扫描电子显微镜
扫描电子显微镜

扫描电子显微镜扫描电子显微镜是一种强大的工具,它可以帮助科学家观察到物质的更小的细节和结构。
本文将介绍扫描电子显微镜的原理、应用、发展历程以及未来发展趋势。
原理扫描电子显微镜(Scanning Electron Microscopy,SEM)是一种利用扫描电子束与物体相互作用而获得形貌和微区组织信息的显微分析仪器。
扫描电子显微镜的工作原理是,将高能电子轰击样品表面,使其表面电子被激发,发射出大量的二次电子。
这些二次电子被探测器接收并转换成负电荷信号,在特定条件下被扫描成像。
应用扫描电子显微镜广泛应用于多个领域,包括材料科学、生命科学、化学和地质学等。
以下是该技术在这些领域中的应用:•材料科学:用于获取材料的形貌、结构以及表面性质等信息。
•生命科学:用于观察细胞、细胞器、细胞表面的超微结构和蛋白质等生物分子的形态和结构。
•化学:用于观察化学反应过程表面形貌、结构的变化以及材料结构的演化过程等。
•地质学:用于研究各种矿物、岩石和地层等,以了解地质演化过程。
发展历程1950年,发明了透射式电子显微镜,但它只能用于真空环境下的样品。
1956年,Helmut Ruska和Max Knoll发明了扫描电子显微镜。
该技术能够在空气中观察样品,并获得更高的象素分辨率。
1965年, Hitachi公司普及了第一台商用扫描电子显微镜S-800。
自此以后,扫描电子显微镜技术得到了快速的发展。
未来发展趋势随着技术的发展,扫描电子显微镜的应用场景不断扩大。
今后,该技术将越来越多地应用于纳米材料和微细加工领域。
同时,随着计算机技术的发展,扫描电子显微镜将会实现更高的自动化和智能化,成为更加强大的工具。
结论扫描电子显微镜是一款横跨多个领域应用的重要科学工具,其在材料科学、生命科学、化学和地质学等领域均有广泛的应用。
虽然该技术已经发展多年,但随着技术和计算机技术的不断进步,扫描电子显微镜将会越来越强大,为人们探索科学世界提供更加强大的支持。
扫描电子显微镜简介

工作原理
扫描电镜工作原理图
ChengF
工作方式
扫描电镜中,用来成像的信号主要是 二次电子,其次是背反射电子和吸收 电子,X射线和俄歇电子主要用于成 分分析,其他信号的电子也用一定的 用途。
ChengF
工作方式
电子束与固体样品表面作用 时产生的信息
ChengF
工作方式
二次电子
二次电子是从表面5-10nm层内发射出来的,能量 小于50eV,它对表面状态形貌非常敏感,能非常 有效地显示试样表面的微观形貌。由于它发自试 样表面层,入射电子还没有被多次散射,因此产 生二次电子的面积与入射电子的照射面积基本相 同,二次电子的空间分辨率较高,JSM5610二次电 子分辨率为3nm。
●显示系统一般是把信号经处理输入电脑在显
示器上显示。
ChengF
扫描电镜的结构
闪烁体计数器
ChengF
扫描电镜的结构
真空系统
真空系统在电子光学仪器中十分重要,这是 因为电子束只能在真空下产生和操纵。对 于扫描电子显微镜来说,通常要求真空度优 于10-3~10-4Pa。任何真空度的下降都会导 致电子束散射加大,电子枪灯丝寿命缩短, 产生虚假的二次电子效应,严重影响成像的 质量。因此,真空系统的质量是衡量扫描电 子显微镜质量的参考指标之一。
ChengF
试样制备
试样应有良好的导电性,或至少试样表面 导电性要好。导电性不好的试样,如高分 子材料、陶瓷、生物样等再入射电子的照 射下,表面容易积累电荷严重影响图像质 量。对不导电的试样,必须进行真空镀膜 ,在试样表面蒸镀一层厚约10nm的金属膜 或碳膜,以避免荷电现象。真空镀膜技术 还可以提高表面二次电子发射率,提高图 像衬度。
背反射电子
扫描电镜sem

扫描电镜(SEM)简介扫描电子显微镜(Scanning Electron Microscope,简称SEM)是一种利用电子束对样品表面进行扫描的显微镜。
相比传统的光学显微镜,SEM具有更高的分辨率和更大的深度视野,使得它成为材料科学、生命科学和物理科学等领域中常用的研究工具。
SEM通过利用电子多次反射,将样品表面的形貌细节放大数千倍,可以观察到微观结构,比如表面形态、粗糙度、纳米级颗粒等。
SEM通常需要真空环境下操作,因为电子束在大气压下很快会失去能量而无法达到高分辨率。
