辽宁省大石桥市水源二中2014-2015学年八年级下学期期末模拟考试数学试题及答案
2014-2015学年八年级(下)期末数学试卷

八年级期末数学试卷一、请仔细地选一选(以下每道题只有一个正确的选项,请把正确选项的代号填入答题栏内,每小题3分,共30分)1.(3分)下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+92.(3分),,,,a+中,分式的个数有()A.2个B.3个C.4个D.5个3.(3分)(2006•襄阳)不等式组的解集在数轴上应表示为()A.B.C.D.4.(3分)下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等.其中真命题的个数的是()A.1个B.2个C.3个D.4个5.(3分)下列图形中,是相似形的是()A.所有平行四边形B.所有矩形C.所有菱形D.所有正方形6.(3分)△ABC∽△A′B′C′,且相似比为2:3,则它们的面积比等于()A.2:3 B.3:2 C.4:9 D.9:47.(3分)方程的解为增根,则增根可能是()A.x=2 B.x=0 C.x=﹣1 D.x=0或x=﹣18.(3分)在比例尺为l:300000的某市地图上,A,B两地相距5cm,则A、B之间的实际距离为()A.15km B.1.5km C.15000km D.1500000km9.(3分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计、下列判断:①这种调查方式是抽样调查;②800名学生的数学成绩是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个10.(3分)(1999•南京)甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.二、请认真填一填(每小题3分,共15分)11.(3分)(2006•衡阳)化简:结果是_________.12.(3分)(2004•芜湖)对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,S甲2=0.02;机床乙:乙=10,S乙2=0.06,由此可知:_________(填甲或乙)机床性能好.甲13.(3分)不等式3(x+1)≥5x﹣3的正整数解是_________.14.(3分)已知=,则分式的值是_________.15.(3分)如图,P是△ABC中边AB上一点,连接CP,有如下条件:①∠ACP=∠B,②∠APC=∠ACB,③AC2=AP•AB,④=,其中能判定△ACP∽△ABC的条件是_________(填序号).三、解答题(16、19、21题个8分,17题6分,18、22题个10分,20题5分,共55分)16.(8分)将下列各式分解因式:(1)x2y2+6xy+9(2)2x3﹣18x.17.(6分)(2006•武汉)先化简,再求值:,其中x=4.18.(10分)解下列不等式组,并把解集在数轴上表示出来(1);(2).19.(8分)6月5日是世界环保日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围的人数最多?(不要求说明理由).(4)若成绩在90分以上(不含90分)为优秀,则该校八年级参赛学生成绩优秀的约为多少人?频率分布表分组频数频率50.5﹣60.5 4 0.0860.5﹣70.5 8 0.1670.5﹣80.5 10 0.2080.5﹣90.5 16 0.3290.5﹣100.5合计20.(5分)看图填空:如下图左,∠A+∠D=180°(已知)∴_________∥_________(_________)∴∠1=_________(_________)∵∠1=65°(已知)∴∠C=65°.21.(8分)在“情系玉树”捐款活动中,某同学对八年级的(1)、(2)两班的捐款情况进行统计得到如下三条信息:信息一:(1)班共捐款300元,(2)班共捐款232元;信息二:(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的;信息三:(1)班比(2)多2人;请你根据以上三条信息,求出(1)班平均每人捐款多少元?22.(10分)如图,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角顶点P在AD上滑动时(点P与A、D 不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)证明△DPC∽△AEP;(2)当∠CPD=30°时,求AE的长;(3)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.期末数学试卷参考答案与试题解析一、请仔细地选一选(以下每道题只有一个正确的选项,请把正确选项的代号填入答题栏内,每小题3分,共30分)1.(3分)下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9考点:因式分解-运用公式法.分析:能用平方差公式分解因式的式子特点是:两项平方项,符号相反.解答:解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故错误;D、﹣x2+9能用平方差公式分解因式,故正确.故选D.点评:本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.2.(3分),,,,a+中,分式的个数有()A.2个B.3个C.4个D.5个考点:分式的定义.专题:存在型.分析:根据分式的定义进行解答即可.解答:解:这一组式子中,,a+中分母含有未知数,故是分式.故选A.点评:本题考查的是分式的定义,解答此题的关键是熟知π是一个常数,这是此题的易错点.3.(3分)(2006•襄阳)不等式组的解集在数轴上应表示为()A.B.C.D.考点:在数轴上表示不等式的解集.分析:根据不等式画出数轴,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.解答:解:不等式组的解集是≤x<2,在数轴上可表示为:故应选B.点评:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等.其中真命题的个数的是()A.1个B.2个C.3个D.4个考点:命题与定理.专题:应用题.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:①对顶角相等,是真命题,②只有在两直线平行时,同位角才相等,假命题,③等角的余角相等,是真命题,④直角都等于90°,是真命题,真命题有3个,故选C.点评:本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假,关键是要熟悉课本中的性质定理,难度适中.5.(3分)下列图形中,是相似形的是()A.所有平行四边形B.所有矩形C.所有菱形D.所有正方形考点:相似图形.专题:常规题型.分析:根据相似图形的定义,对选项进行一一分析,排除错误答案.解答:解:A、所有平行四边形,属于形状不唯一确定的图形,不一定相似,故错误;B、所有矩形,属于形状不唯一确定的图形,不一定相似,故错误;C、所有菱形,属于形状不唯一确定的图形,不一定相似,故错误;D、所有正方形,形状相同,但大小不一定相同,符合相似定义,故正确.故选D.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.6.(3分)△ABC∽△A′B′C′,且相似比为2:3,则它们的面积比等于()A.2:3 B.3:2 C.4:9 D.9:4考点:相似三角形的性质.分析:根据相似三角形的面积比等于相似比的平方解题.解答:解:∵△ABC∽△A′B′C′,且相似比为2:3∴它们的面积比为4:9故选C.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(2)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.7.(3分)方程的解为增根,则增根可能是()A.x=2 B.x=0 C.x=﹣1 D.x=0或x=﹣1考点:分式方程的增根.专题:计算题.分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x(x+1)=0,得到x=0或﹣1即可.解答:解:∵原方程有增根,∴最简公分母x(x+1)=0,解得x=0或﹣1.故选D.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.(3分)在比例尺为l:300000的某市地图上,A,B两地相距5cm,则A、B之间的实际距离为()A.15km B.1.5km C.15000km D.1500000km考点:比例线段.分析:首先设A、B之间的实际距离为xcm,然后根据本比例尺的性质,即可得方程:,解此方程即可求得答案,注意统一单位.解答:解:设A、B之间的实际距离为xcm,根据题意得:=,解得:x=1500000,∵1500000cm=15km.∴A、B之间的实际距离为15km.故选A.点评:此题考查了比例尺的性质.此题比较简单,解题的关键是根据比例尺的性质列方程,注意统一单位.9.(3分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计、下列判断:①这种调查方式是抽样调查;②800名学生的数学成绩是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.解答:解:这种调查方式是抽样调查;故①正确;总体是我校八年级800名学生期中数学考试情况;故②正确;个体是每名学生的数学成绩;故③正确;样本是所抽取的200名学生的数学成绩,故④错误样本容量是200,故⑤错误,故选C.点评:解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.(3分)(1999•南京)甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:应用题.分析:关键描述语是:“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”;等量关系为:甲班植80棵树所用的天数=乙班植70棵树所用的天数.解答:解:若设甲班每天植x棵,那么甲班植80棵树所用的天数应该表示为:,乙班植70棵树所用的天数应该表示为:.所列方程为:.故选D.点评:列方程解应用题的关键步骤在于找相等关系.本题应该抓住“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”的关键语.二、请认真填一填(每小题3分,共15分)11.(3分)(2006•衡阳)化简:结果是1.考点:分式的加减法.专题:计算题.分析:本题考查了分式的加减运算.分母互为相反数,把分母化成同分母的分式,然后进行加减运算.解答:解:原式=﹣==1.故答案为1.点评:本题考查了分式的加减运算,注意将结果化为最简分式.12.(3分)(2004•芜湖)对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,S甲2=0.02;机床乙:乙=10,S乙2=0.06,由此可知:甲(填甲或乙)机床性能好.甲考点:方差;算术平均数.分析:根据方差的意义可知,方差越小,稳定性越好,由此即可求出答案.解答:解:因为甲的方差小于乙的方差,甲的稳定性好,所以甲机床的性能好.故填甲.点评:一般地设n个数据,x1,x2,…x n的平均数为,则差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.(3分)不等式3(x+1)≥5x﹣3的正整数解是1,2,3.考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式的解集,然后求其正整数解.解答:解:∵不等式3(x+1)≥5x﹣3的解集是x≤3,∴正整数解是1,2,3.点评:本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.(3分)已知=,则分式的值是.考点:比例的性质;分式的值.分析:根据比例的性质,两內项之积等于两外项之积用a表示出b,然后代入比例式进行计算即可得解.解答:解:∵=,∴b=a,∴==.故答案为:.点评:本题考查了比例的性质,熟记两內项之积等于两外项之积并用a表示出b是解题的关键.15.(3分)如图,P是△ABC中边AB上一点,连接CP,有如下条件:①∠ACP=∠B,②∠APC=∠ACB,③AC2=AP•AB,④=,其中能判定△ACP∽△ABC的条件是①②③(填序号).考点:相似三角形的判定.分析:根据图形,∠A为△ACP和△ABC的公共角,然后根据相似三角形的判定方法对各小题分析判断后利用排除法求解.解答:解:由图可知,∠A为△ACP和△ABC的公共角,①∠ACP=∠B,符合两角对应相等,两三角形相似,②∠APC=∠ACB,符合两角对应相等,两三角形相似,③由AC2=AP•AB可得=,符合两边对应成比例,夹角相等,两三角形相似,④=,夹角为∠B,可判定△CBP∽△ABC,所以能判定△ACP∽△ABC的条件是①②③.故答案为:①②③.点评:本题考查了相似三角形的判定,熟记三角形的判定方法是解题的关键.三、解答题(16、19、21题个8分,17题6分,18、22题个10分,20题5分,共55分)16.(8分)将下列各式分解因式:(1)x2y2+6xy+9(2)2x3﹣18x.考点:提公因式法与公式法的综合运用.分析:(1)直接利用完全平方公式分解因式即可;(2)先提取公因式2x,再对余下的多项式利用平方差公式继续分解.解答:解:(1)x2y2+6xy+9=(xy+3)2;(2)2x3﹣18x,=2x(x2﹣9),=2x(x+3)(x﹣3).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.(6分)(2006•武汉)先化简,再求值:,其中x=4.考点:分式的化简求值.专题:计算题.分析:先化简,把“1”看做分母是“1”,化到最简后再把x=4代入求值.解答:解:原式==x﹣3,当x=4时,原式=1.点评:此题主要考查分式的化简与求值,比较简单.18.