5.4 应用一元一次方程—打折销售
5.4应用一元一次方程-打折销售七年级数学上册课件(北师大版)

解:设该商品的进价为x元. 由题意,得1100×80%=(1+10%)x. 解这个方程,得x=800. 因此,该商品的进价为800元.
三、典例精析
例2 :某超市节日酬宾,全场8折,一部手机在这次酬宾活动中的利润率为 10%,它的进价是2000元,求它的原价.
解:设这部手机的原价为x元. 根据题意,得80%x-2000=2000×10%. 解得 x=2750. 因此,这部手机的原价为2750元.
价格是
元.
四、当堂练习
5.一件衣服按标价的六折出售,店主可赚22元,已知这件衣服的进价 是50元,求这件衣服的标价是多少元.
解:设这件衣服的标价是x元.
根据题意,得 x-50=22.
解这个方程,得
x=120.
因此,这件衣服的标价是120元.
四、当堂练习
6.某商品的进价为200元,销售价为260元,后又折价销售,所得利润率为 4%,此商品是按原售价的几折销售的?
A.-x=60
B.300-=60
C.-x=60
D.300-=60
2.十一期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销
售,售价为2080元.设该电器的成本价为x元,根据题意,下面所列方程正
应用一元一次方程——打折销售

本溪市树人教育学校七年级数学(上)5.4应用一元一次方程——打折销售一、思考问题引入概念1.思考问题(1)500元的9折价是______元,x折是_______元.(2)某商品的每件销售利润是72元,进价是120,则售价是____元. (3)某商品利润率13﹪,进价为50元,则利润是 ________元.2.概念:(1)利润 = 售价-进价(2)利润率=利润/进价(3)打x 折的售价= 原价×(x/10)3.例题0:王洁做服装生意。
她进了一批运动衫,每件进价90元,卖出时每件100元。
请问一件运动衫利润是多少元?利润率又是多少?中秋节店庆,全部商品打6折,那么运动衫的价格是多少?4.小练习:(1)进价为50元的商品,以60元的价格出售,其中的利润是__元. (2)某商品每件销售利润是72元,进价是120元,则售价是___元. (3)某商品进价为500元,标价是800元,若打8折出售,则售价是____元,利润是________元,利润率是____.(4)一件商品,进价是200元,提高40﹪标价,则标价是________元,再以8.5折出售,则售价是________元,利润是________元,利润率是________.二、题型讲解例题1:一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?[分析]:若设每件衣服的成本价为x元, 那么:那么每件衣服标价为__________元;每件衣服的实际售价为______________元;每件衣服的利润为__________________元。
由此,列出的方_____________________解方程,得x=______因此每件服装的成本____元。
变型题1:一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的成本价是多少元?例题2:商店对某种商品作调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1800元。
北师大版数学七年级上册5.4 《应用一元一次方程——打折销售》优质课件

4.某件商品现在的售价为 34 元,比原价降低了 15%,则原来的
售价是( D )
A.51 元 B.28.9 元 C.35 元 D.40 元
5.某超市进了一批商品,每件进价为 a 元,若要获利 25%,则
每件商品的零售价应定为( C )
A.25%a B.(1-25%)a C.(1+25%)a
a D.1+25%
17.某商场将一款空调按标价的八折出售,仍可获利10%, 若该空调的进价为2000元,则标价为___2_7_5_0__元.
18.购买一本书,打八折比打九折少花2元钱,那么这本书 的原价是__2_0_____元.
19.某个体户进了40套服装,以高出进价40元的售价卖出 了30套,后因换季,剩下的10套服装以原售价的六折售出, 结果40套服装共收款4320元,问:每套服装的进价是多少元? 这位个体户是赚了还是赔了?赚了或赔了多少元?
19.设 每套衣服的进价为x元, 依题意得:30(x+40)+10(x+40)×0.6=4320, 解得:x=80,4320-80×40=1120元.
答:每套服装的进价是80元,这位个体户,赚了1120元
20.甲、乙两件服装的成本共500元,商店老板为获取利润, 决定将甲服装按50%的利润定价,乙服装按40%的利润定 价.在实际出售时,应顾客要求,两件服装均按9折出售, 这样商店共获利157元,求甲、乙两件服装的成本各是多少 元?
