平面解析几何复习课

合集下载

高三数一轮复习课件:第九章 平面解析几何. .ppt..

高三数一轮复习课件:第九章 平面解析几何. .ppt..
解:如图,因为 kAP=12- -01=1,
kBP= 03--10=- 3, 所以 k∈(-∞,- 3]∪[1,+∞). 故填(-∞,- 3]∪[1,+∞).
2019年5月30日
你是我心中最美的云朵
18
类型二 求直线方程
根据所给条件求直线的方程. (1)直线过点(-4,0),倾斜角的正弦值为 1100; (2)直线过点(-3,4),且在两坐标轴上的截距相等; (3)直线过点(5,10),且到原点的距离为 5.
2019年5月30日
你是我心中最美的云朵
13
类型一 直线的倾斜角和斜率
(1)设直线 2x+my=1 的倾斜角为 α,若 m∈(-∞, -2 3)∪[2,+∞),则角 α 的取值范围是________.
解:据题意知 tanα=-m2 ,因为 m<-2 3或 m≥2.
所以 0<tanα< 33或-1≤tanα<0.
(3)过点 P1(x1,y1),P2(x2,y2)的直线方程 ①若 x1=x2,且 y1≠y2 时,直线垂直于 x 轴,方程为____________; ②若 x1≠x2,且 y1=y2 时,直线垂直于 y 轴,方程为____________; ③若 x1=x2=0,且 y1≠y2 时,直线即为 y 轴,方程为____________; ④若 x1≠x2,且 y1=y2=0,直线即为 x 轴,方程为____________.
x=


y=
.
2019年5月30日
你是我心中最美的云朵
4
2.直线的倾斜角与斜率 (1)直线的倾斜角:当直线 l 与 x 轴相交时,取 x 轴作为基准,x 轴____________与 直线 l 向上方向之间所成的角 α 叫做直线 l 的倾斜角.当直线 l 与 x 轴________或________ 时,我们规定它的倾斜角为 0°.因此,直线的倾斜角 α 的取值范围为 __________________. (2)斜率:一条直线的倾斜角 α 的____________叫做这条直线的斜率,常用小写字母 k 表示,即 k=______(α≠______).当直线平行于 x 轴或者与 x 轴重合时,k______0; 当直线的倾斜角为锐角时,k______0;当直线的倾斜角为钝角时,k______0;倾斜角为 ______的直线没有斜率.倾斜角不同,直线的斜率也不同.因此,我们可以用斜率表示 直线的倾斜程度.

2023高考数学一轮总复习第九章平面解析几何第四节直线与圆圆与圆的位置关系pptx课件北师大版

2023高考数学一轮总复习第九章平面解析几何第四节直线与圆圆与圆的位置关系pptx课件北师大版
第九章
第四节
直线与圆、圆与圆的位置关系




01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.能根据给定直线、圆的方程,
判断直线与圆、圆与圆的位置 1.直线与圆的位置关系 直观想象
关系.
2.圆的切线与弦长问题 数学运算
2.能用直线和圆的方程解决一
3.圆与圆的位置关系
些简单的数学问题与实际问题.
设圆C1:x2+y2+D1x+E1y+F1=0,①
圆C2:x2+y2+D2x+E2y+F2=0,②
若两圆相交,则有一条公共弦,其公共弦所在直线的方程可由①-②得到,即
(D1-D2)x+(E1-E2)y+(F1-F2)=0.
(2)两个圆系方程
①过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方
典例突破
例1.(1)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法错误的
是(
)
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
(2)(2021北京人大附中模拟)已知圆C过点(-1,0)和(1,0),且与直线y=x-1只有
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)若两圆的圆心距小于两圆的半径之和,则两圆相交.( × )

高考总复习一轮数学精品课件 第九章 平面解析几何 指点迷津(八)

高考总复习一轮数学精品课件 第九章 平面解析几何 指点迷津(八)

