ)设0x <则0x -> 函数()h x 是奇函数,()()2231h x h x x x ∴=--=---()222310002310x x x h x x x x x ⎧---<⎪∴==⎨⎪-+>⎩(Ⅱ)()()1g x f x mx =-++,()()223g x x m x ∴=-++.()g x 二次函数开口向下,对称轴34mx +=, 在[]1,2x ∈时,()g x 的最大值为2, ①当314m+≤,即1m 时,()()max 1232g x g m ==-++=,解得1m =; ②当3124m +<<,即15m <<时,()2max 369248m m m g x g +++⎛⎫=== ⎪⎝⎭,解得1m =(舍)或7m =-(舍);③当324m+≥,即5m ≥时,()()max 28262g x g m ==-++=,解得2m =(舍); 综上所述,m 的值为1,即1m =.【点睛】关键点点睛:本题第一问的关键是:因为重点求0x <的解析式,所以设0x <,而不要设0x >;第二问的关键是讨论对称轴和定义域的关系,由函数在区间[]1,2的单调性,求函数的最大值.20. 已知函数()4cos cos 3f x x x a π⎛⎫=⋅-+ ⎪⎝⎭. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间; (Ⅲ)若23π是函数()f x 的一个零点,求实数a 的值及函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的值域. 【答案】(Ⅰ)T π=;(Ⅱ)06,π⎡⎤⎢⎥⎣⎦;(Ⅲ)[]1,4.【解析】 【分析】利用三角恒等变换公式化简函数解析式,(1)利用周期公式2T πω=求解;(2)利用换元法或整体代换法求函数单调递增区间;(3)利用换元法求判断函数单调性,并求值域.【详解】解:(Ⅰ)()4cos cos 4cos cos cos sin sin 333f x x x a x x x a πππ⎛⎫⎛⎫=-+=++ ⎪ ⎪⎝⎭⎝⎭22cos cos cos 2122sin 216x x x a x x a x a π⎛⎫=++=++=+++ ⎪⎝⎭,22T ππ==; (Ⅱ)法一: 令26z x π=+;0,2x π⎡⎤∈⎢⎥⎣⎦则7,66z ππ⎡⎤∈⎢⎥⎣⎦. sin y z =,7,66z ππ⎡⎤∈⎢⎥⎣⎦的单调增区间为,62ππ⎡⎤⎢⎥⎣⎦. 2662x πππ∴≤+≤,解得06x π∴≤≤.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间06,π⎡⎤⎢⎥⎣⎦.法二:222262k x k πππππ-≤+≤+,k Z ∈36k x k ππππ-≤≤+,k Z ∈0,2x π⎡⎤∈⎢⎥⎣⎦画数轴与所有区间取交集可知:06x π∴≤≤.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间06,π⎡⎤⎢⎥⎣⎦;(Ⅲ)23π是函数()2sin 216f x x a π⎛⎫=+++ ⎪⎝⎭的一个零点 242sin 10336f a πππ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭. 32sin102a π∴++= 解得:1a =.()2sin 226f x x π⎛⎫=++ ⎪⎝⎭.0,2x π⎡⎤∈⎢⎥⎣⎦,sin y z ∴=,当7,66z ππ⎡⎤∈⎢⎥⎣⎦单调递减区间为7,26ππ⎡⎤⎢⎥⎣⎦.72266x πππ∴≤+≤,解得62x ππ∴≤≤ f x 在区间,62ππ⎡⎤⎢⎥⎣⎦上为减函数.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递增区间06,π⎡⎤⎢⎥⎣⎦,单调递减区间,62ππ⎛⎤⎥⎝⎦()02sin236f π=+=,2sin 2462f ππ⎛⎫=+= ⎪⎝⎭,72sin 2126f ππ⎛⎫=+= ⎪⎝⎭.∴函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的值域为[]1,4.【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为y =Asin (ωx +φ)或y =Acos (ω x +φ)的形式,则最小正周期为2T πω=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为y =Asin ωx 或y =Acos ωx 的形式.。

2020-2021学年人教版六年级上册数学期末复习强化提优数学试卷含解析

2020-2021学年人教版六年级上册数学期末复习强化提优数学试卷含解析

2020-2021学年人教版六年级上册数学期末复习强化提优数学试卷一、填空题1.下面是五(1)班小军(男)和小娟(女)6-12岁的身高统计图,看图回答问题.(1)9岁时,小军比小娟高(_____)厘米.(2)(____)岁时,小军和小娟一样高.(3)(____)岁时,小军比小娟矮3厘米.(4)小娟从6-12岁身高每年平均增长(______)厘米.【答案】(1)2(2)10(3)12(4)5.83【解析】(1)9岁时,小军比小娟高2厘米.(2)10岁时,小军和小娟一样高.(3)12岁时,小军比小娟矮3厘米.4)[(122﹣117)+(126﹣122)+(132﹣126)+(138﹣132)+(144﹣138)+(150﹣144)]÷6=[5+6+6+6+6+6]÷6=35÷6≈5 .83(厘米)答:小娟从6﹣12岁身高每年平均增长多少5.83厘米.故答案为2、10、12、5.83(1)(2)(3)观察统计图即可得出相关的数据,直接进行解答即可;(4)先计算出小娟从6﹣12岁每年身高增长的和,再除以6即可得解.2.用方程表示下面的数量关系。

方程:(________)。

【答案】2x=50【分析】由图可知,两个托盘上砝码的质量是相等的,据此列方程即可。

【详解】由分析可知,列方程如下:2x=50【点睛】此题考查了列简易方程,等量关系较明显。

3.四个房间,每个房间不少于2人,任何三个房间里的人数不少于8人,这四个房间至少有_____人. 【答案】11【解析】人数最多的房间至少有3人,其余三个房间至少有8人,总共至少有11人.4.237的分数单位是(_____),它减少(_____)个这样的单位后就是最小的奇数.【答案】1716【详解】略5.117的倒数是(____)0.375的倒数是(____)。

