12.3角平分线的性质2
角平分的性质(第2课时)

12.3.2 角平分线的性质(2)教学设计一、内容和内容解析1.内容角平分线的性质的逆定理,即角平分线的判定。
2.内容解析角平分线的性质的逆定理是在学生学习了角平分线性质的基础上,进一步研究角平分线的判定方法。
角平分线的性质的逆定理的研究过程为以后学习线段垂直平分线的性质的逆定理提供了思路和方法。
这是全等三角形知识的运用和延续。
角平分线的性质的逆定理证明,运用了三角形全等的“HL”判定方法和全等三角形的性质。
角的平分线的性质的逆定理提供了之前所学“三角形三条角平分线交于一点”的猜想的证明,同时还能得到这个交点到三角形三边的距离相等的结论,是今后学习圆的内心的基础。
基于以上法分析,确定本节课的教学重点:证明角平分线的性质的逆定理。
二、目标和目标解析1、目标(1)证明角的平分线的性质(2)能用角的平分线的性质的逆定理解决简单问题。
2、目标解析达成目标(1)的标志是:学生能在教师的引导下或与同学合作,经历猜想、验证的过程,并能运用三角形全等的“HL”的判定方法和全等三角形的性质证明角平分线的性质的逆定理。
达成目标(2)的标志是:能直接利用角平分线的性质的逆定理进行简单的计算和相关的证明。
三、教学问题诊断分析在本课的学习中,学生在解决问题时,对应当使用角平分线的性质还是角平分线的性质的逆定理常常感到很困难,其主要原因是没有理解好这两者之间的区别和联系。
教学时,教师在引入课题部分,通过类比设置疑问的方式引起学生对此问题的注意;在证明定理后,又引导学生从两个定理的已知、结论、作用等方面进行对比、分析;在巩固练习时,带领学生从已知及求证的内容出发分析问题,对应当使用何种定理进行判断,从而使学生能准确运用角平分线性质定理的逆定理解决问题。
基于以上分析,确定本节课的教学难点:运用角平分线的性质的逆定理解决问题。
四、 教学过程设计1、 知识回顾如图,已知点P 是∠AOB 的平分线上的一点,PD ⊥AO,PE ⊥BO ,垂足分别为D ,E 。
12.3角的平分线的性质(2)

12.3角的平分线的性质(2)〖课前回顾〗如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 .若AC ∶AB =3∶5,则S △AC D S △ADB =〖学习目标〗 1.能够利用角平分线的性质和判定进行推理和计算,2能够利用角平分线的性质和判定解决一些实际问题〖自主学习〗。
1.阅读课本P49思考,完成下列问题.角的内部______________________的点在角的平分线上.根据问题画出图形,并写出:已知:求证:证明:几何语言:2.阅读课本P50的例题并完成书中问题:点P 在∠BAC 的平分线上吗?3题图 DC B A巩固练习:1.如图,BD=CD ,BF ⊥AC 于F ,CE ⊥AB 于E .求证:点D 在∠BAC 的角平分线上.2.如图,CD ⊥AB,BE ⊥AC,垂足分别为D,E,BE,CD 相交于点O,OB=OC, 求证∠1=∠2〖课堂小结〗本节课你有什么收获?〖自我测试〗1.三角形中到三边距离相等的点是( )A 、三条边的垂直平分线的交点B 、三条高的交点C 、三条中线的交点D 、三条角平分线的交点2如图,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,下面给出四个结论:①DA 平分∠EDF ②AE =AF ;③AD 上的点到B 、C 两点的距离相等;④到AE 、AF 距离相等的点,到DE 、DF 的距离也相等,其中正确的结论有: ( )A .1个B .2个C 3个D .4个A B CD EF课后作业:1、下列说法:①角的内部任意一点到角的两边的距离相等;•②到角的两边距离相等的点在这个角的平分线上;③角的平分线上任意一点到角的两边的距离相等;④△ABC 中∠BAC 的平分线上任意一点到三角形的三边的距离相等,其中正确的( )A .1个 B .2个 C .3个 D .4个2、如图,OC 是∠AOB 的角平分线,P 是OC 上的一点,PD ⊥OA 交于点D ,PE ⊥OB 交于点E ,F 是OC 上除点P 、O 外一点,连接DF 、EF ,求证DF=EF.3、已知,如图,∠B =∠C =90°,M 是BC 中点,DM 平分∠ADC ,ME ⊥AD 。
12.3角平分线的性质(2)

N
M O
G D
C
CPΒιβλιοθήκη ∴点P在∠AOB的平分线上
角平分线性质的逆定理 (角平分线的判定)
角的内部到角的两边的距离 相等的点在角的平分线上。
用数学语言表示为: ∵ PD⊥OA,PE⊥OB, PD=PE. ∴OP平分∠AOB.