(10分)解下列不等式组,并把解集在数轴上表示出来(1);(2).考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:(1)先求出两个不等式的解集,然后表示在数轴上,再求其公共解;(2)先求出两个不等式的解集,然后表示在数轴上,再求其公共解.解答:解:(1),由①得,x>2,由②得,x>4,在数轴上表示如下:所以,不等式组的解集是x>4;(2),由①得,x≥1,由②得,x<2,在数轴上表示如下:所以,不等式组的解集是1≤x<2.点评:本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.(8分)6月5日是世界环保日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围的人数最多?(不要求说明理由).(4)若成绩在90分以上(不含90分)为优秀,则该校八年级参赛学生成绩优秀的约为多少人?频率分布表分组频数频率50.5﹣60.5 4 0.0860.5﹣70.5 8 0.1670.5﹣80.5 10 0.2080.5﹣90.5 16 0.3290.5﹣100.5合计考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)根据50.5﹣60.5频数为4,频率为0.08,求出总人数,即可求出90.5﹣100.5的人数,以及频率.(2)根据各组频数即可补全条形图;(3)根据条形图的高度可得答案;(4)先计算出样本的优秀率,再乘以900即可.解答:解:(1)∵50.5﹣60.5频数为4,频率为0.08,∴总人数为:4÷0.08=50人,∴90.5﹣100.5的人数为:50﹣4﹣8﹣10﹣16=12(人),频率为:12÷50=0.24,填表即可;(2)根据(1)中数据补全频数分布直方图,如图所示;(3)由频率分布表或频率分布直方图可知,竞赛成绩落在80.5﹣90.5这个范围内的人数最多;(4)12÷50×100%×900=216(人).答:该校成绩优秀学生约为216人.点评:此题主要考查了频数分布直方图,频率,用样本估计总体,读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.20.(5分)看图填空:如下图左,∠A+∠D=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∴∠1=∠C(两直线平行,内错角相等)∵∠1=65°(已知)∴∠C=65°.考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的判定定理“同旁内角互补,两直线平行”判定AB∥CD,然后由平行线的性质推知∠1=∠C;最后根据已知条件∠1=65°,利用等量代换求得∠C=65°.解答:解:∵∠A+∠D=180°(已知)∴AB∥CD(同旁内角互补,两直线平行),∴∠1=∠C(两直线平行,内错角相等),∵∠1=65°(已知)∴∠C=65°(等量代换).故答案是:AB、CD、同旁内角互补,两直线平行、∠C、两直线平行,内错角相等.点评:本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.21.(8分)在“情系玉树”捐款活动中,某同学对八年级的(1)、(2)两班的捐款情况进行统计得到如下三条信息:信息一:(1)班共捐款300元,(2)班共捐款232元;信息二:(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的;信息三:(1)班比(2)多2人;请你根据以上三条信息,求出(1)班平均每人捐款多少元?考点:分式方程的应用.专题:应用题.分析:根据(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的,则若设(1)班平均每人捐款x元,则(2)班平均每人捐款元.根据:(1)班比(2)多2人即可列方程求解.解答:解:设(1)班平均每人捐款x元,则(2)班平均每人捐款元,根据题意得:,解得:x=5,经检验x=5是原方程的解.答:(1)班平均每人捐款5元.点评:本题主要考查了利用方程解决实际问题,正确把信息一,二转化为相等关系是解题的关键.22.(10分)如图,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角顶点P在AD上滑动时(点P与A、D 不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)证明△DPC∽△AEP;(2)当∠CPD=30°时,求AE的长;(3)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.考点:相似三角形的判定与性质;矩形的性质.分析:(1)根据等角的余角相等,得∠1=∠3,根据两个角对应相等即可证明相似;(2)根据30°直角三角形的性质,得PC=8,再根据勾股定理求得DP的长,总而利用相似三角形的对应边的比相等即可求解;(3)根据相似三角形周长的比等于相似比进行分析.解答:解:(1)证明:在△DPC、△AEP中,∠1与∠2互余,∠2与∠3互余,∴∠1=∠3,(1分)又∠A=∠D=90°,(1分),∴△DPC∽△AEP.(1分)(2)∵∠2=30°,CD=4,∴PC=8,PD=(2分),又∵AD=10,∴AP=AD﹣PD=10﹣4,由(1),得=10﹣12;(3)存在这样的点P,使△DPC的周长等于△AEP周长的2倍,(1分)∵相似三角形周长的比等于相似比,设=2,解得DP=8.(2分)点评:此题综合考查了相似三角形的判定和性质.。
2014--2015学年度八年级下册期末测试

2014—2015学年下学期八年级期末考试数学试卷满分150分一、选择题(每题只有一个正确答案,请将其序号填在题后的括号中。
每题3分,共24分)1)A、-3B、3C、3± D、92、下列计算正确的是()A=== 3、如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()A、24、25B、23、24C、25、25D、23、254、小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形。
小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是()A、小明、小亮都正确B、小明正确,小亮错误C、小明错误,小亮正确D、小明、小亮都错误5、下列四条线段不能组成直角三角形的是()A、a=8,b=15,c=17B、a=9,b=12,c=15C、a=5,b=3,c=2D、a:b:c=2:3:46、若把一次函数3=xy的图象,向上平移3个单位长度,得到图象解析式2-是( )A、x-y D、33=xy=x-=xy2=B、62-y C、35-7、一次函数4y的图象不经过第()象限。
-=x-A、一B、二C、三D、四8、某教师到一村寨进行学生入学动员工作,开始时骑摩托车大约用了40分钟的时间走了20里路,休息10分钟后,又花近30分钟的时间徒步走了8里路,方到达该村。
下列能表示该教师行走的路程s (里)与时间t (分)的函数图象是( )二、填空题:(每题3分,共24分)9、若点A (m-1,2)在函数62-=x y 的图象上,则m 的值为 。
10、工人师傅做铝合金窗框分下面三个步骤进行: ⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB =CD ,EF =GH ; ⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ; ⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: ;11、将一矩形纸条,按如右上图所示折叠,则∠1 = _____度。
辽宁省大石桥市水源镇八年级数学下学期期末考试试题

辽宁省大石桥市水源镇2016-2017学年八年级数下学期期末考试学试题(考试时间90分钟,试卷满分120分)一、选择题:(每题3分,满分24分)1、下列各组数中,能作为直角三角形三边长的是( )A . 1,2,3 B. 4,5,,2,8,102、在△ABC 中,D 、E 分别是AB 边和AC 边的中点,若DE 的长是2, 则BC 的长为( ) A. 1 B. 2 C. 3 D. 43、下列计算中,正确的是( )A. 1=5=-C. (111=-=4、下列说法中正确的是( )A.有意义的x 的取值范围是x >-3B. 若正方形的边长为则面积为30c ㎡C. n 是3D.计算3的结果是35、某校随机抽查了10名参加2017年我市初中学业水平考试学生的体育成绩,得到的结果如下表:下列说法中,正确的是( )A. 这10名学生体育成绩的中位数为58B. 这10名学生体育成绩的平均数为58C. 这10名学生体育成绩的众数为60D. 这10名学生体育成绩的方差为606、一次函数y kx =+b 中,y 随x 的增大而减小,b > 0, 则这个函数的图像不经过 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7、如图, 矩形ABCD 的对角线AC 、BD 相交于点O, CE∥BD, DE ∥AC,AD =2DE =, 则四边形OCED 的面积为( )A. 4B.D. 88 、如图所示,四边形ABCD 是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH ……,如此下去,则第2017个正方形的边长是( ) A. 2016B.2017C. D.二、填空题(每小题3分,满分24分)9.比较大小 . 10. 函数1y x =- 中, 自变量x 的取值范围是_____________ . 11.“全等三角形的对应角相等”的逆命题是_____________________________________________,它是____________命题。
【精品】2014-2015学年辽宁省营口市大石桥市水源二中八年级(下)期末数学模拟试卷(解析版)word

2014-2015学年辽宁省营口市大石桥市水源二中八年级(下)期末数学模拟试卷一、选择题(每题3分,共30分)1.(3分)二次根式、、、、、中,最简二次根式有()个.A.1 个B.2 个C.3 个D.4个2.(3分)下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,233.(3分)若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2 B.﹣2 C.1 D.﹣14.(3分)如图,平行四边形ABCD中,CE丄AB于E,若∠A=125°,则∠BCE的度数为()A.35°B.55°C.25°D.30°5.(3分)某篮球队12名的年龄如下表所示:则这12名队员年龄的众数和中位数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.56.(3分)下列计算正确的是()A.+=B.•=C.﹣= D.÷=47.(3分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是()A.120°B.150°C.135° D.140°8.(3分)如果一次函数y=kx+b的图象经过第一象限,且与y轴负半轴相交,那么()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.(3分)某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()A.甲B.乙丙C.甲乙D.甲丙10.(3分)如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,点N 是边AC上一动点,则线段DN+MN的最小值为()A.8 B.8 C.2D.10二、填空题:(每小题3分,共24分)11.(3分)直角三角形两直角边长分别为5和12,则它斜边上的高为.12.(3分)如图,平行四边形ABCD的两条对角线AC、BD相交于点O,AB=5,AC=6,DB=8,则四边形ABCD的周长为.13.(3分)在中,与是同类二次根式的是.14.(3分)为备战全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,甲方差为0.23,乙方差为0.20,则成绩较为稳定的是(选填“甲”或“乙)15.(3分)如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为.16.(3分)如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.17.(3分)如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为.18.(3分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为.三、解答题(满分139分)19.(12分)计算(1)2+4﹣3(2)(8﹣5)÷2(3)4×÷3.20.(6分)已知a=+1,求代数式:(4﹣2)a2+(1﹣)a的值.21.(8分)已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE 是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.22.(8分)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.23.(8分)如图,在△ABC中,∠CAB=90°,点D、E、F分别是BC、AC、AB的中点,连结EF,AD.求证:EF=AD.24.(8分)如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?25.(8分)某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱的余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数关系如图.