【答案】71183【详解】略6.某校全体学生进行大课间活动表演,全校学生人数是572人,男生人数与女生人数比是5:6,这所学校有男生________人,女生________人。

内江市2020-2021学年度九年级第一学期期末考试数学试题(word版,有解答)

内江市2020-2021学年度九年级第一学期期末考试数学试题(word版,有解答)

内江市2020—2021学年度第一学期九年级期末考试数 学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1. 下列各组二次根式中,属于同类二次根式的是( ) A. 3与18 B. 63与28 C 5.0与32 D.12与72 2. 下列计算正确的是( )A.2)2(-=-2 B. 532=+ C. 2332=⨯ D. 22223=-3. 用配方法解方程x 2+6x+4=0时,原方程变形为( )A. (x+3)2=9B. (x+3)2=13C. (x+3)2=5D. (x+3)2=44. 如图,某小区计划在一个长80米,宽36米的长方形场地ABCD 上,修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若使每块草坪的面积都为260平方米,求道路的宽度. 设道路 宽度为x 米,则根据题意可列方程为( )A. (80-2x )(36-x )=260×6B. 36×80-2×36x -80x =260×6C. (36-2x )(80-x )=260D. (80-2x )(36-x )=265. 下列时间中是不可能事件的是( ) A. 抛掷一枚硬币50次,出现正面的次数为40次B. 从一个装有30只黑球的不透明袋子中摸出一个球为黑球C. 抛掷一枚质地均匀的普通正方体骰子两次,出现点数之和等于13D. 从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K6. 在△ABC 中,∠C=90º,AB=10,tanA=43,则BC 的长为( ) A. 27 B. 6 C. 8 D. 107. 如图,商用手扶梯AB 的坡比为1:3,已知扶梯的长 AB 为12米,则小明乘坐扶梯从B 处到A 处上升的高度AC 为( ) A. 6米 B. 8米 C. 10米 D. 12米8. 如图,四边形ABCD 与四边形EFGH 位似,位似中心点 是O ,OE:EA=32,则S 四边形EFGH : S 四边形ABCD =( ) A. 94 B. 254 C. 32 D. 52 9. 当b -c =3时,关于的一元二次方程2x 2-bx+c =0的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定10.已知-1<a <0,化简4)1(4)1(22+---+a a a a 的结果是( ) C A B A D B CD C A BEFGH OA. a 2-B. -2aC. 2aD. a2 11.如图,在四边形ABCD 中,P 是对角线BD 的中点, 点E 、F 分别是AB 、CD 的中点,AD=BC ,∠EPF=140º,∠EFP=( ) A. 50º B. 40º C. 30º D. 20º 12.如图,在正方形ABCD 中,E 为BC 中点,连接AE , DF ⊥AE 于点F ,连接CF ,FG ⊥CF 于点G ,下列结论:①CF=CD ;②G 为AD 中点;③△DCF ∽△AGF ;④AF:EF=2:3. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4 第Ⅱ卷(非选择题 共72分) 二、填空题(本大题共4小题,每小题4分,共16分.) 13.二次根式21-x 中x 的取值范围是_______. 14.如图,点O 为正方形的中心,点E 、F 分别在正方形的边上, 且∠EOF=90º,随机地往图中投一粒米,则米粒落在图中阴影部分的概率为_________. 15. 已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=______. 16.观察下列一组方程:①x 2-x =0;②x 2-3x +2=0;③x 2-5x +6=0;④x 2-7x +12=0;·······它们的根有一定的规律,都是两个连续的自然数.我们称这类一元二次方程为“连根一元二次方程”. 若x 2+kx +56=0也是“连根一元二次方程”,则k 的值为______,第n 个方程为 .三、解答题(本大题共6小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)(1)计算:.30tan 6)20213(212745sin 02︒+-+-︒ (2)解方程:(x -3)2=2(x -3).18.(本小题满分8分)如图,在正方形ABCD 中,E 为BC 边的中点,连接DE ,过点E 作EF ⊥ED 交AB 于点G 、交DA 的延长线于点F. (1)求证:△ECD ∽△DEF ;(2)若CD=4,求AF 的长.A F DB EC F E O B E CF A DF CG E A B D D E A F B C P19.(本小题满分8分)某数学小组为调查某学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A(乘坐电动车)、B(乘坐普通公交车或地铁)、C(乘坐学校的定制公交车)、D(乘坐家庭汽车)、E(步行或其他)”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的扇形统计图和条形统计图,请结合统计图回答下列问题:(1)本次调查中一共调查了 名学生;扇形统计图中,E 选项对应的圆心角是 度;(2)请将条形统计图补充完整;(3)若甲、乙两名学生放学时从A 、B 、C 三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具回家的概率.20.(本小题满分9分)某校数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A 处测得正前方河流的左岸C 处的俯角为α,无人机沿水平线AF 方向继续飞行50米至B 处,测得正前方河流的右岸D 处的俯角为30°. 线段AM 的长为无人机距地面的铅直高度,点M 、C 、D 在同一直线上. 其中tan α=2,MC=503米.(1)求无人机的飞行高度AM ;(结果保留根号) (2)求河流的宽度CD.(结果精确到1米,参考数据:2≈1.41,3≈1.73)选项 30 A B C D E 60 20 100 80 60 40 20 0 人数 40 A C B 30% D E α A B F 30° M C D21.(本小题满分9分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯. 2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?22.(本小题满分12分)如图,在△ABC中,∠ACB=90º,CD⊥AB,垂足为D.(1)图1中共有对相似三角形,写出来分别为;(2)已知AB=5,AC=4,请你求出CD的长;(3)在(2)的情况下,如果以AB为轴,CD为y轴,点D为坐标原点O,建立直角坐标系(如图2),若点P从C点出发,以每秒1个单位的速度沿线段CB运动,点Q从B 点出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t秒,是否存在点P,使以点B、P、Q为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.CA D B图1yCA OB x图2内江市2020—2021学年度第一学期九年级期末考试数学解析第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1. 下列各组二次根式中,属于同类二次根式的是( ) A. 3与18 B. 63与28 C 5.0与32 D.12与72 解析:考查二次根式的化简及同类二次根式的定义. 