5.4 应用一元一次方程——打折销售
商品销售和利润问题中的关系式: (1)商品利润=商品售价___-_____商品成本价(商品进价);
商品利润
商品利润率=_商__品__成__本_×100%; 商品销售额=商品销售价×商品销售量; 商品的销售利润=(销售价-成本)×销售量.
2024秋七年级数学上册第5章一元一次方程5.4应用一元一次方程——打折销售教案(新版)北师大版

1. 拓展阅读材料:
- 《数学与生活》:介绍数学在日常生活中的应用,包括购物打折、银行利息等实际问题。
- 《趣味数学》:通过有趣的故事和实例,引导学生了解一元一次方程在其他方法》:讲解一元一次方程的起源、发展及其在数学体系中的地位,培养学生对数学学科的兴趣。
- 引导学生探索一元二次方程、多元一次方程组等更高级的数学问题。
(3)数学思维方法的拓展:
- 培养学生运用分类讨论、归纳总结等数学思维方法解决问题。
- 引导学生学会用数学建模的方法,将实际问题抽象为数学模型,并运用一元一次方程进行求解。
板书设计
①条理清楚、重点突出、简洁明了:
1. 重点知识点:一元一次方程的定义、性质、求解方法。
2. 自主设计问题批改:评估学生是否能将所学知识应用到实际问题中,问题设计是否合理,解答过程是否清晰。
3. 调查报告批改:检查学生是否能正确收集和分析数据,报告撰写是否规范,分析是否深入。
4. 针对作业中出现的问题,及时给予反馈,指出学生存在的问题,并提供改进建议。
5. 鼓励学生在作业中展现自己的思考和创造力,对优秀作业进行表扬和展示,激发学生的学习积极性。
(4)项目导向学习:设置与打折销售相关的项目任务,引导学生自主探究,培养学生的自主学习能力和实践能力。
2. 教学活动设计:
(1)角色扮演:让学生扮演商家和消费者,模拟真实的购物场景,运用一元一次方程解决打折销售问题。
(2)实验:设计数学实验,让学生通过实际操作,感受一元一次方程在解决实际问题中的应用。
2. 课后自主学习和探究:
- 让学生尝试寻找生活中的其他一元一次方程问题,如票价计算、电话费结算等,并运用所学知识进行求解。
- 鼓励学生利用网络资源、图书馆书籍等途径,了解一元一次方程在其他学科领域的应用,如物理、化学、经济学等。
北师版七年级上册数学教案 应用一元一次方程——打折销售

5.4 应用一元一次方程——打折销售【教学目标】1.使学生经历探索打折销售中的已知量和末知量之间的相等关系,列出一元一次方程解简单的应用题;体验数学知识在现实生活中的应用. 2.使学生进一步了解列出一元一次方程解应用题这种代数方法及其步骤;培养学生的分析问题和解决问题的能力.【重难点预见】重点:用列方程的方法解决打折销售问题。
难点:用列方程的方法解决打折销售问题。
【教学流程】一、知识链接。
1.引例一件衣服标价是200元,现打7折销售。
问:买这件衣服需要多少钱?若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?2.议一议:(1)、把下面的“折扣数”化成百分数“六折”“七五折”“八八折”(2)、你是怎样理解某种商品打“六折”出售的?想一想:假如你是商店老板你追求的是什么?公式:利润=卖出价-成本价(或者:利润=销售价-成本价)利润率 = 利润成本×100% 3.算一算:(1)、原价100元的商品打8折后价格为 元;(2)、原价100元的商品提价40%后的价格为 元;(3)、进价100元的商品以150元卖出,利润是 元,利润率是 ;(4)、原价X 元的商品打8折后价格为 元;二、自主教学。
看课本p141—142内容,解决提出的问题。
例1 一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?想一想:15元利润是怎样产生的?解:设每件服装的成本价为X 元,(用含X 的代数式表示)那么 每件服装的标价为: ;每件服装的实际售价为: ;每件服装的利润为: ; 由此,列出方程: ; 解方程,得:X= .因此,每件服装的成本价是 元.例 2 某商场将某种商品按原价的8折出售,此时商品的利润率是10%,已知这种商品的进价为1800元,那么这种商品的原价是多少元?解:设商品原价为X元,根据题意,得方程:;解方程,得:X= .因此,这种商品的原价是元.总结:用一元一次方程解决实际问题的一般步骤是什么:(2).设未知数X,并用X表示其它相关的量,根据等量关系列出方程.(3).解方程并验证结果的合理性。
数学课件-5.4 应用一元一次方程——打折销售

3.小明和小丽需购买同一本经典名著书,小明到书店买打九折,小丽在网店买打八折,但需要 另外花10元的快递费,结果小丽比小明少花了2元钱,求这本经典名著的定价是多少?若设这 本经典名著的定价为x元,则可列方程为 0.9x-2=0.8x+10 .