回答问题:(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟?(2)求加油过程中,运输飞机的余油量Q1(吨)与时间t(分钟)的函数关系式;(3)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?请通过计算说明理由.26.(8分)如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)点O运动到何处且△ABC满足什么条件时,四边形AECF是正方形?(写出结论即可)27.(8分)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P 运动到什么位置时,△ADQ恰为等腰三角形.28.某单位需要用车,准备和一个体车主或一国有出租车公司其中的一家签订合同.设汽车每月行驶x km,应付给个体车主的月租费是y1元,付给出租车公司的月租费是y2元,y1,y2分别与x之间的函数关系图象是如图的两条直线,观察图象,回答下列问题:(1)每月行驶的路程等于多少时,租两家车的费用相同?(2)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?(3)如果这个单位估计每月行驶的路程为2300 km,那么这个单位租哪家的车合算?29.(10分)如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G.(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.30.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是升.31.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是(填“甲”或“乙”)•32.(10分)在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.33.(8分)2007年上海国际汽车展期间,某公司对参观本次车展盛会的且有购车意向的消费者进行了随机问卷调查,共发放900份调查问卷,并收回有效问卷750份.工作人员对有效调查问卷作了统计,其中:①将消费者年收入的情况整理后,制成表格如下:②将消费者打算购买小车的情况整理后,绘制出频数分布直方图(如图,尚未绘完整).(注:每组包含最小值不包含最大值.)请你根据以上信息,回答下列问题:(1)根据①中信息可知,被调查消费者的年收入的中位数是万元.(2)请在图中补全这个频数分布直方图.(3)打算购买价格10万元以下(不含10万元)小车的消费者人数占被调查消费者人数的百分比是.(4)本次调查的结果,是否能够代表全市所有居民的年收入情况和购车意向?为什么?34.(8分)如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.35.(5分)已知y﹣3与4x﹣2成正比例,且当x=1时,y=5.(1)求y与x函数关系式;(2)求当x=﹣2时的函数值.36.如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.37.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C 作CF∥BE交DE的延长线于F.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.38.(8分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与x的函数关系.(1)小亮行走的总路程是m,他途中休息了min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?39.(8分)如图,A市气象站测得台风中心在A市正东方向300千米的B处,以10千米/时的速度向北偏西60°的BF方向移动,距台风中心200千米范围内是受台风影响的区域.(1)A市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A市受这次台风影响,那么受台风影响的时间有多长?2014-2015学年辽宁省营口市大石桥市水源二中八年级(下)期末数学模拟试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)二次根式、、、、、中,最简二次根式有()个.A.1 个B.2 个C.3 个D.4个【解答】解:二次根式、、、、、中,最简二次根式有、、共3个.故选:C.2.(3分)下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.3.(3分)若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2 B.﹣2 C.1 D.﹣1【解答】解:将点(m,n)代入函数y=2x+1得,n=2m+1,整理得,2m﹣n=﹣1.故选:D.4.(3分)如图,平行四边形ABCD中,CE丄AB于E,若∠A=125°,则∠BCE的度数为()A.35°B.55°C.25°D.30°【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=125°,∴∠B=55°,∵CE丄AB于E,∴∠BEC=90°,∴∠BCE=90°﹣55°=35°,故选:A.5.(3分)某篮球队12名的年龄如下表所示:则这12名队员年龄的众数和中位数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【解答】解:18岁出现了5次,次数最多,因而众数是:18;12个数,处于中间位置的都是19,因而中位数是:19.故选:A.6.(3分)下列计算正确的是()A.+=B.•=C.﹣= D.÷=4【解答】解:A、原式不能合并,错误;B、原式==,正确;C、原式=2﹣=,错误;D、原式===2,错误,故选:B.7.(3分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠EPF的度数是()A.120°B.150°C.135° D.140°【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD 的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=30°,∴∠PEF=∠PFE=30°,∴∠EPF=120°.故选:A.8.(3分)如果一次函数y=kx+b的图象经过第一象限,且与y轴负半轴相交,那么()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【解答】解:由题意得,函数y=kx+b的图象经过第一、三、四象限,k>0,b<0.故选:B.9.(3分)某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()A.甲B.乙丙C.甲乙D.甲丙【解答】解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲乙的学期总评成绩是优秀.故选:C.10.(3分)如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,点N 是边AC上一动点,则线段DN+MN的最小值为()A.8 B.8 C.2D.10【解答】解:根据题意,连接BD、BM,则BM就是所求DN+MN的最小值,在Rt△BCM中,BC=8,CM=6根据勾股定理得:BM==10,即DN+MN的最小值是10;故选:D.二、填空题:(每小题3分,共24分)11.(3分)直角三角形两直角边长分别为5和12,则它斜边上的高为.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.12.(3分)如图,平行四边形ABCD的两条对角线AC、BD相交于点O,AB=5,AC=6,DB=8,则四边形ABCD的周长为20.【解答】解:由平行四边形的性质得:OA=AC=3,OB=BD=4,在△AOB中,∵OB2+OA2=AB2,∴△AOB是直角三角形∴AC⊥BD∴平行四边形ABCD是菱形,故此四边形的周长为20.故答案为:20.13.(3分)在中,与是同类二次根式的是,.【解答】解:∵=,=,=,=∴与是同类二次根式的是,.14.(3分)为备战全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,甲方差为0.23,乙方差为0.20,则成绩较为稳定的是乙(选填“甲”或“乙)【解答】解:由于S甲2>S乙2,则成绩较稳定的运动员是乙.故答案为:乙.15.(3分)如图,在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD的面积为96.【解答】解:连接DB,于AC交与O点∵在菱形ABCD中,AB=10,AC=16∴OB===6∴BD=2×6=12∴菱形ABCD的面积=×两条对角线的乘积=×16×12=96.故答案为96.16.(3分)如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是x<2.【解答】解:由一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<2,故答案为:x<2.17.(3分)如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为6.【解答】解:∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3,=AB×3=BC×3,∴S四边形ABCD∴AB=BC,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60°,∴∠BAE=90°﹣60°=30°,∴AB=2BE,在△ABE中,AB2=BE2+AE2,即AB2=AB2+32,解得AB=2,=BC•AE=2×3=6.∴S四边形ABCD故答案是:6.18.(3分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为()2015.【解答】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…,∴第n个正方形的边长a n=()n﹣1,∴第2016个正方形的边长为()2015,故答案为:()2015.三、解答题(满分139分)19.(12分)计算(1)2+4﹣3(2)(8﹣5)÷2(3)4×÷3.【解答】解:(1)原式=4+﹣12=﹣8;(2)原式=4﹣;(3)原式=4×××=.20.(6分)已知a=+1,求代数式:(4﹣2)a2+(1﹣)a的值.【解答】解:∵a=+1,∴(4﹣2)a2+(1﹣)a=(﹣1)2a2﹣(﹣1)a=[(﹣1)a]2﹣(﹣1)a=[(﹣1)(+1]2﹣(﹣1)(+1)=(3﹣1)2﹣(3﹣1)=4﹣2=2.21.(8分)已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE 是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.【解答】证明:∵▱ABCD中,对角线AC交BD于点O,∴OB=OD,又∵四边形AODE是平行四边形,∴AE∥OD且AE=OD,∴AE∥OB且AE=OB,∴四边形ABOE是平行四边形,同理可证,四边形DCOE也是平行四边形.22.(8分)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【解答】解:(1)∵函数图象经过原点,∴m﹣3=0,且2m+1≠0,解得:m=3;(2)∵函数图象在y轴的截距为﹣2,∴m﹣3=﹣2,且2m+1≠0,解得:m=1;(3)∵函数的图象平行直线y=3x﹣3,∴2m+1=3,解得:m=1;(4)∵y随着x的增大而减小,∴2m+1<0,解得:m<﹣.23.(8分)如图,在△ABC中,∠CAB=90°,点D、E、F分别是BC、AC、AB的中点,连结EF,AD.求证:EF=AD.【解答】证明:∵点D、E、F分别是BC、AC、AB的中点,∴DE,DF是△ABC的中位线,∴DE∥AB,DF∥AC,∴四边形EAFD是平行四边形,∵∠CAB=90°,∴四边形EAFD是矩形,∴EF=AD.24.(8分)如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?【解答】解:设BD=x米,则AD=(10+x)米,CD=(30﹣x)米,根据题意,得:(30﹣x)2﹣(x+10)2=202,解得x=5.即树的高度是10+5=15米.25.(8分)某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱的余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数关系如图.回答问题:(1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟?(2)求加油过程中,运输飞机的余油量Q1(吨)与时间t(分钟)的函数关系式;(3)运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?请通过计算说明理由.【解答】解:(1)由图象知,加油飞机的加油油箱中装载了30吨油;全部加给运输飞机需10分钟;(2)设Q1=kt+b,把(0,36)和(10,65)代入,得,解得,∴Q1=2.9t+36(0≤t≤10);(3)∵加油过程中加油飞机和运输飞机的速度和耗油量是一样的,题目说“运输飞机加完油后,以原速继续飞行”,∴后来的运输飞机的速度和加油的时候的加油飞机速度和耗油量也是相同的.∵在加油过程中,余油量由36吨到65吨一共增加了29吨,∴运输飞机在加油的过程中也有耗油,而在加油过程10分钟内运输飞机一共耗掉了1吨油(输了30吨油,加完油后余油量为29吨),∴每一分钟的耗油量为:1÷10=0.1吨每分钟.即根据图象可知运输飞机的耗油量为每分钟0.1吨,∴10小时耗油量为:10×60×0.1=60,∵60<65,∴油料够用.26.