(2)定义法:利用曲线的定义,判断曲线类型,再由曲线的定义直接写出曲线
方程;
(3)代入法(相关点法):题中有两个动点,一个为所求,设为(x,y),另一个在已
知曲线上运动,设为(x0,y0),利用已知条件找出两个动点坐标的关系,用所求
表示已知,即
0 = (,),
将 x0,y0 代入已知曲线即得所求曲线方程;
0 = (,),
= (),
(4)参数法:引入参数 t,求出动点(x,y)与参数 t 之间的关系
消去参数即
= (),
得所求轨迹方程;
(5)交轨法:引入参数表示两动曲线的方程,将参数消去,得到两动曲线交点
的轨迹方程.
一、直接法求轨迹方程
例1.已知圆C:x2+y2+2x-4y+1=0,O为坐标原点,动点P在圆C外,过点P作圆C
=(x1-x,-y)=(0,-y).
因为=λ,所以(0,y-y1)=λ(0,-y),
所以 y-y1=-λy,即 y1=(1+λ)y.
因为点
2 2
P(x1,y1)在椭圆 4 +y =1
2
+(1+λ)2y2=1
4
21
上,所以 4
2

+ 12 =1,所以 4 +(1+λ)2y2=1,所以
第九章
指点迷津(八)
求曲线轨迹方程的方法
曲线C与方程F(x,y)=0满足两个条件:(1)曲线C上点的坐标都是方程
F(x,y)=0的解;(2)以方程F(x,y)=0的解为坐标的点都在曲线C上.则称曲线C
为方程F(x,y)=0的曲线,方程F(x,y)=0为曲线C的方程.求曲线方程的基本方

中职教育数学《平面解析几何-复习课》练习题

中职教育数学《平面解析几何-复习课》练习题

第八章 平面解析几何(知识点)1. 直线:(1) 倾斜角α:一条直线l 向上的方向与x 轴的正方向所成的最小正角叫这条直线的倾斜角。

其范围是),0[π(2) 斜率:①倾斜角为090的直线没有斜率;②αtan =k(倾斜角的正切)③经过两点),(),,(222111y x P y x P 的直线的斜率1212x x y y K --= )(21x x ≠(3) 直线的方程①两点式:121121x x x x y y y y --=-- ② 截距式 1=+b y a x③ 斜截式:b kx y += ④点斜式:)(00x x k y y -=- ⑤一般式:0=++C By Ax注:1.若直线l 方程为3x+4y+5=0,则与l 平行的直线可设为3x+4y+C=0;与l 垂直的直线可设为4X-3Y+C=0 2.求直线的方程最后要化成一般式。

(4) 两条直线的位置关系①点),(00y x P 到直线0=++C By Ax 的距离:2200||B A C By Ax d +++=②0:1=++C By Ax l 与0:2=++C By Ax l 平行2221||BA C C d ++=2. 圆的方程(1) 标准方程:222)()(r b y a x =-+-(0>r)其中圆心),(b a ,半径r 。

(2) 一般方程:022=++++F Ey Dx y x (0422>-+F E D )圆心(2,2E D --) 半径:2422F EDr -+=(4)直线和圆的位置关系:主要用几何法,利用圆心到直线的距离d 和半径r 比较。

相交⇔<r d ; 相切⇔=r d ; 相离⇔>r d3. 二次曲线:定义一:平面内到一个定点和一条定直线的距离的比等于定长e 的点的集合,①当0<e<1时,是椭圆.②当e>1时,是双曲线.③当e=1时,是抛物线. 4. 椭圆注:等轴双曲线:(1)b a =(2)离心率2=e (3)渐近线x y ±=6. 抛物线(如右图示) 注:(1)p 的几何意义表示焦点到准线的距离。

高考总复习一轮数学精品课件 第9章 平面解析几何 第2节 两条直线的位置关系

高考总复习一轮数学精品课件 第9章 平面解析几何 第2节 两条直线的位置关系

D. 2+1
a=-1+ 2或 a=-1- 2.
∵a>0,∴a=-1+ 2.
(3)直线3x-4y-4=0与直线6x-8y-3=0之间的距离为( C )
1
A.
5
2解析 直线 3x-4y-4=0 即 6x-8y-8=0,显然与另一条直线平行,
则所求距离为
|-8-(-3)|
62 +82
=
(3)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为
(x,2b-y).
(4)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).
(5)点(x,y)关于直线x+y=k的对称点为(k-y,k-x),关于直线x-y=k的对称点为
(k+y,x-k).
2.三种直线系方程
3.直线外一点与直线上的点的距离的最小值就是点到直线的距离.(
)
题组二 回源教材
4.(人教A版选择性必修第一册2.3.4节练习第1题改编)已知两条平行直线l1:
2 5
2x+y-1=0,l2:2x+y+1=0,则l1与l2之间的距离是__________.
5
解析 利用两平行线间的距离公式得 l1 与 l2 之间的距离 d=
条直线的斜率为0时,l1⊥l2
l1⊥l2⇔__________
k1k2=-1
若 A1,A2,B1,B2,C1,C2 均不为 0,
1
1
1
则 l1 与 l2 重合⇔ = =
2
2
2
l1∥l2⇔__________,且
A1B2-A2B1=0 B1C2-B2C1≠0(或 A1C2-A2C1≠0)

苏教版高考总复习一轮数学精品课件 第九章 平面解析几何 解答题专项第2课时 定值、定直线

苏教版高考总复习一轮数学精品课件 第九章 平面解析几何 解答题专项第2课时 定值、定直线
2 +3 −1 −4
= −4,
则 = −1,即点在定直线 = −1上.

