第四章 时变电磁场2

合集下载

第17讲 时变电磁场(2)..

第17讲 时变电磁场(2)..

矢量的波动方程,称为亥姆霍兹方程。 瞬时矢量
理想介质
t
t
Hale Waihona Puke 复矢量2 2 E k E 0 2 2 H k H 0
2 2 E E 2 0 t 2 2 H H 0 2t
(k )




E0 H 0 cos 2 t (r )
使用二次式时需要注意的问题
二次式只有实数的形式,没有复数形式
场量是实数式时,直接代入二次式即可 场量是复数式时,应先取实部再代入,即“ 先取实后相
乘”
如复数形式的场量中没有时间因子,取实前先补充时间因子
瞬时电磁场能流密度
S(r,t) E(r, t ) H (r, t )
故电场的复矢量为
E ( z) ex [0.03e j / 2 0.04e j / 3 ]e jkz
E ( z) ex [0.03e
H ( z) 1 j 0 E ( z) ey
j / 2
0.04e
j / 3
]e
jkz
(2)由复数形式的麦克斯韦方程,得到磁场的复矢量
例 将下列场矢量的瞬时值形式写为复数形式
E ( z, t ) ex Exm cos(t kz x ) ey E ym sin(t kz y )
解:由于
E ( z, t ) ex Exm cos( t kz x ) ey E ym cos(t kz y ) 2
H J jD E jB D B 0
~ t
j
略去“.”和下标m

高中物理第4章电磁振荡与电磁波2电磁场与电磁波课后习题新人教版选择性

高中物理第4章电磁振荡与电磁波2电磁场与电磁波课后习题新人教版选择性

2电磁场与电磁波课后·训练提升基础巩固一、选择题(第1~3题为单选题,第4~6题为多选题)1.电磁波由真空进入介质中时,其波速变为原来的一半,则波长变为原来的()A.一半B.两倍C.不变D.无法判断,频率不变。

由v=λf知v减半,则λ减半。

2.在真空中传播的电磁波,当它的频率增大时,它的传播速度及其波长的变化情况是()A.速度不变,波长减小B.速度不变,波长增大C.速度减小,波长变大D.速度增大,波长不变3×108m/s,与频率无关;由c=λf,波速不变,频率增大,波长减小,故选项A正确,B、C、D错误。

3.下列关于电磁波的说法正确的是()A.电磁波必须依赖介质传播B.电磁波可以发生衍射现象C.电磁波不会发生偏振现象D.电磁波无法携带信息传播,可以发生衍射现象,故选项B正确。

电磁波是横波,能发生偏振现象,故选项C错误。

电磁波能携带信息传播,且传播不依赖介质,在真空中也可以传播,故选项A、D错误。

4.下列说法正确的是()A.电荷的周围一定有电场,也一定有磁场B.均匀变化的电场在其周围空间一定产生磁场C.任何变化的电场在其周围空间一定产生变化的磁场D.正弦交变的电场在其周围空间一定产生同频率交变的磁场,不产生磁场,运动的电荷周围的电场是变化的,所以产生磁场,选项A错误。

由麦克斯韦理论判断选项B、D正确,C错误。

5.按照麦克斯韦的电磁场理论,以下说法正确的是()A.恒定的电场周围产生恒定的磁场,恒定的磁场周围产生恒定的电场B.变化的电场周围产生磁场,变化的磁场周围产生电场C.均匀变化的电场周围产生均匀变化的磁场,均匀变化的磁场周围产生均匀变化的电场D.均匀变化的电场周围产生稳定的磁场,均匀变化的磁场周围产生稳定的电场:变化的电场产生磁场,变化的磁场产生电场。

对此理论全面正确理解为:不变化的电场周围不产生磁场;变化的电场可以产生变化的磁场,也可产生不变化的磁场;均匀变化的电场产生稳定的磁场;周期性变化的电场产生同频率的周期性变化的磁场。

第四章第2节电磁场与电磁波练习(word版含答案)

第四章第2节电磁场与电磁波练习(word版含答案)

2021-2022学年人教版(2019)选择性必修第二册第四章第2节电磁场与电磁波过关演练一、单选题1.下列关于电磁波的说法,正确的是()A.只要有电场和磁场就能产生电磁波B.电场随时间变化时一定能产生电磁波C.要想产生持续的电磁波,变化的电场(或磁场)产生的磁场(或电场)必须是均匀变化的D.振荡电流能在空间中产生电磁波2.对于电磁波的发现过程,下列说法正确的是()A.麦克斯韦通过实验证实了电磁波的存在B.麦克斯韦预言了电磁波的存在C.赫兹根据自然规律的统一性,提出变化的电场产生磁场D.电磁波在任何介质中的传播速度均为8310m/s3.关于电磁波的形成机理,一些认识,正确的是()A.电磁波由赫兹预言提出,并指出光也属于电磁波B.磁场能产生电场,电场也能产生磁场C.变化的磁场能产生电场,所产生的这个电场还能继续产生磁场D.变化的电场能产生磁场,所产生的这个磁场不一定还能继续产生电场4.如图所示是我国500m口径球面射电望远镜(F AST),它可以接收来自宇宙深处的电磁波。