(8分)如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)点O运动到何处且△ABC满足什么条件时,四边形AECF是正方形?(写出结论即可)【解答】解:(1)猜想:OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形;理由如下:∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形;理由如下:∵由(2)得:当点O运动到AC的中点时,四边形AECF是矩形,∵MN∥BC,当∠ACB=90°时,∴∠AOE=∠ACB=90°,∴AC⊥EF,∴四边形AECF是菱形,∴四边形AECF是正方形.27.(8分)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P 运动到什么位置时,△ADQ恰为等腰三角形.【解答】(1)证明:在正方形ABCD中,无论点P运动到AB上何处时,都有AD=AB,∠DAQ=∠BAQ=45°,在△ADQ和△ABQ中,,∴△ADQ≌△ABQ(SAS);(2)若△ADQ是等腰三角形,则有①如图1,AQ=DQ时,点Q为正方形ABCD的中心,点B、P重合;②如图2,AQ=AD时,根据等边对等角有∠ADQ=∠AQD,∵正方形ABCD的边长为4,∴AC==4,∴CQ=AC﹣AQ=4﹣4,∵AD∥BC,∴∠CPQ=∠ADQ,∴∠CQP=∠CPQ,∴CP=CQ=4﹣4,此时点P在距离点B:4﹣(4﹣4)=8﹣4;③如图3,AD=DQ时,点C、P、Q三点重合;综上所述,当点P运动到①点B的位置;②在BC上,且到点B的距离为8﹣4处;③运动到点C的位置时,△ADQ恰为等腰三角形.28.某单位需要用车,准备和一个体车主或一国有出租车公司其中的一家签订合同.设汽车每月行驶x km,应付给个体车主的月租费是y1元,付给出租车公司的月租费是y2元,y1,y2分别与x之间的函数关系图象是如图的两条直线,观察图象,回答下列问题:(1)每月行驶的路程等于多少时,租两家车的费用相同?(2)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?(3)如果这个单位估计每月行驶的路程为2300 km,那么这个单位租哪家的车合算?【解答】解:(1)两条直线在1500km处相交,故每月行驶的路程等于1500km 时,租两家车的费用相同;(2)由图可知当y2<y1时,对应的x的范围是x<1500km;(3)由图象可知,当x=2300km>1500km,y1<y2,即租用个体户的车合算.29.(10分)如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G.(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,AD=BC.∴∠AGD=∠CDG,∠DCF=∠BFC.∵DG、CF分别平分∠ADC和∠BCD,∴∠CDG=∠ADG,∠DCF=∠BCF.∴∠ADG=∠AGD,∠BFC=∠BCF∴AD=AG,BF=BC.∴AF=BG;(2)解:∵AD∥BC,∴∠ADC+∠BCD=180°,∵DG、CF分别平分∠ADC和∠BCD,∴∠EDC+∠ECD=90°.∴∠DEC=90°.∴∠FEG=90°.因此我们只要保证添加的条件使得EF=EG就可以了.我们可以添加∠GFE=∠FGD,四边形ABCD为矩形,DG=CF等等.30.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是2升.【解答】解:设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,则y=﹣x+35.当x=240时,y=﹣×240+3.5=2(升).故答案为:2.31.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是乙(填“甲”或“乙”)•【解答】解:由于S甲2>S乙2,则成绩较稳定的同学是乙.故填:乙.32.(10分)在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.【解答】(1)证明:如图1,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F,∴∠CEF=∠F.∴CE=CF.(2)解:连接GC、BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF平分∠BAD,∴∠DAF=∠BAF=45°,∵∠DCB=90°,DF∥AB,∴∠DFA=45°,∠ECF=90°∴△ECF为等腰直角三角形,∵G为EF中点,∴EG=CG=FG,CG⊥EF,∵△ABE为等腰直角三角形,AB=DC,∴BE=DC,∵∠CEF=∠GCF=45°,∴∠BEG=∠DCG=135°在△BEG与△DCG中,∵,∴△BEG≌△DCG,∴BG=DG,∵CG⊥EF,∴∠DGC+∠DGA=90°,又∵∠DGC=∠BGA,∴∠BGA+∠DGA=90°,∴△DGB为等腰直角三角形,∴∠BDG=45°.(3)解:延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形∵∠ABC=120°,AF平分∠BAD∴∠DAF=30°,∠ADC=120°,∠DFA=30°∴△DAF为等腰三角形∴AD=DF,∴CE=CF,∴平行四边形AHFD为菱形∴△ADH,△DHF为全等的等边三角形∴DH=DF,∠BHD=∠GFD=60°∵FG=CE,CE=CF,CF=BH,∴BH=GF在△BHD与△GFD中,∵,∴△BHD≌△GFD,∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°33.(8分)2007年上海国际汽车展期间,某公司对参观本次车展盛会的且有购车意向的消费者进行了随机问卷调查,共发放900份调查问卷,并收回有效问卷750份.工作人员对有效调查问卷作了统计,其中:①将消费者年收入的情况整理后,制成表格如下:②将消费者打算购买小车的情况整理后,绘制出频数分布直方图(如图,尚未绘完整).(注:每组包含最小值不包含最大值.)请你根据以上信息,回答下列问题:(1)根据①中信息可知,被调查消费者的年收入的中位数是6万元.(2)请在图中补全这个频数分布直方图.(3)打算购买价格10万元以下(不含10万元)小车的消费者人数占被调查消费者人数的百分比是52%.(4)本次调查的结果,是否能够代表全市所有居民的年收入情况和购车意向?为什么?【解答】解:(1)∵第375与376两人的年收入都是6万元,∴被调查消费者的年收入的中位数是6万元;…(2分)(2)750﹣30﹣90﹣270﹣150﹣30=750﹣570=180人,补全图形如图;…(3分)(3)×100%=52%;…(3分)(4)不能.因为被调查者是参观车展且有购车意向的部分消费者,不能代表全市所有居民.…(2分)34.(8分)如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S=BC•AC=8×6=48.平行四边形ABCD35.(5分)已知y﹣3与4x﹣2成正比例,且当x=1时,y=5.(1)求y与x函数关系式;(2)求当x=﹣2时的函数值.【解答】解:设y﹣3=k(4x﹣2)(k≠0),把x=1,y=5代入,得5﹣3=k(4×1﹣2),解得k=1,则y与x之间的函数关系式是y=4x+1;(2)由(1)知,y=4x+1.当x=﹣2时,y=4×(﹣2)+1=﹣7.即当x=﹣2时的函数值是7.36.如图1,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.【解答】(1)证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF.∴OE=OF.(2)解:OE=OF成立.证明:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠F+∠MBF=90°,∠E+∠OBE=90°,又∵∠MBF=∠OBE,∴∠F=∠E.∴△BOE≌△AOF.∴OE=OF.37.(8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C 作CF∥BE交DE的延长线于F.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE.∵CF∥BE,∴四边形BCFE是平行四边形.∵BE=2DE,BC=2DE,∴BE=BC.∴□BCFE是菱形;(2)解:连结BF,交CE于点O.∵四边形BCFE是菱形,∠BCF=120°,∴∠BCE=∠FCE=60°,BF⊥CE,∴△BCE是等边三角形.∴BC=CE=4.∴.∴.38.(8分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍.小颖在小亮出发后50min 才乘上缆车,缆车的平均速度为180m/min.设小亮出发x min后行走的路程为y m,图中的折线表示小亮在整个行走过程中y与(1)小亮行走的总路程是3600m,他途中休息了20min;(2)①当50≤x≤80时,求y与x的函数关系式;②当小颖到达缆车终点时,小亮离缆车终点的路程是多少?【解答】解:(1)3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b,根据题意,当x=50时,y=1950;当x=80时,y=3600∴解得:∴函数关系式为:y=55x﹣800.②缆车到山顶的线路长为3600÷2=1800米,缆车到达终点所需时间为1800÷180=10分钟小颖到达缆车终点时,小亮行走的时间为10+50=60分钟,把x=60代入y=55x﹣800,得y=55×60﹣800=2500.∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.39.(8分)如图,A市气象站测得台风中心在A市正东方向300千米的B处,以10千米/时的速度向北偏西60°的BF方向移动,距台风中心200千米范围内是受台风影响的区域.(1)A市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A市受这次台风影响,那么受台风影响的时间有多长?【解答】解:(1)过A作AC⊥BF于C,则AC=AB=150<200,∴A市会受到台风影响;(2)过A作AD=AE=200km,交BF于点D,E,∴DC==50Km,∵DC=CE,A市气象站测得台风中心在A市正东方向300千米的B处,以10千米/时的速度向北偏西60°的BF方向移动,∴该市受台风影响的时间为:=10小时.。
2014-2015学年八年级(下)期末模拟考试数学试题(二)及答案

2014-2015学年八年级(下)期末模拟考试数学试题(二)注意事项:本卷共26题,满分:120分,考试时间:100分钟.一、精心选一选(本题共10小题,每小题3分,共30分)1.)B. D.-2.下列各组二次根式中,不是同类二次根式的是()C.3.若关于x的方程(k+2)x2+3x+k2-k-6=0必有一根为0,则k的值是()A. 3B.-3或2C. 3或-2D.-24.已知m<0,关于x的方程(x-2)2-m=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根5.如图,已知平行四边形ABCD的两条对角线相交于点O,过点的直线与AB、BC分别相交于E、F,则下列结论不正确的是()A.OE=OFB.△DOE≌△BOFC.S△ABC=S△BCDD.EF=AC6.李老师在随堂练习阶段展示了6道选择题(规定每道题3分)让学生解答,李老师为检测本节课的教学效果就随机抽查了10位学生的解答情况,并填写好如下课堂教学效果检测统计表:此时,李老师最关心的数据是()A.平均数B.众数C.中位数D.最高分与最低分的差7.如果三角形的两边长分别是方程x2-8x+15=0的两个根,那么连结这个三角形三边的中点,得到的三角形的周长可能是( )A.5.5B.5C.4.5D.48.如图,一次函数y =2x -2的图象与反比例函数y =mx(x >0)的 图 象在第一象限交于点B (n ,2),与y 轴交于点A ,若△AOB 的面积为2,则nm的值为( ) A.12B.2C.3D.49.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =120°, AD =2,点E 是BC 的中点,连结OE ,则OE 的长是( )C.2D.410.如图,菱形纸片ABCD 中,∠A =60°,折叠菱形纸片ABCD ,使点C 落在DP (P 为AB 中点)所在的直线上,得到经过点D 的折痕DE ,则∠DEC 的大小为( )A.78°B.75°C.60°D.45° 二、细心填一填(本题共8小题,每小题4分,共32分)11.已知x x 2-+2的值为____________.12.已知关于x 的方程x 2-(m -1)x +m +2=0有两个相等的实数根,则m 的值为_________. 13.如图,某公园计划将一块长80m ,宽为60m 的空地进行绿化,绿化面积为3500m 2,且四周修建等宽的人行道,则人行道的宽为______m.第13题图 第14题图 第17题图 第18题图14.如图,在平面直角坐标系中,直线y =x 与双曲线y =kx(k >0)相交于P ,Q 两点,已知点P 的坐标为(3,3),则点Q 的坐标为_______________.15.某校八年级甲、乙两班举行电脑汉字输入比赛(每分钟输入汉字达150个以上为优秀),两个班参加比赛的学生每分钟输入汉字的个数,经统计和计算后结果如下表:有一位同学根据上表得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀学生比甲班优秀人数多;③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是_____________.(只填序号)16.已知一个正n 边形共有20条对角线,则这个正n 边形的每一个内角的度数为_______. 17.如图,ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于点E ,则△DCE 的周长为_____cm.18.