知识点 2 销售中的折扣问题 4.某书店把一本书按进价提高 60%标价,再按七折出售,这样每卖出
解:设原来每本的价格是x元.根据题意,得 20x-10x-0.7×10x=1.8,解得x=0.6. 答:原来每本的价格是0.6元.
11.一家商店将某种商品按成本价提高50%后标价,又以八折优惠卖出,结果这种商品每件仍 可获利10元,那么每件这种商品的成本价是多少元?
解:设每件这种商品的成本价是x元.根据题意,得 ( 1+50% )x·80%-x=10,解得x=50. 答:每件这种商品的成本价是50元.
12.春节将至,市区两大商场均推出优惠活动: ①商场一全场购物每满100元返30元现金( 不是整百元不返 ); ②商场二所有的商品均按8折销售. 某同学在两家商场发现他看中的运动服的单价相同,书包的单价也相同,这两件商品的单价 之和为470元,且运动服的单价是书包的单价的7倍少10元. ( 1 )根据以上信息,求运动服和书包的单价; ( 2 )该同学要购买这两件商品,请你帮他设计出最佳的购买方案,并求出他所要付的费用.
13.情境:试根据图中信息,解答下列问题.
( 1 )购买6根跳绳需 150 元,购买12根跳绳需 240 元. ( 2 )小红比小明多买2根跳绳,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请 求出小红购买跳绳的根数;若没有,请说明理由. 解:( 2 )有这种可能.设小红购买跳绳x根.根据题意,得25×0.8x=25( x-2 )-5,解得x=11. 答:小红购买跳绳11根.
5.4应用一元一次方程——打折销售例题与讲解

4 应用一元一次方程——打折销售1.商品销售中与打折有关的概念及公式(1)与打折有关的概念 ①进价:也叫成本价,是指购进商品的价格. ②标价:也称原价,是指在销售商品时标出的价格. ③售价:商家卖出商品的价格,也叫成交价. ④利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词语表示所得利润. ⑤利润率:利润占进价的百分比. ⑥打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.打几折,就是以原价的百分之几十或十分之几卖出.如打8折就是以原价的80%卖出.(2)利润问题中的关系式①售价=标价×折扣;售价=成本+利润=成本×(1+利润率).②利润=售价-进价=标价×折扣-进价.③利润=进价×利润率;利润=成本价×利润率;利润率=利润进价=售价-进价进价. 【例1】 (1)某商品成本100元,提高40%后标价,则标价为__________元;(2)500元的9折是__________元,__________元的八折是340元;(3)一件商品的进价是40元,售价是70元,这件商品的利润率是__________. 解析:(1)成本×(1+提高率)=标价,即100×(1+40%)=140(元);(2)九折即原价的十分之九,所以500元打9折,就是500×0.9=450(元),设x 的八折是340,所以有0.8x =340,解得x =425;(3)利润率=利润进价=售价-进价进价=70-4040=75%. 答案:(1)140 (2)450 425 (3)75%2.列方程解应用题的一般步骤及注意事项(1)列方程解应用题步骤①审:审题,分析题中已知的是什么、求的是什么,明确各数量之间的关系. ②找:找出能够表示应用题全部含义的一个相等关系.③设:设未知数(一般求什么就设什么).④列:根据相等关系列出方程.⑤解:解所列的方程,求出未知数的值.⑥验:检验所求出的解是否符合实际意义.⑦答:写出答案.(2)列方程解应用题应注意①列方程时,要注意方程两边应是同一类量,并且单位要统一.②解、答时必须写清单位名称. ③求出的方程的解要判断是否符合实际意义,即必须检验.【例2-1】 在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,那么一个玩具赛车进价是多少元?分析:利润=销售价×打折数-让利数-进价.解:设进价是x 元,依题意,得x ×20%=10×0.8-2-x .解得x =5.答:一个玩具赛车进价是5元.【例2-2】 某商场购进甲、乙两种服装后,都加价40%标价出售,“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元.问这两种服装的进价和标价各是多少元?分析:本题的题情稍复杂,需要求四个未知量.可以先求出标价,然后再求进价.解:设甲种服装的标价为x 元,则进价为x 1.4元,乙种服装的标价为(210-x )元,进价为210-x 1.4元. 