关于电磁波,下列说法正确的是()A.赫兹预言了电磁波的存在B.麦克斯韦通过实验捕捉到电磁波C.频率越高的电磁波,波长越长D.电磁波可以传递信息和能量5.以下有关电磁场理论,正确的是()A.稳定的电场周围产生稳定的磁场B.有磁场就有电场C.变化的电场周围产生变化的电场D.周期性变化的磁场产生周期性变化的电场6.关于电磁场和电磁波,下列叙述中不正确的是()A.均匀变化电场在它的周围产生均匀变化的磁场B.振荡电场在它的周围产生同频振荡的磁场C.电磁波从一种介质进入另一种介质,频率不变,传播速度与波长发生变化D.电磁波能产生干涉和衍射现象7.下列说法正确的是()A.电磁波在真空中的传播速度与电磁波的频率有关B.电磁波可以由电磁振荡产生,若波源的电磁振荡停止,空间的电磁波随即消失C.声波从空气进入水中时,其波速增大,波长变长D.均匀变化的磁场产生变化的电场,均匀变化的电场产生变化的磁场E.当波源与观察者相向运动时,波源自身的频率变大8.关于电磁波理论,下列说法正确的是()A.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场B.均匀变化的电场周围一定产生均匀变化的磁场C.做非匀变速运动的电荷可以产生电磁波D.麦克斯韦第一次用实验证实了电磁波的存在9.下列说法正确的是()A.电场随时间变化时一定产生电磁波B.X射线和 射线的波长比较短,穿透力比较弱C.太阳光通过三棱镜形成彩色光谱,这是光衍射的结果D.在照相机镜头前加装偏振滤光片拍摄日落时水面下的景物,可使景物清晰10.真空中所有电磁波都有相同的()A.频率B.波长C.波速D.能量二、多选题11.以下叙述正确的是()A.法拉第发现了电磁感应现象B.电磁感应现象即电流产生磁场的现象C.只要闭合线圈在磁场中做切割磁感线的运动,线圈内部便会有感应电流D.感应电流遵从楞次定律所描述的方向,这是能量守恒的必然结果12.下列说法正确的是()A.波的衍射现象必须具备一定的条件,否则不可能发生衍射现象B.要观察到水波明显的衍射现象,必须使狭缝的宽度远大于水波波长C.波长越长的波,越容易发生明显的衍射现象D.只有波才有衍射现象13.间距为L=1m的导轨固定在水平面上,如图甲所示,导轨的左端接有阻值为R=10Ω的定值电阻,长度为L=1m、阻值为r=10Ω的金属棒PQ放在水平导轨上,与导轨有良好的接触,现在空间施加一垂直导轨平面的磁场,磁感应强度随时间的变化规律如图乙所示,已知磁场的方向如图甲所示,且0~0.2s的时间内金属棒始终处于静止状态,其他电阻不计。

谢处方《电磁场与电磁波》(第4版)章节习题-第4章 时变电磁场【圣才出品】

谢处方《电磁场与电磁波》(第4版)章节习题-第4章 时变电磁场【圣才出品】

(2)推导 J% j&。提示:
r A
0。
解:(1) H% J% jD% jD%,方程左边做旋度运算,有:
H% H% 2H%
由于 H%
1 j
E%,于是有
H% 0
4 / 17
圣才电子书
十万种考研考证电子书、题库视频学习平
Ñ
s
v (E
v H)
v dS
d dt
(We
Wm )
P

Ñ
vv v (E H ) dS
d
(1 E2 1 H 2 )d
E2d
s
dt 2
2
反映了电磁场中能量的守恒和转换关系。
4.试解释什么是 TEM 波。 答:与传播方向垂直的平面称为横向平面;若电磁场分量都在横向平面中,则称这种 波称为平面波;又称横电磁波即 TEM 波。
f ck 3108 3 4.5 108 Hz
2π 2π
π
E% jB%
2.从复数形式的麦克斯韦方程组源自 H% J% D% &
j
D%推导:
B% 0
(1)自由空间( & 0、 J% 0 )磁场复数形式波动方程 2 k 2 H% 0 。提示:
r
r
r
A A 2A ;
5.说明矢量磁位和库仑规范。
答: 由于 g( A) 0 ,而 gB 0 ,所以令 B A ,A 称为矢量磁位,它是一
个辅助性质的矢量。从确定一个矢量场来说,只知道一个方程是不够的,还需要知道 A 的
散度方程后才能唯一确定 A,在恒定磁场的情况下,一般总是规定 gA 0 ,这种规定为
库仑规范。
增加的电磁场能量与损耗的能量之和——能量守恒。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。