2
解由抛物线定义可知,2 + = 3,解得 = 2,即抛物线的方程为 2 = 4.
由题意,知直线的斜率不为0,设 1 , 1 , 2 , 2 ,直线的方程为
= + 1 ≠ 0 ,
= + 1,
由ቊ 2
消去得 2 − 4 − 4 = 0,Δ = 162 + 16 > 0恒成立,
动点的横、纵坐标关系,进而得出定直线(曲线)方程.
[对点训练2]已知抛物线: 2 = 2 > 0 上一点 2, 到其焦点的距离为3,,
为抛物线上异于原点的两点.延长,分别交抛物线于点,,直线,相交
于点.
(1)若 ⊥ ,求四边形面积的最小值;
3
值为3 3.
(1)求椭圆的方程.
解由题意得

6
= ,

3
1
⋅ ⋅ 2 = 3
2
2 = 2 + 2 ,
3,
= 3,
解得൞ = 3,
= 6,
2
故椭圆的方程为
9
+
2
3
= 1.
(2)若为坐标原点,直线交直线 = 4于点,过点且与直线垂直的直线记
为,直线交轴于点,交直线于点,试判断
2 = 2 + 2 ,
= 2,
则 = 2 5,
解得ቊ
= 4,

= = 5,

2故双曲线Biblioteka 的方程为4−2
16
= 1.
(2)记的左、右顶点分别为1 ,2 ,过点 −4,0 的直线与的左支交于,两点,在

高考数学一轮总复习教学课件第八章 平面解析几何第1节 直线的方程

高考数学一轮总复习教学课件第八章 平面解析几何第1节 直线的方程
(2) 倾斜角为0°的直线只有一条,即x轴.( × )
(3)若一条直线的倾斜角为θ,则此直线的斜率为tan θ.( × )
(4)若一条直线的斜率为tan θ,则此直线的倾斜角为θ.( × )
(5)所有直线的方程都可以写成一次函数y=kx+b的形式.( × )
2. 一 条 直 线 l 与 x 轴 相 交 , 其 向 上 方 向 与 y 轴 正 方 向 所 成 的 角 为




解析:(3)由-1≤k< ,即-1≤tan α< ,而α∈[0,π),如图,结合


正切函数图象得α∈[0,)∪[ ,π).故选 D.
(1)斜率的两种求法
①定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据
k=tan α求斜率;
②公式法:若已知直线上两点A(x1,y1),B(x2,y2),一般根据斜率公式
又直线l在y轴上的截距为-1,
所以直线l的方程为 y= x-1 .
提升·关键能力
类分考点,落实四翼
考点一
直线的倾斜角与斜率
[例1] (1)直线l向上的方向与x轴负半轴的夹角为120°,则直线l
的斜率是(

A.
)

B.-
C.

D.-
解析:(1)由题意,直线l向上的方向与x轴正半轴的夹角为60°,
点 A(- ,3),所以所求直线方程为 y-3= (x+ ),即 x-y+6=0.
(3)若直线经过点A(-5,2),且在x轴上的截距等于在y轴上的截距的
2倍.
解:(3)①当横截距、纵截距均为零时,设所求的直线方程为y=kx,


将(-5,2)代入 y=kx 中,得 k=- ,此时,直线方程为 y=- x,即 2x+5y=0.