工作原理SEM的工作原理可以简单地分为以下几步:1.电子发射:SEM中,通过热发射或场发射的方式产生电子束。
这些电子被加速器加速,形成高速的电子流。
电子束的能量通常在10-30 keV之间。
2.样品照射:电子束通过一个聚焦系统照射到样品表面。
电子束与样品原子发生相互作用,从而产生各种现象,比如电子散射、透射和反射。
3.信号检测:样品与电子束发生相互作用后,产生的信号会被探测器捕获。
常见的SEM信号检测器包括二次电子检测器和反射电子检测器。
这些探测器可以测量电子信号的强度和性质。
4.信号处理和图像生成:SEM通过对探测到的信号进行处理和放大,生成图像。
这些图像可以显示出样品表面的微观结构和形貌。
应用领域SEM在许多科学领域中都有广泛的应用。
以下是一些常见的应用领域:材料科学SEM可以用于研究材料的结构和形态。
它可以观察微观缺陷、晶体结构、纳米颗粒等材料细节。
这对于材料工程师来说非常重要,可以帮助他们改进材料的性能和开发新的材料。
生命科学SEM可以用于观察生物样品的微观结构。
比如,它可以观察细胞的形态、细胞器的分布和细胞表面的纹理。
这对于生物学家来说非常重要,可以帮助他们了解生物体的结构和功能。
纳米科学SEM在纳米科学领域中也有广泛的应用。
通过SEM可以对纳米材料进行表面形貌和结构的观察。
它可以显示出纳米结构的细节,帮助科学家研究纳米颗粒的组装、层析和相互作用等现象。
扫描电子显微镜(SEM)简介

完成观察后,关闭扫描电子显微镜主机和计 算机,清理样品台,保持仪器整洁。
注意事项
样品求
确保样品无金属屑、尘埃等杂质,以 免损坏镜体或影响成像质量。
避免过载
避免长时间连续使用仪器,以免造成 仪器过载。
保持清洁
定期清洁扫描电子显微镜的镜头和样 品台,以保持成像清晰。
操作人员要求
操作人员需经过专业培训,了解仪器 原理和操作方法,避免误操作导致仪 器损坏或人员伤害。
操作方式
有些SEM需要手动操作,而有 些型号则具有自动扫描和调整 功能。
适用领域
不同型号的SEM适用于不同的领 域,如材料科学、生物学等,选
择时应考虑实际应用需求。
04
SEM的操作与注意事项
操作步骤
01
02
03
开机与预热
首先打开电源,启动计算 机,并打开扫描电子显微 镜主机。预热约30分钟, 确保仪器稳定。
场发射电子源利用强电场作用下的金属尖端产生电子,具有高亮度、低束流的优点, 但需要保持清洁和稳定的尖端环境。
聚光镜
聚光镜是扫描电子显微镜中的重 要组成部分,它的作用是将电子 束汇聚成细束,并传递到样品表
面。
聚光镜通常由两级组成,第一级 聚光镜将电子束汇聚成较大直径 的束流,第二级聚光镜进一步缩
小束流直径,提高成像质量。
生态研究
环境SEM技术可以应用于生态研究中, 例如观察生物膜、土壤结构等,为环 境保护和治理提供有力支持。
THANKS
感谢观看
样品放置
将样品放置在样品台上, 确保样品稳定且无遮挡物。
调整工作距离
根据样品特性,调整工作 距离(WD)至适当位置, 以确保最佳成像效果。
操作步骤
扫描电子显微镜简介 SEM

韩传月
目录
• • • • • 一、简要介绍 二、结构 三、基本参数 四、用途 五、SEM成像
一、简要介绍
扫描电子显微镜(scanning electron microscope),简称扫描 电镜(SEM)。是一种利用电子 束扫描样品表面从而获得样品信 息的电子显微镜。它能产生样品 表面的高分辨率图像,且图像呈 三维,扫描电子显微镜能被用来 鉴定样品的表面结构。
三、基本参数
• • • • 放大率 场深 作用体积 工作距离
放大率
与普通光学显微镜不同,在SEM中,是通过 控制扫描区域的大小来控制放大率的。如 果需要更高的放大率,只需要扫描更小的 一块面积就可以了。放大率由屏幕/照片 面积除以扫描面积得到。
所以,SEM中,透镜与放大率无关。
场深
在SEM中,位于焦平面上下的一小层区域内 的样品点都可以得到良好的汇焦而成像。 这一小层的厚度称为场深,通常为几纳米 厚,所以,SEM可以用于纳米级样品的三维 成像。
工作距离
工作距离指从物镜到样品最高点的垂直距离 如果增加工作距离,可以在其他条件不变 的情况下获得更大的场深。 • 如果减少工作距离,则可以在其他条件不 变的情况下获得更高的分辨率。 • 通常使用的工作距离在5毫米到10毫米之间 。