C
P
角的平分线的性质
角的平分线的判定
图形
C
P P
C
已知 条件
OP平分∠AOB PD⊥OA于D PE⊥OB于E
B ∴DH=DG ∵ DH⊥AB,DG⊥AC F E G D C
H
∴AD平分∠BAC
课堂练习
如图,O是三条角平分线的交点, OD⊥BC于D,OD=3, △ABC的 周长为15,求S△ABC A 解:S△ABC =S△AOB +S△AOC+S△BOC
=½(AB+BC+AC)×OD =½×15×3 =22.5 B
P
已知:如图,PD⊥OA,PE⊥OB, 点D、E为垂足,PD=PE. 求证:点P在∠AOB的平分线上.
证明: 经过点P作射线OC ∵ PD⊥OA,PE⊥OB ∴ ∠PDO=∠PEO=90° 在Rt△PDO和Rt△PEO中 PO=PO PD=PE ∴ Rt△PDO≌Rt△PEO(HL) ∴ ∠ POD=∠POE
A
课堂练习
E B
F
D
C
课堂练习
已知:如图,在△ABC中, BD=CD, ∠1= ∠2. 求证:AD平分∠BAC 证明:作DE⊥AB,DF⊥AC ∴∠DEB=∠DFC=90° ∵∠1= ∠2 BD=CD ∴△DBE≌△DCF(AAS) ∴DE=DF ∴AD平分∠BAC
A E
人教版八年级数学上册12.3 角的平分线的性质(二)

12.3 角的平分线的性质(二) 课后练案
8.如上图,DC⊥AC于C,DE⊥AB于E,并 且DE=DC,则下列结论中正确的是( A ) A.∠1=∠2 B.DE=DF C.BD=FD D.AB=AC
哪三条线段的交点( C )
A.高
ห้องสมุดไป่ตู้
B.中线
C.角平分线
D.无法确定
12.3 角的平分线的性质(二) 课后练案
5.如下图,点P到BE、BD、AC的距离相等, 则点P的位置:①在∠B的平分线上;②在 ∠DAC的平分线上;③在∠ECA的平分线上; ④是∠B、∠DAC、∠ECA的角平分线的交 点.其中正确的结论的个数是( D ) A.1个 B.2个 C.3个 D.4个
12.3 角的平分线的性质(二) 课后练案
9.如下图,BE⊥AC于E,CF⊥AB于F,BE、 CF相交于D,若BD=CD, 求证:AD平分∠BAC. ∵CF⊥AB,BE⊥AC, ∴∠BFD=∠CED=90°,
在△BDF和Rt△CDE中,
,
∴△BDF≌△CDE,∴DF=DE,又DF⊥AB, DE⊥AC,∴AD平分∠BAC.
第十二章
全等三角形
12.3 角的平分线的性质(二)
12.3 角的平分线的性质(二)
1 …核…心……目…标..… 2 …课…前……学…案..… 3 …课…堂……导…案..… 4 …课…后……练…案..… 5 …能…力……培…优..…
12.3 角的平分线的性质(二) 核心目标
掌握角的平分线的判定 定理;能综合应用本节两个 性质解决有关问题.
12.3角的平分线的性质二章全等三角形导入新课讲授新课课堂小结第2课时角平分线的判定八年级数学上(RJ)

得到什么结论,这个新结论正确吗?
角平分线的性质:
A
角的平分线上的点到角的两边的距离相等. D
几何语言:
C
∵ 平分∠, 且⊥, ⊥
P
O
E
B
∴ 猜想:
思考:这个结 论正确吗?