如图,在边长为4的正方形ABCD 中,E 是AB 边上的一点,且AE =3,点Q 为对角线AC 上的动点,则△BEQ 周长的最小值为________.三、解答题(本题共8小题,第19、20、21题各5分,第22、23题各7分,第24题8分、第25题9分,第26题12分,共58分)19.计算:12-43÷×13)20.已知a 是一元二次方程x 2+3x -2=0的实数根,求代数式2324a a a -+÷(a -2-52a +)的值.21.如图,已知E、F是四边形ABCD的对角线BD的三等分点,CE的延长线分别交AB于G,CF的延长线交AD于H,且点G,H分别平分AB,AD.求证:四边形ABCD是平行四边形.22.已知:关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.23.机械加工需要用油进行润滑以减小摩擦,某企业加工一台大型机械设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36kg,为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70kg,用油的重复利用率仍然为60%,问:甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到12kg,问:乙车间技术革新后,加工一台大型机械设备的润滑用油量是多少千克?用油的重复利用率是多少?24.如图,已知四边形ABCD正方形,过顶点A的直线交正方形ABCD边CD于点E.(1)如图①,若∠DAE=30°,M为AE的中点,过点M的直线PQ⊥AE,且PQ与AD,BC分别相交于点P、Q,求证:PQ=AE;(2)如图②,若AE交CD于点E,DF⊥AE于F,点O为对角线AC的中点,在AE上截取AG=DF,连结OF,OG,那么△OFG是哪种特殊三角形,并证明你的结论.图①图②25.如图,在平面直角坐标系中,菱形OABC的顶点O和A均在x轴上,且点B(8,4)在反比例函数y=kx(x>0)的图象上.(1)求反比例函数的解析式及菱形OABC的边长;(2)若将菱形OABC向上平移m个单位长度,则菱形的顶点C恰好落在反比例函数图象上,求m的值.26.如图,在四边形ABCD中,∠ACB=90°,AC=BC,BE∥AD交CD于点E,∠ABE=30°,点F在CD上,且DF=CE,∠DAF=∠CBE.求证:四边形ABED是菱形.参考答案一、精心选一选二、细心填一填11. 5- 12. -1或7; 13. 5; 14.(-3,-3); 15. ①②③; 16. 135°; 17. 8; 18. 6. 三、解答题19.解:1243÷×13). 20.解:2324a a a -+÷(a -2-52a +)=32(2)a a a -+÷2452a a --+=32(2)a a a -+×2(3)(3)a a a ++-=2126a a+,∵a 是一元二次方程x 2+3x -2=0的实数根, ∴a 2+3a -2=0, ∴2a 2+6a =4, ∴原式=14. 21.证明:连结AC 交BD 于点O ,连结AE ,AF , ∵E 、F 是线段BD 的三等分点,∴BE=EF,∵BG=GA,∴GE是△BAF的中位线,∴GE∥AF,即CE∥AF,同理,CF∥AE,∴四边形AFCE是平行四边形,∴OA=OC,OE=OF,∵BE=DF,∴OE+BE=OF+DF,即OB=OD,∴四边形ABCD是平行四边形.22.解:(1)△ABC是等腰三角形,理由如下:∵x=-1是方程(a+c)x2+2bx+(a-c)=0,的根,∴(a+c)(-1)2+2b(-1)+(a-c)=0,∴a+c-2b+a-c=0,∴a-b=0,∴a=b,∴△ABC是等腰三角形,(2)∵方程有两个相等的实数根,∴△=(2b)2-4(a+c)(a-c)=0,∴4b2-4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形,(3)∵△ABC是等边三角形,∴方程(a+c)x2+2bx+(a-c)=0可整理得:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=-1,故当△ABC是等边三角形时,这个一元二次方程的根为x1=0,x2=-1.23.解:(1)由题意,得:70×(1-60%)=70×40%=28kg ,答:技术革新后,甲车间加工一台大型机械设备的实际耗油量是28kg.(2)设乙车间加工一台大型机械设备润滑用油量为x kg ,由题意,得:x ×[1-(90-x )×1.6%-60%]=12,整理,得:x 2-65x -750=0,解得:x 1=75,x 2=-10(不合题意,舍去),(90-75)×1.6%+60%=84%,答:技术革新后,乙车间加工一台大型机械设备润滑用油量为75kg ,用油的重复利用率为84%.24.解:(1)如图①,过P 作PN ⊥BC ,交BC 于点N ,则AD =DC =PN ,∵∠AMP =90°,∠DAE =30°,∴∠APM =60°,∠NPQ =30°,∴∠DAE =∠NPQ , 在△ADE 和△PNQ 中,90DAE QPN AD PN ADE PNQ ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ADE ≌△PNQ (ASA ),∴PQ =PE ;(2)△OFG 是等腰直角三角形,证明:如图②连结OD ,则AO =DO ,DO ⊥AC ,∴∠OAD =∠ODC =45°,∵DF ⊥AE ,∴∠D AE +∠AD F =∠ADF +∠FDE =90°,∴∠D AE =∠FDE ,∴∠OAG =∠ODF ,∴△OAG ≌△ODF ,∴OG =O F ,∠A OG =∠DOF ,图①∴∠G OF =∠GOD +∠DOF =∠AOG +∠GOD =90°,故△OFG 是等腰直角三角形.25.解:(1)∵点B (8,4)在反比例函数y =k x (x >0)的图象上,∴8k =4,解得:k =32, ∴反比例函数的解析式为y =32x (x >0). 过点B 作BF ⊥x 轴于E ,则OE =8,BF =4,延长CF 交y 轴于点F ,则四边形OEBF 是平行四边形,∵四边形OABC 是菱形,∴AB =OA ,设AE =x 则OA =AB =8-x ,在Rt △ABE 中,AE 2+BE 2=AB 2,即:x 2+42=(8-x )2,解得:x =3,即AE =3,∴8-x =5,∴菱形OABC 的边长为5;(2)由(1)知:CF =AE =3,∴点C 的坐标为(3,4),∴将点C 向上平移m 个单位后的坐标为(3,4+m ),∵将菱形OABC 向上平移m 个单位长度,菱形的顶点C 恰好落在反比例函数图象上,∴4+m =323, 解得:m =203, 故当m =203时,平移后的菱形的顶点C 恰好落在反比例函数图象上. 26.证明:∵BE ∥AD ,∴∠BEC =∠D ,又∵∠DAF =∠CBE ,DF =CE ,∴△BCE ≌△ADF (AAS ),∴BE =AD ,∴四边形ABED 是平行四边形,∴AB ∥CD ,AB =DE ,∵CE =DF ,∴CE +EF =DF +EF ,即:CF =DE ,∴AB =CF ,∴四边形ABCF 是平行四边形,∴AF =BC =AC ,∠F AC =∠ACB =90°,设AC =BC =a ,由勾股定理,得:AB ,由△BCE ≌△ADF 可知:SABED =S ABCF , 而S ABCF =BC ﹒AC =a 2,过点A 作AM ⊥BE 于点M ,则SABED =BE ﹒AM , 在Rt △ABM 中,∠ABE =30°,∴AM =12AB ,由BE ﹒AM =BC ﹒AC =a 2,得:BE =a 2,∴BE ,∴BE =AB , ∴ABED 是菱形. 。
人教版八年级数学下册期末试卷(解析版) (1).doc

初中数学试卷鼎尚图文**整理制作2014-2015学年辽宁省营口市大石桥市水源二中八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥22.下列根式中,为最简二次根式的是()A.B.C.D.3.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=54.在Rt△ABC中,CD是斜边AB边的中线,若AB=8,则CD的长是()A.6 B. 5 C. 4 D. 35.某校为了丰富校园文化,举行初中生书法大赛,决赛设置了7个获奖名额,共有13名选手进入决赛,选手决赛得分均不相同,小颖知道自己的比赛分数后,要判断自己能否获奖,需要知道这13名同学成绩的()A.众数B.中位数C.平均数D.方差6.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是()A.x=2 B.x=4 C.x=8 D.x=107.对于一次函数y=﹣2x﹣1来说,下列结论中错误的是()A.函数值y随自变量x的减小而增大B.函数的图象不经过第一象限C.函数图象向上平移2个单位后得到函数y=﹣2x+1D.函数图象上到x轴距离为3的点的坐标为(2,﹣3)8.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是()A.2 B.4 C.D.9.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则下列推理不成立的是()A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④10.如图,小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则分别表示父亲、母亲离家距离与时间之间关系的是()A.①③ B.①② C.④② D.④③二、填空题(每小题3分,计24分)11.请写出一个图象经过第一、三象限的正比例函数的解析式.12.△ABC 中,∠A=90°,a,b,c分别是∠A,∠B,∠C的对边,若a=4,b=3,则c=.13.在大课间活动中,体育老师对小刚、小强两名同学每人10次立定跳远测试,他们的平均成绩相同,方差分别是s刚2=0.15,s强2=0.20,则两名同学成绩更稳定的是.14.如图中,由一个直角三角形和两个正方形组成,如果大正方形的面积为41,AB=5,则小正方形的面积为.15.如图,在平行四边形ABCD中,对角线交于点0,点E、F在直线AC上(不同于A、C),当E、F的位置满足的条件时,四边形DEBF是平行四边形.16.如图,正方形ABCD中,∠DAF=25°,AF交对角线BD于点E,连接EC,则∠BCE=°.17.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=4,则CD 的长为.18.如图,△ABC中,∠B=90°,AB=8,BC=6,点D是AC上的任意一点,过点D作DE⊥AB 于点E,DF⊥BC于点F,连接EF,则EF的最小值是.三、解答题(满66分)19.(12分)(2015春•大石桥市校级期末)计算(1)﹣×(2)(+)﹣(+)20.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.21.某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩,为了确定一个适当的目标,商场统计了每个营业员在某月的销售额(万元)如图(1)求平均的月销售额及数据的中位数和众数;(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.22.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.23.(10分)(2015春•大石桥市校级期末)如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)24.(10分)(2015春•大石桥市校级期末)如图,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.(1)连接AF,CE,求证:四边形AFCE为菱形;(2)求菱形AFCE的边长.25.(10分)(2015春•大石桥市校级期末)如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图象回答下列问题:(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?2014-2015学年辽宁省营口市大石桥市水源二中八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥2考点:二次根式有意义的条件.分析:根据二次根式中的被开方数必须是非负数,即可求解.解答:解:根据题意得:x﹣2≥0,解得:x≥2.故选:D.点评:本题考查的知识点为:二次根式的被开方数是非负数.2.下列根式中,为最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、被开方数含分母,不是最简二次根式,故本选项错误;B、=,被开方数含分母,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、符合最简二次根式的两个条件,故本选项正确;D、=2,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误.故选C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=5考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解答:解:A、∵1.52+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形不是直角三角形,故D选项不符合题意.故选:A.点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.在Rt△ABC中,CD是斜边AB边的中线,若AB=8,则CD的长是()A.6 B. 5 C. 4 D. 3考点:直角三角形斜边上的中线.分析:根据直角三角形斜边上的中线的性质进行计算.解答:解:∵Rt△ABC中,CD是斜边AB边的中线,∴CD=AB.