四、用途
• 成像、 次级电子和背散射电子可以用于成像,两者用处不一,前 者多用在显示物体表面起伏,后者则是用在显示物体原子 序的差异。 • 表面分析 俄歇电子、特征X射线、背散射电子的产生过程均与样品原 子性质有关,所以可以用于成分分析。但由于电子束只能 穿透样品表面很浅的一层(参见作用体积),所以只能用 于表面分析。 表面分析以特征X射线分析最常用,所用到的探测器有两 种:能谱分析仪与波谱分析仪。前者速度快但精度不高, 后者非常精确,可以检测到“痕迹元素”的存在但耗时太 长。
扫描电子显微镜

扫描电子显微镜的简称为扫描电镜,英文缩写为SEM(Scanning Electron Microscope). SEM与电子探针的功能和结构基本相同,但SEM一般不带波谱仪。
它是用细聚焦的电子束轰击样品表面,通过电子与样品相互作用产生的二次电子,背散射电子等对样品表面或断口相貌将行观察和分析。
现在SEM都与能谱组合,可以进行成分分析。
所以,SEM也是显微结构分析的主要仪器,已经广泛用于材料,冶金,矿物,生物学等领域。
扫描电镜结构原理1.扫描电镜的工作原理及特点2.扫描电镜的工作原理与闭路电视系统相似2.扫描电镜的主要结构主要包括有电子光学系统,扫描系统,信号检测放大系统,图像显示和记录系统,电源和真空系统等透射电镜一般由电子光学系统(照明系统),成像放大系统,电源和真空系统三部分组成扫描电镜扫描电镜图像及衬度1.二次电子象2.背散射电子象二次电子象入射电子与样品相互作用后,使样品原子较外层电子电离产生的电子,称二次电子。
二次电子能量较低,习惯上把能量小于50ev电子成为二次电子,仅在样品表面5nm-10nm的深度内才能逸出表面,这是二次电子分辨率高的重要原因之一。
1.二次电子象二次电子象使表面形貌衬度,它是利对样品表面形貌变化敏感的物理信号作为调节信号得到的一种象衬度。
因为二次电子信号的主要来处样品表层5-10NM的深度范围,它的强度与原子序数没有明确的关系,便对微区表面相对于入射电子束的方向却十分敏感,二次电子象分辨率比较高,所以适用于显示形貌衬度。
凹凸不平的样品表面所产生的二次电子,用二次电子探针器很容易全部被收集,所以二次电子象无阴影效应,二次电子易受电场和磁场的影响背散射电子像背散射电子像使指入射电子与样品相互作用之后,再次逸出样品表面的高能电子,其能量接近与入射电子能量。
背射电子大的产额随样品的原子序数增大而增加,所以背散射电子信号大的的强度与样品的化学组成有关,即与组成样品的各元素平均原子序数有关。
扫描电子显微镜详解

12-0引言
• 装上半导体样品座附件,可以直接观察晶体管或集 成电路的p-n结及器件失效部位的情况。
• 装上不同类型的试样台和检测器可以直接观察处于 不同环境(加热、冷却、拉伸等)中的试样显微结 构形态的动态变化过程(动态观察)。
第4页/共94页
12-1 电子束与固体样品作用时产生的信号
2.二次电子
(4)二次电子产额η (二次电子流与入射电子流的比值)与入射电子能量和入射角α (入射束和样品表面法 线的交角)有关,见图12-1-1。
• 在某一能量范围内,二次电子产额都大于1,随着α的增大,二次电子产额曲线的极大值增大,并向高能 方向移动。
第13页/共94页
图12-1-1二次电子产额与电子能量和入射角 的关系
第32页/共94页
2.电磁透镜
• SEM照射到样品上的电子束直径越小,就相当于 成像单元的尺寸越小,相应的分辨率就越高。
• 采用普通热阴极电子枪时,电子束斑直径可达到6nm左右。若采用六硼化钄阴极和场发射电子枪,电子束 直径还可进一步缩小。
第33页/共94页
我院的SEM
第34页/共94页
3.扫描线圈
• (3)距离表面层1nm左右范围内(即几个原子层厚度)逸出的俄歇电子才具备特征能量,因此俄歇电子特别适 用做表面层成分分析。
• 除了上述6种信号外,还有阴极荧光、电子束感生效应等信号,经调制后也可以用于专门的分析。
第27页/共94页
12—2 扫描电子显微镜的构造和工作原理
• SEM组成: 1.电子光学系统. 2.信号收集处理、图像显示和记录系统. 3.真空系统 见图12—3.