难度:★A. 2318=;B. 7363=,7228=;C. 2215.0=,63132=;D. 3212=,2672=. 故选B . 2. 下列计算正确的是( ) A.2)2(-=-2 B. 532=+ C.2332=⨯ D. 22223=- 解析:考查二次根式的有关运算. 难度:★ A. 2)2(2=-;B. 2与3不是同类二次根式,不能加减;C. 632=⨯;故选D .3. 用配方法解方程x 2+6x+4=0时,原方程变形为( )A. (x+3)2=9B. (x+3)2=13C. (x+3)2=5D. (x+3)2=4解析:考查配方法解方程. 难度:★根据等式性质,得x 2+6x+9=5,(x+3)2=5. 故选C .4. 如图,某小区计划在一个长80米,宽36米的长方形场地ABCD 上,修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若使每块草坪的面积都为260平方米,求道路的宽度. 设道路 宽度为x 米,则根据题意可列方程为( )A. (80-2x )(36-x )=260×6B. 36×80-2×36x -80x =260×6C. (36-2x )(80-x )=260D. (80-2x )(36-x )=26 解析:考查列一元二次方程解应用题. 难度:★★由题意,用平移的思路(如右图)得到长(80-2x )米、宽(36-x )米的矩形草坪,选A .5. 下列时间中是不可能事件的是( )A. 抛掷一枚硬币50次,出现正面的次数为40次B. 从一个装有30只黑球的不透明袋子中摸出一个球为黑球C. 抛掷一枚质地均匀的普通正方体骰子两次,出现点数之和等于13D. 从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K解析:考查“统计与概率”的事件分类. 难度:★A.“抛掷一枚硬币50次,出现正面的次数为40次”是随机事件;B.“从一个装有30只黑球的不透明袋子中摸出一个球为黑球”是必然事件;D.“从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K ”是随机事件;质地均匀的普通正方体骰子点数最大是6,所以C.“抛掷一枚质地均匀的正方体骰子两次,出现点数之和等于13”是不可能事件. 故选C .6. 在△ABC 中,∠C=90º,AB=10,tanA=43,则BC 的长为( ) AD B CA. 27B. 6C. 8D. 10 解析:考查对直角三角形性质的综合应用. 难度:★★ 如图,因为在Rt △ACB 中,∠C=90º,tan ∠A=43, 设BC=3k ,AC=4k ,则由勾股定理得AB=5k =10,解得k =2,则BC=3×2=6,故选B .7. 如图,商用手扶梯AB 的坡比为1:3,已知扶梯的长 AB 为12米,则小明乘坐扶梯从B 处到A 处上升的高度AC 为( ) A. 6米 B. 8米 C. 10米 D. 12米解析:考查对直角三角形性质的综合应用. 难度:★★由题意得在Rt △ACB 中,∠C=90º,tan ∠ABC=33,则∠ABC=30º. 而AB=12米,则AC=21AB=21×12=6米. 故选A . 8. 如图,四边形ABCD 与四边形EFGH 位似,位似中心点 是O ,OE:EA=32,则S 四边形EFGH : S 四边形ABCD =( ) A. 94 B. 254 C. 32 D. 52 解析:主要考查“位似图形的面积比等于位似比的平方”. 难度:★由OE:EA=32,得OE:OA=52. 而四边形ABCD 与四边形EFGH 位似, 则S 四边形EFGH : S 四边形ABCD =254)52(2=,故选B . 9. 当b -c =3时,关于的一元二次方程2x 2-bx+c =0的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定解析:主要考查等式性质、代数式的变形及一元二次方程根的判别式. 难度:★★由b -c =3变形得b =3+c ,代入Δ=(-b )2-8c=(3+c )2-8c=c 2-2c +9=(c -1)2+8.无论c 为何实数,(c -1)2≥0,则(c -1)2+8恒为正数,即Δ>0. 故选A .10.如图,在四边形ABCD 中,P 是对角线BD 的中点, 点E 、F 分别是AB 、CD 的中点,AD=BC ,∠EPF =140º,∠EFP=( ) A. 50º B. 40º C. 30º D. 20º解析:考查三角形的中位线性质、等边对等角及三角形内角和定理. 难度:★★由E 、F 、P 分别是AB 、CD 、BD 的中点,得PE 、PF 分别是BC 、AD 的中位线,则PE=0.5BC ,PF=0.5AD. 又AD=BC ,则PE=PF. 而∠EPF=140º,则∠EFP=(180º-140º)÷2=20º. 故选D .11.已知-1<a <0,化简4)1(4)1(22+---+aa a a 的结果是( ) A. a 2- B. -2a C. 2a D. a2 B C A C A B D C A B E F G H O D EA FBC P解析:考查实数的比较、代数式的恒等变形及二次根式的化简. 难度:★★★由-1<a <0,得-1<a 1<0且a 1<a ,得a+a 1<0,a -a 1>0. 则.211)1()1(4)1(4)1(2222a a a a a a a a a a a a a =++-=+--=+---+故选C . 12.如图,在正方形ABCD 中,E 为BC 中点,连接AE , DF ⊥AE 于点F ,连接CF ,FG ⊥CF 于点G ,下列结论:①CF=CD ;②G 为AD 中点;③△DCF ∽△AGF ; ④AF:EF=2:3. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4解析:考查图形综合应用,主要有相似三角形、全等三角形、 直角三角形、等腰三角形、正方形的有关知识. 难度:★★★由已知,依次可得Rt △ABE 中,BE:AB:AE=1:2:5;△DFA ∽△ABE ;AF:DF:AD=1:2:5;过点C 作CH ⊥DF 于点H ,易得△CHD ≌△DFA ,进而得DH=FH ,故①CF=CD 成立;又FG ⊥CF ,则∠CFH=∠GFA ,而∠CFH=∠CDH ,∠CDH=∠GAF ,所以∠GFA=∠GAF ,得GA=GF ,同理得GD=GF ,则GA=GD ,故②G 为AD 中点成立;得③△DCF ∽△AGF 成立;设正方形的边长为2,则AE=5,AF=55252=,EF=AE -AF=553, 故④AF:EF=2:3成立. 故选D .第Ⅱ卷(非选择题 共72分)二、填空题(本大题共4小题,每小题4分,共16分,请讲最后答案直接填在题中的横线上.)13.二次根式21-x 中x 的取值范围是_______. 解析:考查二次根式的存在性. 难度:★.由21-x ≥0且x -2≠0,得x -2>0,即x >2. 14.如图,点O 为正方形的中心,点E 、F 分别在正方形的边上,且∠EOF=90º,随机地往图中投一粒米,则米粒落在图中阴影部分的概率为_________. 解析:考查正方形的中心对称性及概率问题. 难度:★. 如图,米粒落在图中阴影部分的概率为25%.15.已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=______. 解析:主要考查相似多边形的性质及一元二次方程的求解. 难度:★★★.由题意得四边形ABEF 为正方形.设FD=x ,则AD=(1+x ).由四边形EFDC 与矩形ABCD 相似,得AD:AB=CD:DF ,即(1+x ):1=1:x ,整理得x 2+x -1=0,解得x =251±-(251--舍去),则AD=2511251+=++-. A F D B E CF CG EA B DH F O16.观察下列一组方程:①x 2-x =0;②x 2-3x +2=0;③x 2-5x +6=0;④x 2-7x +12=0;·······它们的根有一定的规律,都是两个连续的自然数.