根据题意,得0.8x +0.9(210-x )=182.解得x =70.所以210-x =140.x 1.4=50,210-x 1.4=100.答:甲种服装的进价为50元,标价是70元;乙种服装的进价是100元,标价是140元.3.利用一元一次方程确定商品的利润与商品的利润有关的实际问题主要有以下三类:(1)确定商品的打折数 利用一元一次方程解应用题的关键是找出题目中的相等关系,根据相等关系列出方程.利润中的求最低打折数的问题,要根据与打折有关的等量关系:标价×打折数-进价=利润,利润=进价×利润率.(2)确定商品的利润 根据商品的售价和利润率确定商品的利润,也是一元一次方程的应用之一.用到的等量关系是:进价×(1+利润率)=售价.(3)优惠问题中的打折销售商场中的某些优惠销售是购买数量超过一定的范围才打折或超过的部分打折.要分段分情况计算不同的利润.【例3-1】 某种商品的进价是400元,标价是600元,商店要求以利润不低于5%打折销售,那么售货员最低可以打几折出售此商品?分析:利润问题的相等关系是:商品售价-商品进价=商品利润.其中商品利润=进价×利润率,即400×5%.而商品售价=标价×打折数.解:设最低可以打x 折出售.根据题意,得600×0.1x -400=400×5%.解得x =7. 答:售货员最低可以打7折出售此商品.【例3-2】 某书城开展学生优惠售书活动,凡一次购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.李明购书后付了212元,若没有任何优惠,则李明应该付多少元?分析:先判断属于哪一种优惠,再根据情况确定相等关系.当购书是200元时,应该付200×0.9=180(元),李明支付了212元,说明超过了200元,相等关系是:不超过200元的部分应付款+超过200元部分应付款=实际付款.解:因为200×0.9=180(元)<212(元),所以购书超过了200元.设应该付x 元,根据题意,得200×0.9+(x -200)×0.8=212.解方程,得x =240. 答:若没有任何优惠,则李明应该付240元.。
初中数学知识点精讲精析 应用一元一次方程—打折销售

5.4 应用一元一次方程—打折销售学习目标1.经历运用方程解决打折销售问题的过程,总结运用方程解决实际问题的一般步骤。
2.提高找等量关系列方程的能力。
知识详解1.商品销售中与打折有关的概念及公式(1)与打折有关的概念①进价:也叫成本价,是指购进商品的价格.②标价:也称原价,是指在销售商品时标出的价格.③售价:商家卖出商品的价格,也叫成交价.④利润:商家通过买卖商品所得的盈利,一般以“获利”、“盈利”、“赚”等词语表示所得利润.⑤利润率:利润占进价的百分比.⑥打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.打几折,就是以原价的百分之几十或十分之几卖出.如打8折就是以原价的80%卖出.(2)利润问题中的关系式①售价=标价×折扣;售价=成本+利润=成本×(1+利润率).②利润=售价-进价=标价×折扣-进价.③利润=进价×利润率;利润=成本价×利润率;利润率=利润进价=-售价进价进价2.列方程解应用题的一般步骤及注意事项(1)列方程解应用题步骤①审:审题,分析题中已知的是什么、求的是什么,明确各数量之间的关系.②找:找出能够表示应用题全部含义的一个相等关系.③设:设未知数(一般求什么就设什么).④列:根据相等关系列出方程.⑤解:解所列的方程,求出未知数的值.⑥验:检验所求出的解是否符合实际意义.⑦答:写出答案.(2)列方程解应用题应注意①列方程时,要注意方程两边应是同一类量,并且单位要统一.②解、答时必须写清单位名称.③求出的方程的解要判断是否符合实际意义,即必须检验.3.利用一元一次方程确定商品的利润与商品的利润有关的实际问题主要有以下三类:(1)确定商品的打折数利用一元一次方程解应用题的关键是找出题目中的相等关系,根据相等关系列出方程.利润中的求最低打折数的问题,要根据与打折有关的等量关系:标价×打折数-进价=利润,利润=进价×利润率.(2)确定商品的利润根据商品的售价和利润率确定商品的利润,也是一元一次方程的应用之一.用到的等量关系是:进价×(1+利润率)=售价.(3)优惠问题中的打折销售商场中的某些优惠销售是购买数量超过一定的范围才打折或超过的部分打折.要分段分情况计算不同的利润.【典型例题】例1. 某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏【答案】B【解析】可设需更换的新型节能灯有x盏,根据等量关系:两种安装路灯方式的道路总长相等,列出方程求解即可.