又∵AB=8,∴CD=4.故选:C.点评:本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.5.某校为了丰富校园文化,举行初中生书法大赛,决赛设置了7个获奖名额,共有13名选手进入决赛,选手决赛得分均不相同,小颖知道自己的比赛分数后,要判断自己能否获奖,需要知道这13名同学成绩的()A.众数B.中位数C.平均数D.方差考点:统计量的选择.分析:由于比赛设置了7个获奖名额,共有13名选手参加,故应根据中位数的意义分析.解答:解:因为7位获奖者的分数肯定是13名参赛选手中最高的,而且13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选B.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6.直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是()A.x=2 B.x=4 C.x=8 D.x=10考点:一次函数与一元一次方程.分析:根据直线y=2x+b与x轴的交点坐标是(2,0),求得b,再把b代入方程2x+b=0,求解即可.解答:解:把(2,0)代入y=2x+b,得:b=﹣4,把b=﹣4代入方程2x+b=0,得:x=2.故选A.点评:考查了一次函数与坐标轴的交点坐标问题,还考查了方程解的定义.7.对于一次函数y=﹣2x﹣1来说,下列结论中错误的是()A.函数值y随自变量x的减小而增大B.函数的图象不经过第一象限C.函数图象向上平移2个单位后得到函数y=﹣2x+1D.函数图象上到x轴距离为3的点的坐标为(2,﹣3)考点:一次函数的性质.分析:根据一次函数的性质对A、B进行判断;根据一次函数的几何变换对C进行判断;根据一次函数图象上点的坐标特征对D进行判断.解答:解:A、k=﹣2,函数值y随自变量x的减小而增大,所以A选项的说法正确;B、一次函数y=﹣2x﹣1经过第二、三、四象限,所以A选项的说法正确;C、函数图象向上平移2个单位后得到函数y=﹣2x﹣1+2,所以,C选项的说法正确;D、函数图象上到x轴距离为3的点的坐标为(﹣2,3)或(1,﹣3),所以D选项的说法错误.故选D.点评:本题考查了一次函数的性质:当k>0,y随x的增大而增大,函数从左到右上升;当k<0,y随x的增大而减小,函数从左到右下降.也考查了一次函数图象的几何变换.8.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是()A.2 B. 4 C.D.考点:矩形的性质;等边三角形的判定与性质.分析:根据矩形的对角线互相平分且相等可得OC=OD,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠OCD=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半解答.解答:解:在矩形ABCD中,OC=OD,∴∠OCD=∠ODC,∵∠AOD=60°,∴∠OCD=∠AOD=×60°=30°,又∵∠ADC=90°,∴AC=2AD=2×2=4.故选B.点评:本题考查了矩形的性质,主要利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.9.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则下列推理不成立的是()A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④考点:正方形的判定;菱形的判定;矩形的判定.专题:证明题.分析:由对角线互相平分的四边形为平行四边形,再由邻边相等,得出是菱形,和一个角为直角得出是正方形,根据已知对各个选项进行分析从而得到最后的答案.解答:解:A、符合邻边相等的矩形是正方形;B、可先由对角线互相平分,判断为平行四边形,再由邻边相等,得出是菱形;D、可先由对角线互相平分,判断为平行四边形,再由一个角为直角得出是矩形;故选C.点评:此题主要考查正方形、菱形、矩形的判定,应灵活掌握.10.如图,小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则分别表示父亲、母亲离家距离与时间之间关系的是()A.①③ B.①② C.④② D.④③考点:函数的图象.分析:由于小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,所以表示母亲离家的时间与距离之间的关系的图象在20分钟的两边一样,由此即可确定表示母亲离家的时间与距离之间的关系的图象;而父亲看了10分报纸后,用了15分返回家,由此即可确定表示父亲离家的时间与距离之间的关系的图象.解答:解:∵小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,∴表示母亲离家的时间与距离之间的关系的图象是②,∵父亲看了10分报纸后,用了15分返回家,∴表示父亲离家的时间与距离之间的关系的图象是④,则表示父亲、母亲离家距离与时间的关系是④②.故选C.点评:此题主要考查了函数的图象,是一个信息题目,主要利用图象信息找到所需要的数量关系,然后利用这些关系即可确定图象.二、填空题(每小题3分,计24分)11.请写出一个图象经过第一、三象限的正比例函数的解析式y=x.考点:正比例函数的性质.专题:开放型.分析:直接根据正比例函数的性质求解.解答:解:∵正比例函数y=kx的图象经过第一、三象限,∴k可取1,此时正比例函数解析式为y=x.故答案为y=x.点评:本题考查了正比例函数的性质:正比例函数y=kx,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小.12.△ABC 中,∠A=90°,a,b,c分别是∠A,∠B,∠C的对边,若a=4,b=3,则c=.考点:勾股定理.分析:根据题意得出a是斜边,进而利用勾股定理求出即可.解答:解:∵∠A=90°,a,b,c分别是∠A,∠B,∠C的对边,a=4,b=3,∴c===.故答案为:.点评:此题主要考查了勾股定理,正确应用勾股定理是解题关键.13.在大课间活动中,体育老师对小刚、小强两名同学每人10次立定跳远测试,他们的平均成绩相同,方差分别是s刚2=0.15,s强2=0.20,则两名同学成绩更稳定的是小刚.考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S刚=0.15,S强=0.20,∴S刚<S强,∴两名同学成绩更稳定的是小刚;故答案为:小刚.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.如图中,由一个直角三角形和两个正方形组成,如果大正方形的面积为41,AB=5,则小正方形的面积为16.考点:勾股定理.分析:根据正方形的面积公式,可得直角三角形的斜边AC和直角边AB的平方分别为41,25,由勾股定理即可求出AB的平方,即小正方形的面积.解答:解:直角三角形的斜边的平方=AB2+BC2=41,∵AB2=25,∴BC2=16,∴小正方形的面积为16.故答案为:16.点评:本题考查了勾股定理的应用,题目比较简单,一定要熟练掌握,解题的关键是利用勾股定理求出AB的平方,即为小正方形的面积.15.如图,在平行四边形ABCD中,对角线交于点0,点E、F在直线AC上(不同于A、C),当E、F的位置满足AE=CF的条件时,四边形DEBF是平行四边形.考点:平行四边形的判定与性质.分析:当AE=CF时四边形DEBF是平行四边形;根据四边形ABCD是平行四边形,可得DO=BO,AO=CO,再由条件AE=CF可得EO=FO,根据对角线互相平分的四边形是平行四边形可判定四边形DEBF是平行四边形.解答:解:当AE=CF时四边形DEBF是平行四边形;∵四边形ABCD是平行四边形,∴DO=BO,AO=CO,∵AE=CF,∴EO=FO,∴四边形DEBF是平行四边形,故答案为:AE=CF.点评:此题主要考查了平行四边形的判定与性质,关键是掌握对角线互相平分的四边形是平行四边形.16.如图,正方形ABCD中,∠DAF=25°,AF交对角线BD于点E,连接EC,则∠BCE= 65°.考点:全等三角形的判定与性质;正方形的性质.分析:已知∠DAF=25°,可求出∠BAE,易证△ABE≌△CBE,得到∠BCE=∠BAE.解答:解:∵四边形ABCD是正方形,∴AB=CB(正方形的四条边相等),∠ABE=CBE(正方形的对角线平分每一组对角),∴在△ABE和△CBE中,,∴△ABE≌△CBE,∴∠BCE=∠BAE,∵∠DAF=25°,∴∠BAE=90°﹣25°=65°,∴∠BCE=65°.故答案为:65°.点评:本题主要考查了正方形的性质和全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解决问题的关键.17.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=4,则CD 的长为8.考点:平行四边形的性质;三角形中位线定理.分析:因为四边形ABCD是平行四边形,所以OA=OC;再根据点E是BC的中点,得出OE是△ABC的中位线,由OE=4,即可求得AB=CD=8.解答:解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴OE是△ABC的中位线,则根据三角形的中位线定理可得:AB=CD=2OE=2×4=8.故答案为:8.点评:此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线的性质:三角形的中位线平行且等于三角形第三边的一半.18.如图,△ABC中,∠B=90°,AB=8,BC=6,点D是AC上的任意一点,过点D作DE⊥AB 于点E,DF⊥BC于点F,连接EF,则EF的最小值是 4.8.考点:矩形的判定与性质;垂线段最短;勾股定理.分析:连接BD,根据矩形的性质可知:EF=BD,当BD最小时,则EF最小,根据垂线段最短可知当EF⊥BD时,则EF最小,再根据三角形的面积为定值即可求出EF的长.解答:解:∵Rt△ABC中,∠B=90°,AB=8,BC=6,∴AC=10,连接BD,∵DE⊥AB,DF⊥BC,∴四边形EBFD是矩形,∴EF=BD,当BD最小时,则EF最小,根据垂线段最短可知当BD⊥AC时,则BD最小,∴EF=BD==4.8,故答案为:4.8.点评:本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE的最小值转化为其相等线段BD的最小值.三、解答题(满66分)19.(12分)(2015春•大石桥市校级期末)计算(1)﹣×(2)(+)﹣(+)考点:二次根式的混合运算.分析:(1)首先化简二次根式,进而利用二次根式混合运算法则化简求出即可;(2)首先去括号,进而合并同类二次根式即可.解答:解:(1)原式=2﹣=2﹣=;(2)原式=+﹣﹣=﹣﹣.点评:此题主要考查了二次根式的混合运算,正确掌握运算法则是解题关键.20.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.考点:勾股定理的逆定理;勾股定理.分析:先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.解答:解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.点评:本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.21.某商场服装部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标完成的情况对营业员进行适当的奖惩,为了确定一个适当的目标,商场统计了每个营业员在某月的销售额(万元)如图(1)求平均的月销售额及数据的中位数和众数;(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.考点:条形统计图;中位数;众数.分析:(1)利用平均数、众数、中位数的定义即可求解;(2)在众数、中位数、平均数中选择一个较大的数值即可.解答:解:(1)平均月销售额是20万元,中位数是18万元,众数是15万元;(2)这个目标可以定为每月20万元.因为从样本数据看,在平均数、众数和中位数中,平均数最大,因此,将月销售额的最大值定为20万元比较合适.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.考点:待定系数法求一次函数解析式.专题:计算题.分析:(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式;(2)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=2求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.解答:解:(1)设直线AB的解析式为y=kx+b(k≠0),∵直线AB过点A(1,0)、点B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2.(2)设点C的坐标为(x,y),∵S△BOC=2,∴•2•x=2,解得x=2,∴y=2×2﹣2=2,∴点C的坐标是(2,2).点评:本题考查了待定系数法求函数解析式,解答此题不仅要熟悉函数图象上点的坐标特征,还要熟悉三角形的面积公式.23.(10分)(2015春•大石桥市校级期末)如图,△ABC中,MN∥BD交AC于P,∠ACB、∠ACD的平分线分别交MN于E、F.(1)求证:PE=PF;(2)当MN与AC的交点P在什么位置时,四边形AECF是矩形,说明理由;(3)当△ABC满足什么条件时,四边形AECF是正方形.(不需要证明)考点:正方形的判定;平行线的性质;角平分线的性质;矩形的判定.专题:证明题;探究型.分析:(1)根据CE平分∠ACB,MN∥BC,可知∠ACE=∠BCE,∠PEC=∠BCE,PE=PC,同理:PF=PC,故PE=PF.(2)根据矩形的性质可知当P是AC中点时四边形AECF是矩形.(3)当∠ACB=90°时四边形AECF是正方形.解答:证明:(1)∵CE平分∠ACB,∴∠ACE=∠BCE.