第4章 时变电磁场

第4章 时变电磁场

(2)
对方程(2)两边取旋度有 E H t 2 2 E H E E ( E ) E
E t
2
对于各向同性的介质,得
2 E 2 E 2 0 t (5)
E 0 t
t
同理可得
2 H 2 H 2 0 t (6)
第四章 时 变 电 磁 场
从上方程可以看出:时变电磁场的电场场量和磁场场量在 空间中是以波动形式变化的,因此称时变电磁场为电磁波。 上两式为关于场量 E、H 的矢量波动方程,表示时变电磁场 以波的形式在空间存在和传播,其波速为
A E ex Am cos(t kz ) t
第四章 时 变 电 磁 场
§4.3 电磁能量守恒定律
能量守恒定律是一切物质运动过程遵守的普遍规律,作为特殊形态的物 质,电磁场及其运动过程也遵守这一规律。 下面讨论电磁场的能量和能量守恒定律,引入重要的坡印廷矢量和坡印廷 定理,分析讨论电磁场能量、电荷电流运动及电磁场做功之间的相互联系。
其中Am、k是常数,求电场强度、磁场强度。
解:
Ax B A ey ey kAm cos(t kz ) z k H ey Am cos(t kz )
A 0 t

C
如果假设过去某一时刻,场还没有建立,则C=0。
量位只决定于ρ,这对求解方程特别有利。只需解出A,无需
解出 就可得到待求的电场和磁场。 电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应 用不同的规范条件,矢量位A和标量位 的解也不相同,但最终 得到的电磁场矢量是相同的。

电磁场与电磁波时变电磁场基础知识讲解

电磁场与电磁波时变电磁场基础知识讲解

例 已知电场强度复矢量
Em (z) ex jExm cos(kz z)
其中kz和Exm为实常数。写出电场强度的瞬时矢量
解: E(z, t) Re[ex jExm cos(kz z)e jt ]
j(t π )
Re[ex Exm cos(kz z)e 2 ]
ex
Exm
cos(kz
z)
cos(t
π 2
麦克斯韦方程组微分形式
H
(r,t)
J
(r,
t)
D(r, t
t
)
E
(r,
t)
B(r , t ) t
B(r,t) 0
D(r,t) (r,t)
J (r,t) (r,t)
t
H (r) J (r) j D(r)
E(r) j B(r)
D(r) (r)
B(r) 0
面对的问题! 分析方法! 关联的一般性物理问题: 坡印廷定理 坡印廷矢量 典型问题的应用?
面对的问题! 分析方法! 关联的一般性物理问题! 典型问题的应用: 时谐电磁场问题
4. 5 时谐电磁场
时谐电磁场的复数表示 复矢量的麦克斯韦方程 复电容率和复磁导率 亥姆霍兹方程 时谐场的位函数 平均能流密度矢量
推导
t
不利点: 磁矢位与电位函数不能分离!
洛仑兹规范条件
必须引入规范条件的原因:未规定 A的散度。
库仑规范: A 0(静态场)
对时变场问题:
A
t
洛伦兹规范条件
引入洛伦兹规范条件,电位方程为达朗贝尔方程
2
2
2t
2 A
2 A t 2
J
磁矢位与电位函数分离 磁矢位只依赖于电流 电位函数只依赖于电荷