• 其作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动 作保持严格同步(由同一扫描发生器控制)。
扫描电子显微镜(SEM)-介绍-原理-结构-应用

探头
扫描发生器 显像管
视频放大器
光电倍增管
试样
光导管
试样台
扫描电子显微镜主要由以下四个部分组成: 1. 电子光学系统:作用是获得扫描电子束,
作为信号的激发源。 2. 信号收集及显示系统:作用是检测样品在
入射电子作用下产生的物理信号 3. 真空系统:用来在真空柱内产生真空 4. 电源系统:作用是提供扫描电镜各部分所
3.3 背散射电子
背散射(backscattered)电子是指入射电子在样 品中受到原子核的卢瑟福散射后被大角度反射,再 从样品上表面射出来的电子,这部分电子用于成像 就叫背散射成像。 背散射分为两大类:弹性背散射和非弹性背散射。 弹性散射不损失能量,只改变方向。非弹性散射不 仅改变方向,还损失能量。从数量上看,弹性背反 射电子远比非弹性背反射电子所占的份额多。背反 射电子的产生范围在100nm-1mm深度。
d4
光电倍增管
d3:扫描系统ຫໍສະໝຸດ 试样光导管d4:试样室
试样台
2.1.1 电子枪
电子枪:钨丝成V形,灯丝中通以加热电流, 当达到足够温度时(一般操作温度为 2700K),发射电子束。在10-6Torr的真空 下,其寿命平均约40—80小时。
电子束 光阑孔
2.1.2 电磁透镜
电磁透镜:透镜系统中所用的透镜都是缩 小透镜,起缩小光斑的作用。缩小透镜 将电子枪发射的直径为30μm左右的电 子束缩小成几十埃,由两个聚光镜和一 个末透镜完成,三个透镜的总缩小率约 为2000~3000倍
03
SEM工作原理
3 扫描电镜成像的物理信号
入射电子轰击样品产生的物理信号
电子束与样品原子间的相互作用是表 现样品形貌和内部结构信息的唯一途 径。入射电子与样品原子中的电子和 原子核会发生弹性碰撞和非弹性碰撞, 所产生各种电子信号和电磁辐射信号 都带有样品原子的信息,从不同角度 反映出了样品的表面形貌、内部结构、 所含元素成分、化学状态等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
31.08.2019
HPU-LQ
21
31.08.2019
HPU-LQ
22
表 各种信号成象的分辨本领
信号
分辨率() 发射深度()
二次电子
背散射电子
吸收电子
透射电子
感应电动势
阴极荧光
射线
俄歇电子
31.08.2019
HPU-LQ
23
扫描电镜的景深是指在样品深度方向可能观察 的程度。在电子显微镜和光学显微镜中,扫描 电镜的景深最大,对金属材料的断口分析具有 特殊的优势。
31.08.2019
HPU-LQ
4
二、背散射电子
是指被固体样品原子反弹回来的一部分入射电 子,它来自样品表层 深度范围,其能量近似 于入射电子能量,背散射电子产额随原子序数 的增加而增加,如图。利用背散射电子作为成 象信号不仅能分析形貌特征,也可用来显示原 子序数衬度,定性地进行成份分析。
31.08.2019
31.08.2019
HPU-LQ
17
三、成象原理
在扫描电镜中,电子枪发射出来的电子束,一般经过 三个电磁透镜聚焦后,形成直径为 的电子束。末级 透镜(也称物镜,但它不起放大作用,仍是一个会聚 透镜)上部的扫描线圈能使电子束在试样表面上作光 栅状扫描。
试样在电子束作用下,激发出各种信号,信号的强度 取决于试样表面的形貌、受激区域的成份和晶体取向, 置于试样附近的探测器和试样接地之间的高灵敏毫微 安计把激发出来的电子信号接收下来,经信号处理放 大系统后,输送到显象管栅极以调制显象管的亮度。
31.08.2019
HPU-LQ
8
五、俄歇电子
从距样品表面几个Å深度范围内发射的并具有 特征能量的二次电子,能量在~之间。俄歇电 子信号适用于表面化学成份分析。
31.08.2019Fra bibliotekHPU-LQ
9
六、特征射线
样品中原子受入射电子激发后,在能级跃迁过 程中直接释放的具有特征能量和波长的一种电 磁波辐射,其发射深度为 范围。