∵MN∥BC,∴∠PEC=∠BCE.∴∠ACE=∠PEC,PE=PC.同理:PF=PC.∴PE=PF.(2)当P是AC中点时四边形AECF是矩形,∵PA=PC,PF=PC,∴四边形AECF是平行四边形.∵PE=PC,∴AC=EF,四边形AECF是矩形.(3)当∠ACB=90°时,四边形AECF是正方形.点评:此题比较复杂,解答此题的关键是熟知角平分线、矩形、菱形、正方形的判定与性质定理.24.(10分)(2015春•大石桥市校级期末)如图,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.(1)连接AF,CE,求证:四边形AFCE为菱形;(2)求菱形AFCE的边长.考点:菱形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质;矩形的性质.分析:(1)根据全等推出OE=OF,得出平行四边形AFCE,根据菱形判定推出即可;(2)根据菱形性质得出AF=CF,根据勾股定理得出方程,求出方程的解即可.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∵AC的垂直平分线EF,∴OA=OC,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴OE=OF,∵OA=OC,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.(2)解:∵四边形AFCE是菱形,∴AF=FC,设AF=xcm,则CF=xcm,BF=(8﹣x)cm,∵四边形ABCD是矩形,∴∠B=90°,∴在Rt△ABF中,由勾股定理得:42+(8﹣x)2=x2,解得x=5,即AF=5cm.点评:此题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定和性质,勾股定理,矩形的性质的应用,主要考查学生综合运用定理进行推理的能力,用了方程思想.25.(10分)(2015春•大石桥市校级期末)如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图象回答下列问题:(1)汽车行驶2h后加油,中途加油190L;(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?考点:一次函数的应用.分析:(1)由图象可以直接看出汽车行驶两小时后加油,汽车2小时耗油25×=40,由此可知加油量为:250﹣(100﹣40)=190;(2)根据每百公里耗油量约为25L,可知每公里耗油0.25L,根据余油量=出发前油箱油量﹣耗油量列出函数表达式即可;(3)由于速度相同,因此每小时耗油量也是相同的,可知k不变,设加油后的函数为y=﹣20x+b,代入(2,250)求出b的值,然后计算余油量为10时的行驶时间,计算行驶路程即可.解答:解:(1)由图象可以直接看出汽车行驶两小时后加油,汽车2小时耗油25×=40,由此可知加油量为:250﹣(100﹣40)=190;故答案为:2,190;(2)y=100﹣80×0.25▪x=﹣20x+100;(3)由于速度相同,因此每小时耗油量也是相同的,设此时油箱剩余油量y与行驶时间x的解析式为y=kx+b把k=﹣20代入,得到y=﹣20x+b,再把(2,250)代入,得b=290,所以y=﹣20x+290,当y=10时,x=14,所以14×80=1120,因此该车从出发到现在已经跑了1120km,用时14h.点评:此题主要考查了一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题关键.。
14-15第二学期期末八年级数学答案

2014—2015学年第二学期期末考试八年级数学试题参考答案及评分标准15题:解:∵O1为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=×1=,∵平行四边形AO1C2B的对角线交于点O2,∴平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形ABC3O2的面积=××1=,依此类推,平行四边形ABC2014O2015的面积=cm2.二、填空题(每小题2分,共10分)16.甲17.58xy=-⎧⎨=-⎩18.619.10 20.(31,16)20题:解:∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.则B n的坐标是(2n﹣1,2n﹣1).∴B5的坐标是(25﹣1,24).即:B5的坐标是(31,16).三、解答题(本大题共6个小题;共60分)21.(本题满分8分)解:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,-----------------------------3分在Rt△DCB中:CD2+BC2=BD2,2CD2=(100)2,CD=100(米),答:在直线L上距离D点100米的C处开挖.-----------------------------8分(第21题图)2014-2015学年第二学期期末八年级数学答案第1页(共3页)2014-2015学年第二学期期末八年级数学答案 第2页(共3页)22.(本题满分10分) 解:(1)设直线OA 的解析式为y=kx , 把A (3,4)代入得4=3k ,解得k=, 所以直线OA 的解析式为y=x ;------------2分 ∵A 点坐标为(3,4), ∴OA==5,∴OB=OA=5,∴B 点坐标为(0,﹣5), -----------------4分 设直线AB 的解析式为y=ax+b , 把A (3,4)、B (0,﹣5)代入得,解得,∴直线AB 的解析式为y=3x ﹣5;----------------------------------------------------8分 (2)△AOB 的面积S=×5×3=.-------------------------------------------------10分23. (本题满分10分) 证明:∵DE ∥AC ,∴∠DEC=∠ACB ,∠EDC=∠DCA , ∵四边形ABCD 是平行四边形, ∴∠CAB=∠DCA , ∴∠EDC=∠CAB , 又∵AB=CD ,∴△EDC ≌△CAB ,∴CE=CB , ----------------------------------7分 所以在Rt △BEF 中,FC 为其中线,所以FC=BC , ----------------------9分 即FC=AD .-------------------------------------10分24、(本小题满分10分)解:(1)a =1﹣(40%+20%+25%+5%)=1﹣90%=10%, 被抽查的学生人数:240÷40%=600, 8天的人数:600×10%=60人,补全统计图如图所示:------------------ 4分(2)参加社会实践活动5天的最多, 所以,众数是5天,600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,所以,中位数是6天;--------------------8分(3)1000×(25%+10%+5%)=1000×40%=400所以,填400人.----------------------------10分(第22题图)(第23题图)FED CBA25.(本题满分10分)(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;---------------------------------------5分(2)解:四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°BC=DC(正方形四条边相等),∵BE=DF(已证),∴BC﹣BE=DC﹣DF即CE=CF,在△COE和△COF中,,(第25题图)∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四边形AEMF是平行四边形∵AE=AF,∴平行四边形AEMF是菱形.--------------------------------------------------------------10分26.(本题满分12分)解:(1)∵8x+6y+5(20﹣x﹣y)=120,∴y=20﹣3x.∴y与x之间的函数关系式为y=20﹣3x.----------------------------------------4分(2)由x≥3,y=20﹣3x≥3,即20﹣3x≥3可得3≤x≤5,又∵x为正整数,∴x=3,4,5.故车辆的安排有三种方案,即:方案一:甲种3辆乙种11辆丙种6辆;方案二:甲种4辆乙种8辆丙种8辆;方案三:甲种5辆乙种5辆丙种10辆.--------------------------------------------8分(3)W=8x•12+6(20﹣3x)•16+5[20﹣x﹣(20﹣3x)]•10=﹣92x+1920.∵W随x的增大而减小,又x=3,4,5∴当x=3时,W最大=1644(百元)=16.44万元.答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.--------------------------------------------------------------------12分2014-2015学年第二学期期末八年级数学答案第3页(共3页)。
2014-2015学年度第二学期期末模拟试卷一 八年级数学

2014-2015学年度第二学期期末模拟试卷一八年级数学(考试时间:120分钟 满分:150分)一、我会选!(下列每题给出的4个选项中只有一个正确答案,相信你会将它正确挑选出来!每小题3分) 1.不等式260x ->的解集在数轴上表示正确的是( )2.若35a b =,则a bb+的值是( ) A .35B .85C .32D .583.A 1(2,)y -,B 2(1,)y -两点在反比例函数1y x=-图像上,则( ) A .12y y >B .12y y =C . 12y y <D .无法确定 4.下列说法中正确的是( )A .位似图形一定是相似图形B .相似图形一定是位似图形C .两个位似图形一定在位似中心的同侧D .位似图形中每对对应点所在的直线必互相平行5.如图所示,棋盘上有A 、B 、C 三个黑子与P 、Q 两个白子,要使△ABC ∽△RPQ ,则第三个白子R 应放的位置可以是 ( ) A .甲B .乙C .丙D .丁6.下列各式中,正确的是( )A .22b b a a =B .22a b a b a b +=++C .22y y x y x y =++D .11x y x y=--+-7.如图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等,四位同学各自发表了下述见解( )甲:如果指针前五次都没停在5号扇形,下次就一定会停在5号扇形了 乙:只要指针连续转六次,一定会有一次停在1号扇形 丙:指针停在奇数号扇形的概率和停在偶数号扇形的概率相等 丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,ABCDPQ甲 乙 丙丁ABC第5题图指针停在6号扇形的可能性就会加大. 其中你认为说法不正确...的有 A .1个 B .2个 C .3个 D .4个 8.如图是测量一颗玻璃球体积的过程( )(1)将300 cm 3的水倒进一个容量为500 cm 3的杯子中; (2)将四颗相同的玻璃球放入水中,结果水没有满; (3)再加一颗同样的玻璃球放入水中,结果水满溢出. 根据以上过程,推测这样一颗玻璃球的体积在A .20cm 3以上,30cm 3以下B .30cm 3以上,40cm 3以下C .40cm 3以上,50cm 3以下D .50cm 3以上,60cm 3以下二、我会填!(本大题共8小题,每空2分,共16分) 11、函数2-=x y 中,自变量x 的取值范围是_____________.12、某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为______________cm .13、一布袋中有红球8个,白球5个和黑球12个,它们除颜色外没有其他区别,随机地从袋中取出1球不是黑球的概率为______________.14、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体, 当改变容积v 时,气体的密度ρ也随之改变.ρ与v 在一定范围内满足vm=ρ,图象如图所示,该气体的质量m 为 ______kg . 15、若4-x +2-y =0,则y x - .16、某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC = cm .17、已知实数a 、b 在数轴上对应点的位置如图,化简2)(b a b a ++-的结果为 . 18、如图,正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图所示的方式放置.点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线b kx y += (k >0)和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标第8题图) 第16题图A BCDEFG H是.三、我会做!(本大题共9小题,共96分)19.(本题满分6分)先化简,再求值:2239(1)x xx x---÷,其中2x=.20.(本题满分6分)解不等式组33213(1)8xxx x-⎧+≥⎪⎨⎪--<-⎩,并把不等式组的解集在数轴上表示出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014---2015学年度下学期期末质量检测八年数学试题(考试时间:90分钟,试卷满分:120分)一、选择题(每题3分,共30分)1.二次根式21、12、30、2+x 、240x 、22y x +中,最简二次根式有( )个。