角的内部到角的两边距离相等的点在角的平分线上.
证明猜想
已知:如图,⊥,⊥,垂足分别是D、E,.求证:点P 在∠的角平分线上.
证明:作射线, ∵⊥⊥. ∴∠∠90°,
二 三角形的内角平分线 活动1 分别画出下列三角形三个内角的平分线,你 发现了什么?
发现:三角形的三条角平分线相交于一点
活动2 分别过交点作三角形三边的垂线,用刻度尺量一 量,每组垂线段,你发现了什么?
你能证明这 个结论吗? 发现:过交点作三角形三边的垂线段相等
证明结论
已知:如图,△的角平分线,相交于点P, 求证:点P到三边,,的距离相等.
几何语言描述: ∵ 平分∠, 且⊥, ⊥.
∴.
不必再证全等
A D
P到的距离
C 角平分线上的点
P
O
E
B P到的距离
2.我们知道,角平分线上的点到角的两边的距离 相等.那么到角的两边的距离相等的点是否在角的 平分线上呢?
到角的两边的距离相等的点在角的平分线上.
讲授新课
一 角平分线的判定 问题:交换角的平分线的性质中的已知和结论,你能
当堂练习
1. 如图,某个居民小区C附近有三条两两相交的道 路、、,拟在上建造一个大型超市,使得它到、的距 离相等,请确定该超市的位置P.
A
M
小区C
P
O
N
B
2. 如图所示,已知△中,∥交于点E,∥交于点F, 点P是上一点,且点D到的距离与到的距离相等, 判断是否平分∠,并说明理由.
12.3 角的平分线的性质 第2课时 角平分线的判定

面积
周长
条件
如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等.若∠A=40°,则∠BOC的度数为( )
A.110° B.120° C.130° D.140°
A
解析:由已知,O到三角形三边的距离相等,所以O是内心,即三条角平分线的交点,AO,BO,CO都是角平分线,所以有∠CBO=∠ABO= ∠ABC,∠BCO=∠ACO= ∠ACB,∠ABC+∠ACB=180°-40°=140°,∠OBC+∠OCB=70°,∠BOC=180°-70°=110°.
如图,要在S区建一个贸易市场,使它到铁路和公路距离相等, 离公路与铁路交叉处500米,这个集贸市场应建在何处(比例尺为1︰20000)?
D
C
S
解:作夹角的角平分线OC,
截取OD=2.5cm ,D即为所求.
O
方法点拨:根据角平分线的判定定理,要求作的点到两边的距离相等,一般需作这两边直线形成的角的平分线,再在这条角平分线上根据要求取点.
结论:三角形的三条角平分线交于一点,并且这点到三边的距离相等.这个交点叫作三角形的内心.
到△ABC的三条边距离相等的点是△ABC的( ) A.三条中线的交点 B.三条角平分线的交点 C.三条高的交点 D.以上均不对
B
变式:如图,在直角△ABC中,∠C=90°,AP平分∠BAC,BD平分∠ABC;AP,BD交于点O,过点O作OM⊥AC,若OM=4.(1)求点O到△ABC三边的距离和.
证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F.
∵BM是△ABC的角平分线,点P在BM上,∴PD=PE.同理PE=PF.∴PD=PE=PF.即点P到三边AB,BC,CA的距离相等.
人教版八年级数学上册同步教学 第12章全等三角形 角的平分线的性质第2课时角平分线的判定

M
小区C
P
O
N
B
பைடு நூலகம்
2. 如图所示,已知△ABC中,PE∥AB交BC于点E,PF∥AC交BC于点
F,点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是 否平分∠BAC,并说明理由.
解:AD平分∠BAC.理由如下:
A
∵D到PE的距离与到PF的距离相等,
(
∴点D在∠EPF的平分线上.
34 P
解:连接OC
SABC SAOC SBOC SAOB
1 AB OE 1 BC ON 1 AB OM
2
2
2
1 OM ( AB BC OM ) 2
1 4 32 64 2
B
O
P
A
DM
C
知识与方法
1.应用角平分线性质: 存在角平分线 涉及距离问题
条件
2.联系角平分线性质: 距离 面积 周长
E
∴∠AOP=∠BOP (全等三角形的对应角相等).