四章扫描电子显微镜
电子束与固体样品相互作用
扫描电镜结构原理
主要性能指标
二次电子图象衬度原理及其应用
31.08.2019
1
主要优点:放大倍数大、制样方便、分辨率高、景深 大等
目前广泛应用于材料、生物等研究领域
扫描电子显微镜的成象原理和光学显微镜、透射电子 显微镜均不同,它不是以透镜放大成象,而是以类似 电视摄影显象的方式、用细聚焦电子束在样品表面扫 描时激发产生的某些物理信号来调制成象,近年扫描 电镜多与波谱仪、能谱仪等组合构成用途广泛的多功 能仪器。
HPU-LQ
5
31.08.2019
HPU-LQ
6
三、透射电子
当样品足够薄时( ),透过样品的入射电子 即为透射电子,其能量近似于入射电子的能量。
31.08.2019
HPU-LQ
7
四、吸收电子
残存在样品中的入射电子。若在样品和地之间 接入一个高灵敏度的电流表,就可以测得样品 对地的信号,这个信号是由吸收电子提供的。
HPU-LQ
19
第三节 主要性能指标
分辨本领与景深 放大倍数及有效放大倍数 主要仪器
31.08.2019
HPU-LQ
20
一、分辨本领与景深
扫描电镜的分辨本领有两重含义:
对于微区成份分析而言,它是指能分析的最小区域;
对于成象而言,它是指能分辨两点之间的最小距离。
两者主要取决于入射电子束的直径,但并不等于直 径,因为入射电子束与试样相互作用会使入射电子 束在试样内的有效激发范围大大超过入射束的直径, 如图。入射电子激发试样内各种信号的发射范围不 同,因此各种信号成象的分辨本领不同(如下表)。
31.08.2019
HPU-LQ
10
七、阴极荧光
入射电子束轰击发光材料表面时,从样品中激 发出来的可见光或红外光。
31.08.2019
HPU-LQ
11
八、感应电动势
入射电子束照射半导体器件的结时,将产生由 于电子束照射而引起的电动势.。
31.08.2019
HPU-LQ
12
上述信息,可以采用不同的检测仪器,将其转 变为放大的电信号,并在显象管荧光屏上或- 记录仪上显示出来,这就是扫描电镜的功能。
31.08.2019
HPU-LQ
24
二、放大倍数及有效放大倍数
扫描电镜的放大倍数取决于显象管荧光屏尺寸和入射 束在试样表面扫描距离之比,即:
=/
由于荧光屏尺寸是固定的,因此其放大倍数的变化
31.08.2019
HPU-LQ
13
第二节 扫描电镜结构原理
结构组成 扫描电镜与透射电镜
的主要区别 成象原理
31.08.2019
HPU-LQ
14
一、结构组成
组成:电子光学系统、信号接受处理显示系统、 供电系统、真空系统。
结构原理图如图。
31.08.2019
HPU-LQ
15
31.08.2019
31.08.2019
HPU-LQ
18
由于显象管中的电子束和镜筒中的电子束是同 步扫描的,显象管上各点的亮度是由试样上各 点激发出来的电子信号强度来调制的,即由试 样上任一点所收集来的信号强度与显象管荧光 屏上相应点亮度是一一对应的。
通常所用的扫描电镜图象有二次电子象和背散 射电子象。
31.08.2019
31.08.2019
HPU-LQ
2
第一节 电子束与固体样品相互作用
如图,当高能电子束轰
击样品表面时,由于入 射电子束与样品间的相 互作用,%以上的入射 电子能量将转变成热能, 其余约%的入射电子能 量,将从样品中激发出 各种有用的信息,它们 包括:
31.08.2019
HPU-LQ
3
一、二次电子
二次电子是被入射电子轰击出来的核外电子, 它来自于样品表面Å左右(Å)区域,能量为~, 二次电子产额随原子序数的变化不明显,主要 决定于表面形貌。
HPU-LQ
16
二、扫描电镜与透射电镜的主要区别
. 扫描电镜电子光学部分只有起聚焦作用的会聚透镜, 而没有透射电镜里起成象放大作用的物镜、中间镜和 投影镜。这些电磁透镜所起的作用在扫描电镜中是用 信号接受处理显示系统来完成的。
. 扫描电镜的成象过程与透射电镜的成象原理是完全不 同的。透射电镜是利用电磁透镜成象,并一次成象; 扫描电镜的成象不需要成象透镜,它类似于电视显象 过程,其图象按一定时间空间顺序逐点形成,并在镜 体外显象管上显示。