电磁场与电磁波及其应用 第四章

电磁场与电磁波及其应用 第四章
将以上两式相减, 得到
在线性、 各向同性媒质中, 当参数不随时间变化时,
于是得到 再利用矢量恒等式
可得到 (4.3.4)
在体积V上, 对式(4.3.4)两端积分, 并应用散度定理即 可得到
(4.3.5)
由于E和H也是相互垂直的, 因此S、 E、 H三者是相互 垂直的, 且构成右旋关系, 如图4.3-1 所示。
第四章 时变电磁场
4.1 波动方程 4.2 时变场的位函数 4.3 时变电磁场的能量与能流 4.4 时谐电磁场 4.5 左手媒质 4.6 时变电磁场的应用
4.1 波 动 方 程
在无源空间中, 电流密度和电荷密度处处为零, 即 ρ=0、 J=0。 在线性、 各向同性的均匀媒质中, E和H满足 麦克斯韦方程
图4.3-1 能流密度矢量与电场及磁场的方向关系
例4.3.1 同轴线的内导体半径为a、 外导体半径为b, 其 间均匀充填理想介质。 设内外导体间电压为U, 导体中流过 的电流为 I。 (1) 在导体为理想导体的情况下, 计算同轴线 中传输的功率; (2) 当导体的电导率σ为有限值时, 计算通 过内导体表面进入每单位长度内导体的功率。
磁场仍为 内导体表面外侧的坡印廷矢量为
由此可见内导体表面外侧的坡印廷矢量既有轴向分量, 也 有径向分量, 如图4.3-3所示。
图4.3-3 同轴线中电场、 磁场和坡印廷矢量 (非理想导体情况)
进入每单位长度内导体的功率为
式中
是单位长度内导体的电阻。 由此可见,
进入内导体中的功率等于这段导体的焦耳损耗功率。
利用复数取实部表示方法, 可将式(4.5.1)写成
式中
(4.4.2)
称为复振幅, 或称为u(r, t)的复数形式。 为了区别复数形 式与实数形式, 这里用打“•”的符号表示复数形式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令ωt=π/2 ,得 Re[ j E m ] Re[ j ( j B m )]

Im[ E m ] Im[( j B m )]
电子科技大学编写
Em j Bm
Modified by shaohu.li
Modified by shaohu.li
电子科技大学编写
电磁场与电磁波
第4章 时变电磁场
4
4.5.1 时谐电磁场的复数表示 时谐电磁场可用复数方法来表示,使得大多数时谐电磁场问 题得分析得以简化。
设 A( r , t ) 是一个以角频率 随时间t 作正弦变化的场量,它
可以是电场和磁场的任意一个分量,也可以是电荷或电流等变 量,它与时间的关系可以表示成
~ j
略去“.”和下标m
Modified by shaohu.li
电子科技大学编写
电磁场与电磁波
例题:已知正弦电磁场的电场瞬时值为 E ( z, t ) E1 ( z, t ) E2 ( z, t )
第4章 时变电磁场
11
式中
8 E ( z , t ) e 0.03 sin(10 t kz ) 1 x 8 E ( z , t ) e 0.04 cos(10 t kz / 3) x 2
2
Modified by shaohu.li
电子科技大学编写
电磁场与电磁波
第4章 时变电磁场
3
时谐电磁场的概念 如果场源以一定的角频率随时间呈时谐(正弦或余弦)变 化,则所产生电磁场也以同样的角频率随时间呈时谐变化。这种 以一定角频率作时谐变化的电磁场,称为时谐电磁场或正弦电磁 场。 研究时谐电磁场具有重要意义 在工程上,应用最多的就是时谐电磁场。广播、电视和通信 的载波等都是时谐电磁场。 任意的时变场在一定的条件下可通过傅立叶分析方法展开为不 同频率的时谐场的叠加。
j ( kz y / 2) j ( kz x ) ey E ym e 所以 Em ( z ) ex Exm e j y jx (ex Exme ey jEyme )e jkz
Modified by shaohu.li 电子科技大学编写
电子科技大学编写
Modified by shaohu.li
电磁场与电磁波
第4章 时变电磁场
8
例4.5.2 已知电场强度复矢量 Em ( z ) ex jE xm cos( k z z ) 其中kz和Exm为实常数。写出电场强度的瞬时矢量 解
E ( z , t ) Re[ex jE xm cos( k z z )e j t ]

其中c= -jσ/ω、称为导电媒质的等效介电常数。
Modified by shaohu.li 电子科技大学编写
电磁场与电磁波
第4章 时变电磁场
14
电介质的复介电常数 对于存在电极化损耗的电介质,有 c j ,称为复介电 常数或复电容率。其虚部为大于零的数,表示电介质的电极化损 耗。在高频情况下,实部和虚部都是频率的函数。 同时存在极化损耗和欧姆损耗的介质 对于同时存在电极化损耗和欧姆损耗的电介质,复介电常数 为
c j ( +
磁介质的复磁导率
)
对于磁性介质,复磁导率数为 c j ,其虚部为大于零 的数,表示磁介质的磁化损耗。
j ( t ) 2 Re[ex E xm cos( k z z )e ] ex Exm cos(k z z ) cos( t ) 2 ex Exm cos(k z z ) sin( t )
Modified by shaohu.li
电子科技大学编写
电磁场与电磁波