高一平面解析几何初步复习讲义

高一平面解析几何初步复习讲义

2011元旦假期数学作业高一平面解析几何初步复习讲义1.掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根. 2.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念.第1课时 直线的方程1.倾斜角:对于一条与x 轴相交的直线,把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角α叫做直线的倾斜角.当直线和x 轴平行或重合时,规定直线的倾斜角为0°.倾斜角的范围为________.斜率:当直线的倾斜角α≠90°时,该直线的斜率即k =tanα;当直线的倾斜角等于90°时,直线的斜率不存在.2.过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式 .若x 1=x 2,则直线的斜率不存在,此时直线的倾斜角为90°. 3例1. 已知直线(2m 2+m -3)x +(m 2-m)y =4m -1.① 当m = 时,直线的倾斜角为45°.②当m = 时,直线在x 轴上的截距为1.③ 当m = 时,直线在y 轴上的截距为-23.④当m = 时,直线与x 轴平行.⑤当m = 时,直线过原点.变式训练1.(1)直线3y – 3 x +2=0的倾斜角是 ( ) A .30° B.60° C.120° D.150° (2)设直线的斜率k=2,P 1(3,5),P 2(x 2,7),P (-1,y 3)是直线上的三点,则x 2,y 3依次是 ( )A .-3,4B .2,-3C .4,-3D .4,3(3)直线l 1与l 2关于x 轴对称,l 1的斜率是-7 ,则l 2的斜率是 ( )A .7B .-77C .77D .-7 (4)直线l 经过两点(1,-2),(-3,4),则该直线的方程是 . 例2. 已知三点A (1,-1),B (3,3),C (4,5). 求证:A 、B 、C 三点在同一条直线上.变式训练2. 设a ,b ,c 是互不相等的三个实数,如果A (a ,a 3)、B (b ,b 3)、C (c ,c 3)在同一直线上,求证:a+b+c=0.例3. 已知实数x,y 满足y=x 2-2x+2 (-1≤x≤1).试求:23++x y 的最大值与最小值.典型例题变式训练3. 若实数x,y 满足等式(x-2)2+y 2=3,那么xy的最大值为 ( ) A.21B.33 C.23D.3例4. 已知定点P(6, 4)与直线l 1:y =4x ,过点P 的直线l 与l 1交于第一象限的Q 点,与x 轴正半轴交于点M .求使△OQM 面积最小的直线l 的方程.变式训练4.直线l 过点M(2,1),且分别交x 轴y 轴的正半轴于点A 、B ,O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当MB MA 取最小值时,求直线l 的方程.1.直线方程是表述直线上任意一点M 的坐标x 与y 之间的关系式,由斜率公式可导出直线方程的五种形式.这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定.2.待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围.如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能相同等(变形后除处).3.在解析几何中,设点而不求,往往是简化计算量的一个重要方法.4.在运用待定数法设出直线的斜率时,就是一种默认斜率存在,若有不存在的情况时,就会出现解题漏洞,此时就要补救:较好的方法是看图,数形结合来找差距.小结归纳第2课时直线与直线的位置关系(一)平面内两条直线的位置关系有三种________.1.当直线不平行坐标轴时,直线与直线的位置关系可根据下表判定2(二)点到直线的距离、直线与直线的距离1.P(x0,y0)到直线Ax+By+C=0 的距离为______________.2.直线l1∥l2,且其方程分别为:l1:Ax+By+C1=0 l2:Ax+By+C2=0,则l1与l2的距离为.(三)两条直线的交角公式若直线l1的斜率为k1,l2的斜率为k2,则1.直线l1到l2的角θ满足.2.直线l1与l2所成的角(简称夹角)θ满足.(四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数.(五)五种常用的直线系方程.① 过两直线l1和l2交点的直线系方程为A1x+B1y+C1+ (A2x+B2y+C2)=0(不含l2).② 与直线y=kx+b平行的直线系方程为y=kx+m (m≠b).