∴点P在∠AOB 角的平分线上.
A P
B
知识总结
判定定理: 角的内部到角的两边的距离相等的点在角的平分线上. 应用所具备的条件: (1)位置关系:点在角的内部; (2)数量关系:该点到角两边的距离相等.
定理的作用:判断点是否在角平分线上.
应用格式:
s 1 ch 2
例2 如图,在△ABC中,点O是△ABC内一点,且点O到 △ABC三边的距离相等.若∠A=40°,则∠BOC的度数 为( A )
A.110° B.120° C.130° D.140°
解析:由已知,O到三角形三边的距离
相等,所以O是内心,即三条角平分线
的交点,AO,BO,CO都是角平分线,
角的平分线的性质(第2课时)精选教学PPT课件

A M
Q
O
N
B
应用角平分线性质定理的逆定理
1.判断题:
(2)如图,若QM⊥OA 于M,QN⊥OB 于N,则
OQ是∠AOB 的平分线;
(X )
A
M
Q
O
N
B
应用角平分线性质定理的逆定理
1.判断题: (3)已知:Q 到OA 的距离等于2 cm, 且Q 到OB
角的内部到角的两边距离相等的点在角的平分线 上.
探索并证明角平分线的性质定理的逆定理
追问1 你能ห้องสมุดไป่ตู้明这个结论的正确性吗?
探索并证明角平分线的性质定理的逆定理
追问2 这个结论与角的平分线的性质在应用上有 什么不同?
这个结论可以判定角的平分线,而角的平分线的性 质可用来证明线段相等.
应用角平分线性质定理的逆定理
距离等于2 cm,则Q 在∠AOB 的平分线上.(√ )
A
M
Q
O
N
B
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个广告牌P,使它到两 条公路的距离相等.
(1) 这个广告牌P 应建于何处?这样的广告牌可 建多少个?
S
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个广告牌P,使它到两 条公路的距离相等.
P NM
变式拓展
变式2 如图,P 点是△ABC
A
的两个外角平分线 BM,CN 的交
点,求证:点 P 在∠BAC 的平分 B
C
线上.
P NM
变式拓展
变式3 如图,将问题3中“S 区”去掉,广告牌P 到两条公路和一条铁路的距离相等.这个广告牌P 应建 在何处?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∟
B
E
C
• 如图,AE平分∠BAC,BD=DC, DE⊥BC,EM⊥AB,EN⊥AC. • 求证BM=CN.
A
M B
D
C N
E
• 如图,点D、B分别在∠A的两边上,C 是∠A内一点,AB = AD,BC = CD, CE⊥AD于E,CF⊥AF于F. • 求证:CE = CF
E
D
C
A
B
F
• :在△ABC中,BE、CF分别是AC、AB两 边上的高,在BE上截取BD=AC,在CF的 延长线上截取CG=AB,连结AD、AG。 • 求证:(1)AD=AG,(2)AD⊥AG。
A
E C F
D B
当堂检测
22页习题11.3 必做题:3、4 选做题:5 拓展题:6
自学检测
22页练习题 习题11.3 第2题
思考:
要在S区建一个集贸市场,使它到公路,铁 路距离相等且离公路,铁路的交叉处500 米,应建在何处?(比例尺 1 : 20 000 ) O
铁路 公路 OD=2.5cm ,D即为所求。
O
铁路
公路
s
D
C
如图, △ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB、BC、CA的距离相等 证明:过点P作PD⊥AB于D, PE⊥BC于E,PF⊥AC于F ∵BM是△ABC的角平分线,点P 在BM上,
角的平分线上的点到角的两边的距离相等. 用数学语言表示为: ∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上 ∴ QD=QE
复习
1.角平分线的性质定理: 角平分线上的点到角的两边的距离相等
2.角平分线的判定定理: 到一个角的两边的距离相等的点,在这个角平 分线上。 3.角平分线的性质定理和角平分线的判定 定理是证明角相等、线段相等的新途径.