例2. 九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有()A.17人B.21人C.25人D.37人【答案】C【解析】设这两种实验都做对的有x人,(40-x)+(31-x)+x+4=50,x=25.例3. 在商品市场经常可以听到小贩的叫嚷声和顾客的讨价还价声:“10元一个的玩具赛车打八折,快来买啊!”“能不能再便宜2元?”如果小贩真的让利(便宜)2元卖了,他还能获利20%,那么一个玩具赛车进价是多少元?【答案】5【解析】设进价是x元,依题意,得x×20%=10×0.8-2-x.解得x=5.【误区警示】易错点1:理解打折销售的问题1.某种商品的进价是400元,标价是600元,商店要求以利润不低于5%打折销售,那么售货员最低可以打几折出售此商品?【答案】7【解析】设最低可以打x折出售.根据题意,得600×0.1x-400=400×5%.解得x=7.易错点2:如何确定相等关系2.某书城开展学生优惠售书活动,凡一次购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.李明购书后付了212元,若没有任何优惠,则李明应该付多少元?【答案】240【解析】先判断属于哪一种优惠,再根据情况确定相等关系.当购书是200元时,应该付200×0.9=180(元),李明支付了212元,说明超过了200元,相等关系是:不超过200元的部分应付款+超过200元部分应付款=实际付款.【综合提升】针对训练1. 一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元2. 某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件28元,则该商品的进价为()A.21元B.19.8元C.22.4元D.25.2元3. 已知某种商品的销售标价为204元,即使促销降价20%仍有20%的利润,则该商品的成本价是()A.133B.134C.135D.1361.【答案】A【解析】设这件服装的进价为x元,依题意得:(1+20%)x=200×60%,解得:x=1002.【答案】A【解析】设该商品的进价是x元,由题意得:(1+20%)x=28×(1-10%),解得:x=213.【答案】D【解析】设商品的成本价是x元,依题意得:204(1-20%)=1.2x,解得:x=136元.则该商品的成本价是136元.课外拓展工作到最后一天的华罗庚华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.4 应用一元一次方程——打折销售
学习目标:1.进一步经历运用方程解决实际问题,体会运用方程解决实际问题的一般过程.2.掌握销售过程中的等量关系.
3.提高学生找等量关系列方程的能力;培养学生的抽象、概括、分析和解决问题的能力;学会
用数学的眼光去看待、分析现实生活中的情景.
教学重点:1.如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性.2.解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题.
【创设情境】
1.请举例说明打折、利润、利润率、提价及降价的含义分别是什么?
利润计算公式:利润= .
2.算一算:
(1)原价100元的商品,打8折后价格为元;
(2)原价100元的商品,提价40%后的价格为元;
(3)进价100元的商品,以150元卖出,利润是元.
3.一家商店将某种服装按成本价提高40%后标价,又以8 折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?
分析:这15元的利润是怎么来的?
即等量关系式是:.
解:设这种服装每件的成本是x元.根据题意,得
方程为:
答:.
归纳总结:用一元一次方程解决实际问题的一般步骤:
【探究成因】
4.一件夹克按成本价提高50%后标价,后来因为季节关系又以标价的8 折优惠卖出,结果每件以300元卖出,这批夹克每件的成本是多少元?
5.一件商品按成本价提高20%后标价,后来又以标价的9折优惠卖出,结果每件仍获利20元,这件商品
的成本是多少元?
【共享成功】
6.某件商品提价25%后,欲恢复原价,则应该降价的百分率是多少?
7.某商店两种不同的计算机都卖64元,其中一个盈利60% ,另一个亏本20%,在这次买卖中这家商店()A.不赔不赚B.赔8元C.赚8元D.赚32元
【达标测评】
8.某商场的电视机原价为2500元,现以8折销售,如果想使得降价前后的销售额都为10万元,那么销售量应该增加多少台?。