我们称这类一元二次方程为“连根一元二次方程”. 若x 2+kx +56=0也是“连根一元二次方程”,则k 的值为______,第n 个方程为 . 解析:考查阅读理解能力. 难度:★★★由“连根一元二次方程”的定义k 的值为-7-8=-15;一次项系数依次为:-1=-(1+0);-3=-(2+1);-5=-(3+2);-7=-(4+3);·······;常数项依次为:0=1×0;2=2×1;6=3×2;12=4×3;·······;所以第n 个方程为x 2-(n +n -1)x +n (n -1)=0,即x 2-(2n -1)x +n 2-n =0.三、解答题(本大题共6小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)(1)计算:.30tan 6)20213(212745sin 02︒+-+-︒ (2)解方程:(x -3)2=2(x -3). 解:原式=33612133)22(2⨯+⨯+- 解:(x -3)2-2(x -3)=0 =32213321++- (x -3)(x -3-2)=0 =31- x -3=0,x -5=0x 1=3,x 2=518.(本小题满分8分)某数学小组为调查某学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A(乘坐电动车)、B(乘坐普通公交车或地铁)、C(乘坐学校的定制公交车)、D(乘坐家庭汽车)、E(步行或其他)”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的扇形统计图和条形统计图,请结合统计图回答下列问题:(1)本次调查中一共调查了 名学生;扇形统计图中,E 选项对应的圆心角是 度;(2)请将条形统计图补充完整;(3)若甲、乙两名学生放学时从A 、B 、C 三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具回家的概率.解:(1)总人数是60÷30%=200人,E 选项对应的圆心角是360×40÷200=72度;(2)C(乘坐学校的定制公交车)有200-20-60-30-40=50人,如图;(3)画树状图如右图: 开始共有9个等可能的结果,其中甲、乙两名学生恰好选择同一种 交通工具回家的结果有3个, 甲 A B C∴甲、乙两名学生恰好选择同一种交通工具回家的概率为93,即31. 乙 A B C A B C A B C A C B 30% D E 选项 30 A B C D E 60 20 100 80 60 40 20 0 人数 40 5019.(本小题满分8分)如图,在正方形ABCD 中,E 为BC 边的中点,连接DE ,过点E 作EF ⊥ED 交AB 于点G 、交DA 的延长线于点F. (1)求证:△ECD ∽△DEF ;(2)若CD=4,求AF 的长.(1)证明:∵四边形ABCD 是正方形,EF ⊥ED ,∴∠C=∠FED=90º. ∵BC ∥AD ,∴∠CED=∠EDF,∴△ECD ∽△DEF.(2)解:∵四边形ABCD 是正方形, ∴∠C=90º,AD=BC=CD=4.∵E 为BC 的中点,∴CE=0.5BC=2. 在Rt △DCE 中,由勾股定理得DE=.5242CD CE 2222=+=+∵△ECD ∽△DEF ,∴CE:DE=DE:DF ,∴DF :5252:2=,解得DF=10.∵AD=4,∴AF=DF -AD=10-4=6.20.(本小题满分9分)某校数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A 处测得正前方河流的左岸C 处的俯角为α,无人机沿水平线AF 方向继续飞行50米至B 处,测得正前方河流的右岸D 处的俯角为30°. 线段AM 的长为无人机距地面的铅直高度,点M 、C 、D 在同一直线上. 其中tan α=2,MC=503米.(1)求无人机的飞行高度AM ;(结果保留根号) (2)求河流的宽度CD.(结果精确到1米,参考数据:2≈1.41,3≈1.73)解:过点B 作BN ⊥MD 于点N.由题意可知,∠ACM=α,∠BDM=30°,AB=MN=50. (1)在Rt △AMC 中,tan ∠ACM=tan α=2,MC=503,∴AM=2MC=1003,即BN=1003.答:无人机的飞行高度AM 为1003米.(2)在Rt △BND 中,∵tan ∠BDN=tan30°=DN BN , ∴DN=1003÷33=300,∴DM=DN+MN=300+50=350, ∴CD=DM -MC=350-503≈264.答:河流的宽度CD 约为264米.21.(本小题满分9分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.B E CF A D α A B F 30° M N C D(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯. 2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?解:(1)设年平均增长率为x ,由题意得20(1+x )2=28.8,解得x 1=20%,x 2=-2.2(舍去).答:华侨城景区2019至2021年春节长假期间接待游客人次的年平均增长率为20%.(2)设每杯售价定为a 元,由题意得(a -6)[300+30(25-a )]=6300,解得a 1=21,a 2=20∴为了让顾客获得最大优惠,a 应取20.答:每杯售价定为20元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额.22.(本小题满分12分)如图,在△ABC 中,∠ACB=90º,CD ⊥AB ,垂足为D.(1)图1中共有 对相似三角形,写出来分别为 ;(2)已知AB=5,AC=4,请你求出CD 的长;(3)在(2)的情况下,如果以AB 为轴,CD 为y 轴,点D 为坐标原点O ,建立直角坐标系(如图2),若点P 从C 点出发,以每秒1个单位的速度沿线段CB 运动,点Q 从B 点出发,以每秒1个单位的速度沿线段BA 运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t 秒,是否存在点P ,使以点B 、P 、Q 为顶点的三角形与△ABC 相似?若存在,请求出点P 的坐标;若不存在,请说明理由. 解:(1)3;△ABC ∽△ACD ,△ABC ∽△CBD ,△ACD ∽△CBD .(2)∵在Rt △ACB 中,∠ACB=90º,AB=5,AC=4, ∴BC=.345AC AB 2222=-=-∵S △ABC =21AB·CD=21AC·BC , ∴CD=512AB BC AC =⋅. (3)存在点P ,使以点B 、P 、Q 为顶点的三角形与△ 理由如下:在△BOC 中,∵∠COB=90º,BC=3,OC=2.4,∴OB=1.8 分两种情况:①当∠BQP=90º时,如图2①,此时△PQB ∽△,∴BC BQ AB BP =, ∴353t t =-, 解得t =89,即BQ=CP=89, ∴BP=BC -CP=3-89=815. A O B x 图2① C A D B 图1 C y P Q在△BPQ 中,由勾股定理得PQ=,23)89()815(BQ BP 2222=-=- OQ=OB -BQ=-5989=4027. ∴点P 的坐标为(4027,23); ②当∠BPQ=90º时,如图2②,此时△QPB ∽△ACB , ∴AB BQ BC BP =, ∴533t t =-, 解得t =815,即BQ=CP=815, ∴BP=BC -CP=3-815=89. 过点P 作PE ⊥x 轴于点E.∵△QPB ∽△ACB ,∴AB BQ CO PE =, 即PE:512=815:5,∴PE=109. 在△BPE 中,BE=,4027)109()89(PE PB 2222=-=- ∴OE=OB -BE=-594027=89, ∴点P 的坐标为(89,109), 综上可得,点P 的坐标为(4027,23);(89,109). A O B x图2② C y P Q E。