③ 过定点(x0, y0)的直线系方程为y-y0=k(x-x0)及x=x0.④ 与Ax+By+C=0平行的直线系方程设为Ax+By+m=0 (m≠C).⑤ 与Ax+By+C=0垂直的直线系方程设为Bx-Ay+C1=0 (AB≠0).例1. 已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,(1)试判断l1与l2是否平行;(2)l1⊥l2时,求a的值.变式训练1.若直线l 1:ax+4y-20=0,l 2:x+ay-b=0,当a 、b 满足什么条件时,直线l 1与l 2分别相交?平行?垂直?重合?例2. 直线y =2x 是△ABC 中∠C 的平分线所在的直线,若A 、B 坐标分别为A(-4,2)、B(3,1),求点C 的坐标并判断△ABC 的形状.例3. 设点A(-3,5)和B(2,15),在直线l :3x -4y +4=0上找一点p ,使PB PA 为最小,并求出这个最小值.变式训练3:已知过点A (1,1)且斜率为-m(m>0)的直线l 与x 、y 轴分别交于P 、Q 两点,过P 、Q 作直线2x +y =0的垂线,垂足分别为R 、S ,求四边形PRSQ 的面积的最小值.1.处理两直线位置关系的有关问题时,要注意其满足的条件.如两直线垂直时,有两直线斜率都存在和斜率为O 与斜率不存在的两种直线垂直.2.注意数形结合,依据条件画出图形,充分利用平面图形的性质和图形的直观性,有助于问题的解决.3.利用直线系方程可少走弯路,使一些问题得到简捷的解法.4.解决对称问题中,若是成中心点对称的,关键是运用中点公式,而对于轴对称问题,一般是转化为求对称点,其关键抓住两点:一是对称点的连线与对称轴垂直;二是两对称点的中点在对称轴上,如例4第3课时 圆的方程1. 圆心为C(a 、b),半径为r 的圆的标准方程为_________________.2.圆的一般方程x2+y2+Dx+Ey+F=0(其中D2+E2-4F>0),圆心为,半径r=.3.二元二次方程Ax2+Bxy +Cy2+Dx+Ey+F=0表示圆的方程的充要条件是.4.圆C:(x-a)2+(y-b)2=r2的参数方程为_________.x2+y2=r2的参数方程为________________.5.过两圆的公共点的圆系方程:设⊙C1:x2+y2+D1x+E1y+F1=0,⊙C2:x2+y2+D2x+E2y+F2=0,则经过两圆公共点的圆系方程为.典型例题例1. 根据下列条件,求圆的方程.(1) 经过A(6,5),B(0,1)两点,并且圆心在直线3x+10y+9=0上.(2) 经过P(-2,4),Q(3,-1)两点,并且在x轴上截得的弦长为6.变式训练1:求过点A(2,-3),B(-2,-5),且圆心在直线x-2y-3=0上的圆的方程.例2. 已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.变式训练2:已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (m∈R).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长的最短长度及此时的直线方程.(例3. 知点P (x ,y )是圆(x+2)2+y 2=1上任意一点.(1)求P 点到直线3x+4y+12=0的距离的最大值和最小值; (2)求x-2y 的最大值和最小值; (3)求12--x y 的最大值和最小值.变式训练3:已知实数x 、y 满足方程x 2+y 2-4x+1=0. (1)求y-x 的最大值和最小值;(2)求x 2+y 2的最大值和最小值.例4. 设圆满足:①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1.在满足条件①②的所有圆中,求圆心到直线l :x -2y=0的距离最小的圆的方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不少,因此,平面解析几何可以说是必考题型。 2、主要特点 特点一:分值比重大. 解析几何在每份试卷中所占分值较大,新课标卷一般有 20分以上;题量一般在3~5题,其中一题为综合题。
特点二:考小题,重在于基础. 有关解析几何的小题,其考查的重点在于基础知识:其中,直 线与圆、圆锥曲线等内容的试题都突出了对解析几何基础知 识的考查,如求直线方程,圆的方程,圆锥曲线的离心率等 基础知识. 特点三:考大题,注重综合考查 考查平面解析几何的大题中,一般是考查圆锥曲线的 大题,重点考查抛物线、双曲线、椭圆的相关内容,考查 直线与圆锥曲线之间的关系,圆锥曲线之间的关系,也经 常与向量、不等式等知识相结合,难度属中等偏难,主要 考查学生对基本知识,基本方法,基本技能的理解,掌握和应 用情况.
2 1 1 0