A.1 个B.2 个C.3 个D.4个 2. 以下列各组数为长度的线段,能构成直角三角形的是( ) A.4,5,6 B.1,1,2 C.6,8,11 D.5,12,23 3.若点(m ,n )在函数y=2x+1的图象上,则2m ﹣n 的值是( )A .2B .-2C .1D .-14.如图,平行四边形ABCD 中,CE ⊥AB 于E,若∠A=125°, 则∠BCE 的度数为( )A .35°B .55°C .25°D .30° 5.某篮球队12名队员的年龄如下表所示:A .18,19B .19,19C .18,19.5D .19,19.56.下列计算正确的是( )A.523=+B.632=⋅C.62-8=D.428=÷ 7.如图,在四边形ABCD 中,P 是对角线BD 的中点,E 、F 分别是 AB 、CD 的中点,AD =BC ,∠PEF =30°,则∠EPF 的度数是( ) A .120°B .150°C .135°D .140°8.如果一次函数y=kx+b 的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .k >0,b >0 B .k >0,b <0 C .k <0,b >0 D .k <0,b <09.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )A.甲B.乙C.甲乙D.甲丙10.如图,正方形ABCD 的边长为8,点M 在DC 上,且DM=2,N 是AC 上一动点,则DN+MN 的最小值为( )A.8 B. 82 C.217 D.10第15题二、填空题:(每小题3分,共24分)11.直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 12.平行四边形ABCD 的两条对角线AC 、BD 相交于点O ,AB= 5 ,AC=6,DB=8 则四边形ABCD 是的周长为 。
13.2是同类二次根式的是 。
14.为备战全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,甲方差为0.23, 乙方差为0.20, 则成绩较为稳定的是 (选填“甲”或“乙) 15.如图,在菱形ABCD 中,已知AB =10,AC =16, 那么菱形ABCD 的面积为 .16.如图,一次函数y ax b =+的图象经过A (2,0)、B (0.-1) 两点,则关于x 的不等式0ax b +<的解集是 .17.如图,将两条宽度都为3的纸片重叠在一起,使∠ABC=600,则四边形ABCD 的面积为_____ _____. 18.如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去.则第2016个正方形的边长为____ __ __.第16题(第17题) (第18题) 三、解答题(满分66分) 19.计算(每题4分,共12分) (1) 483814122-+ (2)(83 -56 )÷2 3(3) 424×86÷3520. (6分)已知a=3+1,求代数式:(4-23)a 2+(1-3)a 的值21. (8分)已知:如图,在□ABCD 中,对角线AC 交BD 于点O ,四边形AODE 是平行F ED CBA四边形。
求证:四边形ABOE 、四边形DCOE 都是平行四边形。
22. (8分)已知函数y =(2m+1) x+ m-3 (1) 若函数图象经过原点,求m 的值(2) 若函数图象在y 轴的交点的纵坐标为-2,求m 的值 (3)若函数的图象平行直线y=-3x –3,求m 的值(4)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的取值范围.23. (8分)如图,在△ABC 中,∠CAB=900,点D 、E 、F 分别是BC 、AC 、AB 的中点,连结EF ,AD. 求证:EF=AD.24. (8分)如图,在一棵树的10米高B处有两只猴子,•其中一只爬下树走向离树20米的池塘C,而另一只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?25. (8分)某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为Q1吨,加油飞机的加油油箱的余油量为Q2吨,加油时间为t分钟,Q1、Q2与t之间的函数关系如图.回答问题:(1) 加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟?(2) 求加油过程中,运输飞机的余油量Q1(吨)与时间t(分钟)的函数关系式;(3) 运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用?请通过计算说明理由.26.(8分)如图所示,在△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠BCA的外角平分线于F.(1)请猜测OE与OF的大小关系,并说明你的理由;(2)点O运动到何处时,四边形AECF是矩形?写出推理过程;(3)点O运动到何处且△ABC满足什么条件时,四边形AECF是正方形?(写出结论即可)八年数学参考答案一、CBDAA BABCD 二、11.1360 12.20 13.8,18 14.乙 15.96 16.x < 17.63 18.21008三、19.(1)2-83 (2)4-225(3)552 20.2 21.证明 ∵□ABCD 中,对角线AC 交BD 于点O ,∴OB=OD ,又∵四边形AODE 是平行四边形∴AE ∥OD 且AE=OD , ∴AE ∥OB 且AE=OB ,∴四边形ABOE 是平行四边形 同理,四边形DCOE 也是平行四边形。
22.(1)m=3 (2)m=1 (3)m=-2 (4)m <-2123.提示:由DE ,DF 是△ABC 的中位线,可得四边形EAFD 是平行四边形,又∠CAB=900.可知□EAFD 是矩形,根据矩形对角线相等即可得证.24.树高15m.提示:BD=x,则(30-x)2-(x+10)2=20225.(1) 30吨油,需10分钟(2) 设Q1=kt+b,由于过(0,30)和(10,65)点,可求得:Q1=2.9t+36(0≤t≤10)(3) 根据图象可知运输飞机的耗油量为每分钟0.1吨,因此10小时耗油量为10×60×0.1=60(吨)<65(吨),所以油料够用26.解:(1)猜想:OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF=∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.(2)当点O运动到AC的中点时,四边形AECF是矩形.∵当点O运动到AC的中点时,AO=CO,又∵EO=FO,∴四边形AECF是平行四边形,∵FO=CO,∴AO=CO=EO=FO,∴AO+CO=EO+FO,即AC=EF,∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,已知MN∥BC,当∠ACB=90°,则∠AOF=∠COE=∠COF=∠AOE=90°,∴AC⊥EF,∴四边形AECF是正方形.26.(8分)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连结DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.26.(1)证明:△ADQ≌△ABQ;(2)若△ADQ是等腰三角形,则有QD=QA或DA=DQ或AQ=AD①当点P运动到与点B重合时,由四边形ABCD是正方形知 QD=QA此时△ADQ 是等腰三角形;②当点P与点C重合时,点Q与点C也重合,此时DA=DQ,△ADQ是等腰三角形;③如图,设点P在BC边上运动到CP=x时,有AD=AQ∵AD∥BC ∴∠ADQ=∠CPQ.又∵∠AQD=∠CQP,∠ADQ=∠AQD,∴∠CQP=∠CPQ.∴CQ=CP=x.4,AQ=AD=4.∵AC=24-4.∴x=CQ=AC-AQ=24-4时,△ADQ是等腰三角形.即当CP=224.某单位需要用车,准备和一个体车主或一国有出租公司其中的一家签订合同,设汽车每月行驶xkm,应付给个体车主的月租费是y1元,付给出租车公司的月租费是y2元,y1,y2分别与x之间的函数关系图象是如图11-3-4所示的两条直线,•观察图象,回答下列问题:(1)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?(2)每月行驶的路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300km,•那么这个单位租哪家的车合算?24.(1)1500km以内。
(2)1500km (3)租个体车主的车合算。
4.(10分)如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB 于F,∠ADC的平分线DG交边AB于G。
(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由.4.(1)证明:∵四边形ABCD为平行四边形∴AB∥CD,AD∥BC,AD=BC∴∠AGD=∠CDG,∠DCF=∠BFC∵DG、CF分别平分∠ADC和∠BCD∴∠CDG=∠ADG,∠DCF=∠BCF∴∠ADG=∠AGD,∠BFC=∠BCF∴AD=AG,BF=BC∴AF=BG(2)∵AD∥BC ∴∠ADC+∠BCD=180°[来源:Z_xx_]∵DG、CF分别平分∠ADC和∠BCD[来源:Z_xx_]∴∠EDC+∠ECD=90°∴∠DFC=90°∴∠FEG=90°因此我们只要保证添加的条件使得EF=EG就可以了。
我们可以添加∠GFE=∠FGD,四边形ABCD为矩形,DG=CF等等。
18.李老师开车从甲地到相距240km的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是L.19.为备战2011年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0. 20,则成绩较为稳定的是(选填“甲”或“乙)24.(本题10分)在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1) 在图1中证明CE=CF(2) 若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数(1) 若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数24.证明:(1) ∵AF平分∠BAD∴∠BAE=∠DAF∴AD∥BC∴∠F=∠BAE∴∠F=∠DAF∴CE=CF(2) 同理可得:CE=CF∴△CEF为等腰直角三角形连接CG∵G为EF的中点∴CG⊥EF且CG=GE=GF连接BG∵BC=BE+CE=AB+CF=CD+CF=DF∠F=∠BCG=45°可证:△BCG≌△DFG(SAS)∴GB=GD,∠BGD=∠FGC=90°∴△BGD为等腰直角三角形∴∠BDG=45°(3) 60°25 2011无锡“五一”车展期间,某公司对参观车展的且有购车意向的消费者进行了随机问卷调查,共发放900份调查问卷,并收回有效问卷750份.工作人员对有效调查问卷作了统计,其中,(8分)①将消费者年收入的情况整理后,制成表格如下:②将消费者打算购买小车的情况整理后,绘制出频数分布直方图(如图,尚未绘完整).(注:每组包含最小值不包含最大值.)请你根据以上信息,回答下列问题:(1)根据①中信息可知,被调查消费者的年收入的中位数是 万元.(2)请在右图中补全这个频数分布直方图.(3)打算购买价格10万元以下(不含10万元)小车的消费者人数占被调查消费者人数的百分比是 .(4)本次调查的结果,是否能够代表全市所有居民的年收入情况和购车意向?为什么?18.(本题8分)四边形ABCD 是平行四边形,AB =10,AD =8,AC ⊥BC ,求AC 的长以及平行四边形ABCD 的面积18.解:在□ABCD 中,BC =AD =8在Rt △ABC 中,AC =22BC AB =6∴S 平行四边形ABCD =8×6=4820.已知与成正比例,且当时,.(5分)(1)求与的函数关系式;(2)求当时的函数值.13.如图(1),正方形ABCD 的对角线AC ,BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM ⊥BE ,垂足为M ,AM 与BD 相交于点F.(1)求证:OE=OF;(1)(2)如图(2)若点E 在AC 的延长线上,AM ⊥BE 于点M ,AM 交DB 的延长线于点F ,其他条件不变,结论“OE=OF ”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.FE D C B A13.提示:(1)证明△AOF ≌△BOE ;(2)结论仍然成立,证明△AOF ≌△BOE 24 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BE=2DE ,过点C 作CF ∥BE 交DE 的延长线于F .(8分) (1)求证:四边形BCFE 是菱形;(2)若CE 4,BCF 120=∠= °,求菱形BCFE 的面积25.(8分)小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m/min .设小亮出发x min 后行走的路程为y m .图中的折线表示小亮在整个行走过程中y 与x 的函数关系.21⑴小亮行走的总路程是____________㎝,他途中休息了________min . ⑵①当50≤x≤80时,求y 与x 的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?24. (8分)如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域.(1)A 市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A 市受这次台风影响,那么受台风影响的时间有多长?24.(1)过A 作AC ⊥BF 于C ,则AC=AB=150<200,∴A 市会受到台风影响.(2)过A 作AD=200km ,交BF 于点D .∴7,=10小时.。