安徽省宣城市2020-2021学年八年级上学期期末考试数学试题(word版含答案)

安徽省宣城市2020-2021学年八年级上学期期末考试数学试题(word版含答案)

宣城市2020—2021学年度第一学期期末素质调研测试八年级数学试题考试时间:100分钟,试卷满分100分一、选择题(本题共10小题,每小题3分,共计30分)1.点P(-2,-5)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限2.在“回收”、“节水”、“绿色食品”、“低碳”四个标志图案中,其中轴对称图形的是A B C D3.函数y x的取值范围是A.x ≥-7B.x>-7且x ≠ 0C.x ≠ 0D.x≥-7且x ≠ 04.如图,△ABC的三边的中线AD,BE,CF相交于点G,且AG:GD=2:1,若S△ABC =18,则图中阴影部分的面积是第4题图第5题图第7题图A.6B.7C.8D.95.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点,过点P分别作两坐标轴的垂线段PC,PD,且PC+PD=5,则直线AB的函数表达式为A.y=x+5B.y=-x+5C.y=x-5D.y=-x-56.一次函数y=(3n-15)x+2n-8的图象不经过第三象限,则n的取值范围是A.4≤n<5B.4<n<5C.n<5D.n>47.如图,点C,F在AD上,AB=DE,AF=DC,要使△ABC△△DEF,可以添加的一个条件是A.AB△DE B.EF△BC C.△B=△E D.△ACB=△DFE8.如图,在Rt△ACB中,△C=90°,△A=36°,线段AB的垂直平分线分别交线段AB、线段AC于D、E两点,则△CBE的度数为A.10°B.12°C.18°D.20°第8题图第10题图9.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为A.45°B.135°C.45°或67.5°D.45°或135°10.如图,△ABC是边长为8的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,点Q同时以相同的速度由B向CB的延长线方向运动(Q与B不重合),过P作PE△AB于E,连接PQ交AB于D,运动过程中线段DE 的长A.3B.4C.5D.不能确定二、填空题(本题共6小题,每题3分,共18分)11.若点P(2x,3x+5)在第二象限,且点P到两坐标轴的距离相等,则点P的坐标是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版2020-2021学年度上学期期末考试数学试卷(全册)一、选择题(本大题共10小题,共30.0分)1.下列关于事件发生可能性的表述,正确的是( )A. 事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B. 体育彩票的中奖率为10%,则买100张彩票必有10张中奖C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D. 掷两枚硬币,朝上的一面是一正面一反面的概率为 132.下列四个银行标志中,既是轴对称图形又是中心对称图形的是( ). A. B. C. D.3.关于 x 的一元二次方程 x 2−5x +2p =0 的一个根为 1 ,则另一根为( ).A. -6B. 2C. 4D. 14.下列关于二次函数 y =2x 2+3 ,下列说法正确的是( ).A. 它的开口方向向下B. 它的顶点坐标是 (2,3)C. 当 x <−1 时, y 随 x 的增大而增大D. 当 x =0 时, y 有最小值是35.如图,AB 为⊙O 的直径,点D 是弧AC 的中点,过点D 作DE ⊥AB 于点E ,延长DE 交⊙OO 于点F ,若AC = 12,AE = 3,则⊙O 的直径长为( )A. 10B. 13C. 15D. 166.某校食堂每天中午为学生提供A 、 B 两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为( )A. 12B. 13C. 14D. 237.如图,某幢建筑物从2.25米高的窗口A 用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面3米,则水流下落点B 离墙的距离OB 是( )A. 2.5米B. 3米C. 3.5米D. 4米8.小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编了苏轼诗词《念奴娇·哧壁怀古》:“大江东去浪淘尽,千古风流人物。