因为 l PO ,所以 k kop k (1) 1k 1,
[点评]本小题考查平面几何中的垂径定理,圆的 标准方程,直线的点斜式方程等知识。
y 2 2ay 0(a 0) 没

B. ( 2 1, 2 1) D. (0, 2 1)
2 2 x y 2ay 0(a 0) 的圆心 (0, a ) ,半径为 a , 解:由圆
圆心到直线 x y 1 大于 a ,
| a 1| 即: 2 > a ,且 a
向量与平面解析几何自然地联系并有机结合起来。相关交
汇试题应运而生,涉及圆锥曲线参数的取值范围问题也是 命题亮点。
复习备考方略
1.加强直线和圆锥曲线的基础知识,初步掌握了 解决直线与圆锥曲线有关问题的基本技能和基本方 法。 2.由于直线与圆锥曲线是高考考查的重点内容, 选择、填空题灵活多变,思维能力要求较高,解答 题背景新颖、综合性强,代数推理能力要求高,因 此有必要对直线与圆锥曲线的重点内容、高考的 热 点问题作深入的研究。 3.在第一轮复习的基础上,再通过纵向深入,横 向联系,进一步掌握解决直线与圆锥曲线问题的思 想和方法,提高我们分析问题和解决问题的能力。
0,
解得:0< a < 2 -1,故选 A。
[点评]本题考查圆的标准方程,点到直线的距离公式,直线 与圆的位置关系。
例 3、重庆理)圆 O1:x2+y2-2x=0 和 圆 O2:x2+y2-4y=0 的位置关系是 ( ) (A)相离 (B)相交 (C)外切 (D)内切
解:配方,得:圆 O1: (x-1)2+y2=1, 圆 O2:x2+(y-2)2=4, 圆心为(1,0) , (0,2) ,半径为 r=1,R=2, (0 - 2) = 5 , 圆心之间距离为: (1- 0) 因为2-1< 5 <2+1, 所以,两圆相交.选(B) .
平面解析几何复习课
淮北一中数学组 陈朋
试题特点:
1、近年高考平面解析几何试题情况统计
全国高考各地的 19套(每套试题含文理各 1 份,江苏文
理合一)试卷中,出现不等式的选择题有37道,填空题有26 道,解答题 31道;全国共 37 份高考试卷,选择题 37 道,说
明每道试卷都有平面解析几何的选择题,填空题解答题也
x y a 0 的距离为

|1 2 a | 2 2 ,∴ 2
2 2

a=2 或 0,故选 C。
[点评]本题考查圆的方程,点到直线的距离公式, 属容易题。
例 2、 (安徽卷)直线 x y 1 与圆 x
2
有公共点,则 a 的取值范围是( A. (0, 2 1) C. ( 2 1, 2 1)
考点一:点、直线、圆的位置关系问题 【内容解读】点与直线的位置关系有:点在直线上、 直线外两种位置关系,点在直线外时,经常考查点到 直线的距离问题;点与圆的位置关系有:点在圆外、 圆上、圆外三种;直线与圆的位置关系有:直线与圆 相离、相切、相交三点,经常用圆心到直线之间的距 离与圆的半径比较来确定位置位置关系;圆与圆的位 置关系有:两圆外离、外切、相交、内切、内含五种, 一般用两点之间的距离公式求两圆之间的距离,再与 两圆的半径之和或差比较。 【命题规律】本节内容一般以选择题或填空题为主, 难度不大,属容易题。
ቤተ መጻሕፍቲ ባይዱ经常与其它知识相结合,如直线与圆相切,直线与 直线平行、垂直等问题。 【命题规律】直线与圆的方程问题多以选择题与填 空题形式出现,属容易题。
例 4、 (重庆理)直线 l 与圆 x2+y2+2x-4y+a=0(a<3) 相交 于两点 A,B,弦 AB 的中点为(0,1) ,则直线 l 的方程 为
解:设圆心 O(1, 2) ,直线 l 的斜率为 k , 弦 AB 的中点为 P,PO 的斜率为 kop , kop 由点斜式得 y x 1
高考命题趋势 纵观高考全国卷和有关省市自主命题卷,关于解析几
何的命题有如下几个显著特点:
1.高考题型:解析几何的试题一般是选择题、填空题、解答 题都会出现。 2.难易程度:考查解析几何的选择题、填空题为基础题或中 档题,解答题一般会综合考查,以中等偏难试题为主。 3.高考热点:解析几何的热点仍然是圆锥曲线的性质,直线 和圆锥曲线的位置关系以及轨迹问题,仍然以考查方程思 想及用韦达定理处理弦长和弦中点为重点。坐标法使平面
2 2
[点评]两圆的位置关系有五种,通常是求两圆心之间的距 离,再与两圆的半径之和或之差来比较,确定位置关系.
考点二:直线、圆的方程问题 【内容解读】直线方程的解析式有点斜式、斜截式、 两点式、.截距式、一般式五种形式,各有特点, 根据具体问题,选择不同的解析式来方便求解。圆
的方程有标准式一般式两种;直线与圆的方程问题,
例题剖析
例 1、 ( 安 徽 文 ) 若 圆 x 2 y 2 2x 4 y 0 的 圆 心 到 直 线
2 x y a 0 的距离为 ,则 a 的值为( 2 1 3 (A)-2 或 2 (B) 2 或 2 (C)2 或 0
) (D)-2 或 0
2 2 x y 2x 4 y 0 的 圆 心 (1 , 2) 到 直 线 解:因为圆
相关文档
最新文档