D 1 2 E B P C
O
•
反过来,到一个角的两边的距离相等的点 是否一定在这个角的平分线上呢?
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
证明: ∵ QD⊥OA,QE⊥OB ∴ ∠QDO=∠QEO=90° 在Rt△QDO和Rt△QEO中 QO=QO QD=QE ∴ Rt△QDO≌Rt△QEO(HL) ∴ ∠ QOD=∠QOE ∴点Q在∠AOB的平分线上
判定:到角的两边的距离相 等的点在角的平分线上。
用数学语言表示为: ∵ QD⊥OA,QE⊥OB,QD=QE ∴点Q在∠AOB的平分线上. 性质:角的平分线上的点到角的两边的距离 相等. 用数学语言表示为: ∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上 ∴ QD=QE
拓展与延伸
3、已知:BD⊥AM于点D,CE⊥AN于点 E,BD,CE交点F,CF=BF,求证:点F在∠A的平 分线上.
M
;
D
C F
∟
A
E B
N
• 5.如图,点D、B分别在∠A的两边上,C 是∠A内一点,AB = AD,BC = CD, CE⊥AD于E,CF⊥AF于F. • 求证:CE = CF
• 6.已知:如图,在△ABC中, ∠A=90°,AB = AC,BD平分 ∠ABC. • 求证:BC = AB + AD
G M H
如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F,且BE=CF。 求证:AD是△ABC的角平分线。
A
E
F D
B
C
利用结论,解决问题
练一练 1、如图,为了促进当 地旅游发展,某地要在 三条公路围成的一块平 地上修建一个度假村.要 使这个度假村到三条公 路的距离相等,应在何处 修建? 在确定度假村的位置时,一定要画 想一想 出三个角的平分线吗?你是怎样思考 的?你是如何证明的?
B A ND P M F
∴PD=PE (角平分线上的点到这个角的两边距离相等). 同理,PE=PF. ∴PD=PE=PF. 即点P到三边AB、BC、CA的距离相等
E
C
如图,已知△ABC的外角∠CBD和 ∠BCE的平分线相交于点F, 求证:点F在∠DAE的平分线上.
证明: 过点F作FG⊥AE于G, FH⊥AD于H,FM⊥BC于M ∵点F在∠BCE的平分线上, FG⊥AE, FM⊥BC ∴FG=FM 又∵点F在∠CBD的平分线上, FH⊥AD, FM⊥BC ∴FM=FH ∴FG=FH ∴点F在∠DAE的平分线上
A G F H D E
B
(图27)
C
• 如图:在△ABC中,∠C=90°,AC=BC ,过点C在△ABC外作直线MN,AM⊥MN 于M,BN⊥MN于N。 • (1)求证:MN=AM+BN。
M C N
A
B
• (2)若过点C在△ABC内作直线MN ,AM⊥MN于M,BN⊥MN于N,则 AM、BN与MN之间有什么关系?请说 明理由。
学习目标
角的平分线的性质定理及其应用
自学指导
阅读课本50页内容,努力完成下列任务: 1.按50页内容,思考可得出什么结论?能说 出来: 2.自己写“已知、求证、证明”的过程证明 上面的性质:
1、会用尺规作角的平分线.
2、角的平分线的性质: 角的平分线上的点到角的两边的距离相等
A
用数学语言表述: ∵ OC是∠AOB的平分线 PD⊥OA,PE⊥OB ∴ PD=PE
拓展与延伸
2、直线表示三条相互交叉的公路,现要建 一个货物中转站,要求它到三条公路的距 离相等,则可供选择的地址有:( ) A.一处 B. 两处 C.三处 D.四处
分析:由于没有限制在 何处选址,故要求的地 址共有四处。
到角的两边的距离相等的点 在角的平分线上。
用数学语言表示为:
∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
C
N A M B
• 已知:如图,在△ABC中,AB=AC, ∠BAC=90°,D为BC上一点, EC⊥BC, • EC=BD,DF=FE,则AF与DE有怎样 的位置关系?并加以证明.
• AD是△ABC中∠BAC的平分线, 过AD的中点E作EF⊥AD交BC的 延长线于F,连结AF。求证: ∠B=∠CAF。