而立之年督东吴,早逝英年两位数。

十位恰小个位三,个位平方与寿同。

哪位学子算得快,多少年华数周瑜?”假设周瑜去世时年龄的十位数字是 x ,则可列方程为( )A. 10x +(x −3)=(x −3)2B. 10(x +3)+x =x 2C. 10x +(x +3)=(x +3)2D. 10(x +3)+x =(x +3)29.如图,将半径为 2 ,圆心角为120°的扇形 OAB 绕点 A 逆时针旋转60°,点 O , B 的对应点分别为 O ′ , B ′ ,连接 BB ′ ,则图中阴影部分的面积是( )A. 2π3B. 2√3−π3C. 2√3−2π3D. 4√3−2π310.如图,抛物线y =ax 2+bx+c (a ≠0)与x 轴交于点(4,0),其对称轴为直线x =1,结合图象给出下列结论:①ac <0;②4a ﹣2b+c >0;③当x >2时,y 随x 的增大而增大;④关于x 的一元二次方程ax 2+bx+c =0有两个不相等的实数根.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,每小题4分,共24分)11.如图,已知点A(2,0),B(0,4),C(2,4),D(6,6),连接AB ,CD ,将线段AB 绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为________.12.如图,点A,B,C,D都在⊙O上,弧CD 的度数等于84°,CA是∠OCD的平分线,则∠ABD+∠CAO=________°13.在一个不透明的袋子里有50个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后,发现摸到红球的频率稳定在0.4,由此估计袋中红球的个数为________.14.若一个扇形的弧长是2πcm,面积是6πcm2,则扇形的圆心角是________度.15.某旅行社有100张床位,每床每晚收费10元,床位可全部租出,在每床的收费提高幅度不超过5元的情况下,若每床的收费提高2元,则减少10张床位租出,若收费再提高2元,则再减少10张床位租出,以每次提高2元的这种方式变化下去,为了获得1120元的收入,每床的收费每晚应提高________元⏜上的一个动点,连接16.如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是BCAD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为________.三、解答题(本大题共8小题,共66分)17.如图,点E是正方形ABCD的边DC上一点,把ΔADE绕点A顺时针旋转到ΔABF的位置,连接EF .(1)求证:ΔAEF是等腰直角三角形;(2)若四边形AECF的面积为25,DE=2,求AE的长.18.已知RtΔABC的两条直角边长为一元二次方程x2+kx+12=0的两根.(1)当k=−7时,求RtΔABC的周长;(2)当Rt△ABC为等腰直角三角形时,求k的值及ΔABC的周长.19.平面上有3个点的坐标:A(0,−3),B(3,0),C(−1,−4).(1)在A,B,C三个点中任取一个点,这个点既在直线y1=x−3上又在抛物线上y2=x2−2x−3上的概率是多少?(2)从A,B,C三个点中任取两个点,求两点都落在抛物线y2=x2−2x−3上的概率.20.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2, 求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.21.荆州市某超市经销某种特色水果的成本为每千克20元,在一段时间内,销售单价P(元/kg)与时间t(天)的函数图像如图,且其日销售量y(kg)与时间t(天)的关系是:y=−2t+120(其中天数t 为整数)(1)当0≤t≤40天,求销售单价p(元/kg)与时间t(天)之间的函数关系式;(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在前20天中,超市决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫“对象,而且每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.22.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CEPD',旋转角为a.(1)当点D'恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a之90°,求证:GD'=E'D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD'与A CBD'能否全等?若能,直接写出旋转角α的值:若不能说明理由.23.如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D,G两点,AD分别与EF,GF交于I,H两点.(1)求∠FDE的度数;(2)试判断四边形FACD的形状,并证明你的结论;(3)当G为线段DC的中点时,①求证:FD=FI;②设AC=2m,BD=2n,求m:n的值.24.如图,已知抛物线y=−1x2+bx+c交x轴于A(6,0),B(−1,0)两点,交y轴于点C,点P2是线段AC上一动点.(1)求抛物线解析式;(2)连接OP并延长交抛物线于点D,连接AD,是否存在点P使S△AOP=S△APD?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接BC,过点P作PE//BC交x轴于点E,点P绕点E逆时针旋转,当点P的对应点P′恰好落在x轴上时,CP=CP′,求此时E的坐标.答案一、选择题1.