各分量合成以后,电场强度为 复矢量
j t E ( r , t ) Re[ E m ( r )e ]
jx ( r ) j y ( r ) jz ( r ) Em ( r ) ex E xm ( r )e e y E ym ( r )e ez E zm ( r )e
a x e x H 0 k ( ) sin( ) cos( t kz ) 2 a x e z H 0 cos( ) cos( t kz ) a a

a x jkz j 2 x jkz ez H 0 cos( )e H m ( x, z ) ex H 0 k ( ) sin( )e a a
式中的A0为振幅、 ( r )为与坐标有关的相位因子。
利用三角公式 其中
复振幅 Modified by shaohu.li
A( r , t ) A0 cos[ t ( r )]
实数表示法或 瞬时表示法
j ( r ) A(r ) A0e


j t j [ t ( r )] A ( r , t ) Re A0 e Re[ A( r )e ]
Modified by shaohu.li 电子科技大学编写
电磁场与电磁波
第4章 时变电磁场
1 j 0 E ( z) ey

12
(2)由复数形式的麦克斯韦方程,得到磁场的复矢量
H ( z)
j E x 0 z

j j k 2 ey 0.04 e 3 ]e jkz [0.03e
0
j j 5 4 2 e y k [7.6 10 e 1.01 10 e 3 ]e jkz


磁场强度瞬时值
j t H ( z , t ) Re[ H ( z )e ] e y k [7.6 10 5 sin(10 8 t kz )
E ( z , t ) ex Exm cos( t kz x ) e y E ym cos(t kz y ) 2 j (t kz y / 2) j (t kz x ) Re[ex Exme ey Eyme ]
t
H J j D m m m E j B m m B m 0 D m m
H J j D E j B D B 0
1.01 10 cos(10 t kz
4 8

3
)]
Modified by shaohu.li
电子科技大学编写
电磁场与电磁波
第4章 时变电磁场
13
4.5.3 复电容率和复磁导率 实际的介质都存在损耗: 导电媒质——当电导率有限时,存在欧姆损耗 电介质——受到极化时,存在电极化损耗 磁介质——受到磁化时,存在磁化损耗 损耗的大小与媒质性质、随时间变化的频率有关。一些媒质 的损耗在低频时可以忽略,但在高频时就不能忽略。 导电媒质的等效介电常数 对于介电常数为 、电导率为 的导电媒质,有 H E j E j (2)磁场的复矢量和瞬时值。 解:(1)因为 E ( z , t ) ex 0.03sin(108 t kz ) ex 0.04 cos(108 t kz / 3)
8 ex 0.03 cos(10 t kz ) ex 0.04 cos(108 t kz / 3) 2 j (108 t kz / 2) j (108 t kz / 3) Re[ex 0.03e ] Re[ex 0.04e ] j108 t j ( kz / 2) j ( kz / 3) Re ex 0.03e ex 0.04e e 故电场的复矢量为 E ( z ) ex [0.03e j / 2 0.04e j / 3 ]e jkz
电磁场与电磁波
第4章 时变电磁场
1
本章内容
4.1 4.2 4.3 4.4 4.5 波动方程 电磁场的位函数 电磁能量守恒定理 惟一性定理 时谐电磁场
Modified by shaohu.li
电子科技大学编写
电磁场与电磁波
第4章 时变电磁场 4. 5 时谐电磁场
时谐电磁场的复数表示 复矢量的麦克斯韦方程 复电容率和复磁导率 亥姆霍兹方程 时谐场的位函数 平均能流密度矢量
电磁场与电磁波
第4章 时变电磁场

7
(2)因为 cos( kz t ) cos( t kz )
所以
sin( kz t ) cos( kz t ) cos( t kz ) 2 2 a x H ( x , z , t ) e x H 0 k ( ) sin( ) sin( kz t ) a x e z H 0 cos( ) cos( kz t )
第4章 时变电磁场
9
4.5.2 复矢量的麦克斯韦方程 B 以电场旋度方程 E 为例,代入相应场量的矢量,可得 t
将 、 与Re交换次序,得 t
j t [Re( E m e )] [Re( Bm e j t )] t
j t j t Re[ ( E m e )] Re[ ( B m e )] Re[ j B m e j t ] t 上式对任意 t 均成立。令 t=0 ,得 Re[ E m ] Re[ j B m]
电磁场与电磁波
第4章 时变电磁场
10
从形式上讲,只要把微分算子 用 t
j代替,就可以把时谐电磁
场的场量之间的关系,转换为复矢量之间关系。因此得到复矢量 的麦克斯韦方程
D H J t B E t B 0 D
相关文档
最新文档