解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.D. 掷两枚硬币,朝上的一面是一正面一反面的概率为 12 ,故错误.故答案为::C.2.解:A 、是轴对称图形,不是中心对称图形,不符合题意;B 、不是轴对称图形,也不是中心对称图形,不符合题意;C 、既是轴对称图形,也是中心对称图形,符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意.故答案为:C.3.解:将1代入 x 2−5x +2p =0 ,得 1−5+2p =0∴ p =2∴原方程为 x 2−5x +4=0∴ x =4 或1故答案为:C.4.∵ y =2x 2+3 的二次项系数大于0∴函数开口向上,故答案为:A 错误;∵ y =2x 2+3 的顶点坐标为 (0,3) ,即最小值为3∴选项B 错误,选项D 正确;y =2x 2+3 的对称轴为 x =0当 x <0 时, y 随 x 的增大而减小∴选项C 错误;故答案为:D.5.解:如图,连接OF ,∵DE ⊥AB ,∴AD ⏜=AF ⏜,∵D 是AC 的中点,∴AD ⏜=CD⏜, ∴AC ⏜=DF⏜ , ∴AC=DF=12,∴EF=6,设OA=x,∵OF 2=OE 2+EF 2 ,∴x 2=(x-3)2+62,解得;x=152.故答案为:C.6.解:树状图如下一共有4种结果,甲乙两人选择同款套餐的有2种情况,∴P (甲乙两人选择同款套餐)=24=12.故答案为:A.7.解:设抛物线的解析式为y=a (x-1)2+3,把A (0,2.25)代入,得2.25=a+3,a=-0.75.∴抛物线的解析式为:y=-0.75(x-1)2+3.当y=0时,0=-0.75(x-1)2+3,解得:x 1=-1(舍去),x 2=3.OB=3米.故答案为:B .8.解:设周瑜去世时年龄的十位数字是x ,根据题意得;10x+(x+3)=(x+3)2.故答案为:C.9.解:如图,连接 OO ′ 、 BO ′ ,∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,∴∠OAO′=60°,∵OO′=OA,∴△OAO′是等边三角形,∴∠AOO′=∠AO′O=60°,∵∠AOB=120°,∴∠BOO′=60°,∵OO′=OB,∴△OBO′是等边三角形,∴∠OO′B=60°,∴∠AO′B=120°,∴∠B′O′B=120°,∵O′B′=O′B,∴∠O′B′B=∠O′BB′=30°,∴图中阴影部分面积= S△B′O′B−(S扇形O′OB−S△OO′B)= 12×1×2√3−(60⋅π×22360−12×2×√3)= 2√3−2π3,故答案为:C.10.解:抛物线开口向上,因此a>0,与y轴交于负半轴,因此c<0,故ac<0,所以①符合题意;抛物线对称轴为x=1,与x轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a﹣2b+c =0,所以②不符合题意;x>1时,y随x的增大而增大,所以③符合题意;抛物线与x 轴有两个不同交点,因此关于x 的一元二次方程ax 2+bx+c =0有两个不相等的实数根,所以④符合题意;综上所述,正确的结论有:①③④,故答案为:C .二、填空题11.解:平面直角坐标系如图所示,旋转中心是P 点,P (4,2),故答案为:(4,2).12.解:∵AD ⏜=AD⏜∴∠AOD=2∠ABD=2∠ACD ,∵弧CD 的度数等于84°,∴∠COD=84°∵OD=OC∴∠OCD=∠ODC=180°−84°2=48° ∵CA 平分∠OCD∴∠ACO=∠ACD=12∠OCD=24°,∵OA=OC ,∴∠CAO=∠ACO=24°∴∠ABD=∠ACD=24°∴∠ABD+∠CAO=24°+24°=48°.故答案为:48.13.解:设袋中红球的个数为x 个,根据题意得:x 50=0.4 ,解得x=20,∴ 袋中红球的个数为20个.故答案为:20.14.解:扇形的面积= 12lr =6π,解得:r=6,=2π,又∵l=nπ×6180∴n=60.故答案为:60.15.解:假设每床的收费每晚应提高x元,由题意得:(10+x)(100−x×10)=1120,2解得:x1=4,x2=6(不合题意,舍去),即每床的收费每晚应提高4元,故答案为:4.16.解:如图,连接BO',BC,∵CE⊥AD,∴∠AEC=90°,∴在点D移动的过程中,点E在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AC=4,AB=5,∴BC=√AB2−AC2=√52−42=3,在Rt△BCO′中,√BC′2+CO′2=√22+32=√13,∵O′E+BE⩾O′B,∴当O′、E. B共线时,BE的值最小,最小值为O′B−O′E=√13−2. 故答案为:√13−2.三、解答题17. (1)证明:由旋转可得:△ADE≌△ABF,∴AE=AF,∠DAE=∠BAF,在正方形ABCD中,∵∠BAD=∠BAE+∠DAE=90°,∴∠EAF=∠BAE+∠BAF=90°,∴△AEF是等腰直角三角形;(2)解:由题意S△ABF=S△ADE,∴S四边形AECF=S正方形ABCD=25,∴AD=5,∵DE=2,∴在Rt△ADE中,AE=√52+22=√29 .18. (1)解:当k=−7时,x2−7x+12=0∴(x−3)(x−4)=0∴x1=3,x2=4此时两直角边长分别为3,4,则斜边=√32+42=5,∴ΔABC的周长为3+4+5=12;(2)解:当RtΔABC为等腰直角三角形时,即方程有两个相等的实数根则Δ=0,∴k2−48=0∴k=±4√3当k=4√3时,方程x2+4√3x+12=0∴x1=x2=−2√3(舍去);当k=−4√3时,方程x2−4√3x+12=0∴x1=x2=2√3∴k的值为−4√3此时RtΔABC两直角边都为2√3,斜边为:√(2√3)2+(2√3)2=2√6,∴RtΔABC周长为:2√3+2√3+2√6=4√3+2√6;19. (1)解:当x=0时, y1=x−3=−3, y2=x2−2x−3=−3,则A点在直线和抛物线上,当x=3时, y1=x−3=0, y2=x2−2x−3=0,,则B点在直线和抛物线上,当x=−1时, y1=x−3=−4, y2=x2−2x−3=0,则C点在直线上,不在抛物线上,所以在A,B,,C三个点中任取一个点,这个点既在直线y1=x−3上又在抛物线上y2=x2−2x−3上的概率=23,(2)解:画树状图为:共有6种等可能的结果数,其中两点都落在抛物线y2=x2−2x−3上的结果数为2,所以两点都落在抛物线y2=x2−2x−3上的概率=26=13.20. (1)解:∵AB=xm,则BC=(28﹣x)m,∴x(28﹣x)=187,解得:x1=11,x2=17,答:x的值为11m或17m(2)解:∵AB=xm , ∴BC=28﹣x , ∴S=x (28﹣x )=﹣x 2+28x=﹣(x ﹣14)2+196, ∵在P 处有一棵树与墙CD ,AD 的距离分别是16m 和6m ,∵28-x ≥16,x ≥6 ∴6≤x ≤12,∴当x=12时,S 取到最大值为:S=﹣(12﹣14)2+196=192,答:花园面积S 的最大值为192平方米21.(1)解:当0≤t ≤40时,设销售单价p (元/kg )与时间t (天)之间的函数关系式为p=kt+30, ∴40=40t+30,∴t= 14 ,∴p= 14 t+30,当t >40时,p=40,综上所述:p= {14t +30(0≤t ≤40)40(t >40); (2)解:设日销售利润为w 元,当0≤t ≤40时,w=(p-20)•y=( 14 t+10)((-2t+120)=- 12 (t-10)2+1250,∴当t=10时,w 有最大值为1250元,当t >40时,w=(p-20)•y=20(-2t+120)=-40t+2400<800,∴第10天时,最大日销售利润为1250元;(3)解:∵w=(p-20-n )(-2t+120)=- 12 t 2+(2n+10)t+1200-120n ,∴a=- 12 ,对称轴为x=2n+10,∵每天扣除捐赠后的日销售利润随时间t 的增大而增大,∴ {2n +10≥20n <9, ∴5≤n <922. (1)解:∵长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,∴CD ′=CD=2,在Rt △ CED ′中,CD ′=2,CE=1,∴∠ CD ′E=30°,∵ CD ∥ EF ,∴ ∠ α=30°(2)证明:∵ G 为BC 中点,∴CG=1,∴CG=CE ,∵长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,∴∠D ′CE ′=∠DCE=90°,CE=CE ′=CG ,∴∠GCD ′=∠DCE ′=90°+α,在△GCD ′和△E ′CD 中{CD′=CD∠GCD′=∠GCE′CG=CE′,∴△GCD′≌△E′CD(SAS),∴GD′=E′D(3)解:能.理由如下:∵四边形ABCD为正方形,∴CB=CD,∵CD′=CD′,∴△BCD′与△DCD′为腰相等的两等腰三角形,当∠BCD′=∠DCD′时,△BCD′≌△DCD′,当△BCD′与△DCD′为钝角三角形时,则旋转角α= 360∘−90∘2=135°,当△BCD′与△DCD′为锐角三角形时,∠BCD′=∠DCD′= 12∠BCD=45°则α=360°﹣90∘2=315°,即旋转角a的值为135°或315°时,△BCD′与△DCD′全等.23. (1)∵EF为⊙O直径,∠FDE是EF所对的圆周角,∴∠FDE=90°.(2)∵四边形ABCD为菱形,对角线AC,BD相交于点E,∴AB∥CD,AC⊥BD,∠AEB=90°,∵∠FDE=90°,∴∠AEB=∠FDE,∴AC//FD,∴四边形FACD是平行四边形.(3)∵四边形ABCD为菱形,对角线AC,BD相交于点E,∴AE=CE,∵点G为CD中点,∴GE为△ACD的中位线,∴GE//AD,∵∠FGE是EF所对的圆周角,∴∠FGE=90°,∴∠FHI=∠FHD=∠FGE=90°,∵AC⊥BD,点G为CD中点,∴DG=GE,∴DG=GE,∴∠DFG=∠EFG,∴∠FDH=∠FIH,∴DF=FI.②∵四边形ABCD为菱形,对角线AC,BD相交于点E,AC=2m,BD=2n,∴AE= 12AC=m,DE= 12BD=n,∵四边形FACD是平行四边形,DF=FI,∴DF=FI=AC=2m,∠FDA=∠EAI,∵∠FDI=∠FID,∠FID=∠EIA,∴∠EIA=∠EAI,∴EI=AE=m,∴EF=FI+EI=3m,在Rt△FDE中,EF2=FD2+DE2,即(3m)2=(2m)2+n2,整理得:5m2=n2,∴m:n= √5:5.24. (1)解:抛物线y=−12x2+bx+c交x轴于A(6,0),B(−1,0)两点∴设抛物线为y=−12(x−6)(x+1),∴抛物线的解析式为y=−12(x−6)(x+1)=−12x2+52x+3;(2)解:如图由(1)结论,计算可得C(0,3)∴设直线AC的解析式为y=kx+3∵直线AC过A(6,0)∴6k+3=0∴k=−12∴y=−12x+3∵S△AOP=S△APD∴P为OD中点设P(m,−12m+3),则D(2m,−m+6)∵D在抛物线上∴−12(2m)2+52×(2m)+3=−m+6,∴m=3±√32∴P的坐标为(3+√32,9−√34)或(3−√32,9+√34);(3)解:如图,连接CE∵点P绕点E逆时针旋转∴EP=EP′∵CP=CP′,CE=CE∴△CPE≌△CP′E∴∠PEC=∠P′EC∵PE//BC∴∠BCE=∠PEC∴∠BCE=∠PEC=∠P′EC∴BC=BE∵OB=1,OC=3∴BC=BE=√OB2+OC2=√10∴E的坐标为(√10−1,0) .。

相关文档
最新文档