2018届高考数学二轮几何证明选讲专题卷(全国通用)(3)

合集下载

2018高考数学全国卷含答案解析

2018高考数学全国卷含答案解析
则 .
从而 ,故MA,MB的倾斜角互补,所以 .
综上, .
20.(12分)
解:(1)20件产品中恰有2件不合格品的概率为 .因此
.
令 ,得 .当 时, ;当 时, .
所以 的最大值点为 .
(2)由(1)知, .
(i)令 表示余下的180件产品中的不合格品件数,依题意知 , ,即 .
所以 .
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若 , 满足约束条件 ,则 的最大值为_____________.
14.记 为数列 的前 项和.若 ,则 _____________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)
建设前经济收入构成比例建设后经济收入构成比例
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.记 为等差数列 的前 项和.若 , ,则
A. B. C. D.
解:(1)在 中,由正弦定理得 .
由题设知, ,所以 .
由题设知, ,所以 .
(2)由题设及(1)知, .
在 中,由余弦定理得
.
所以 .
18.(12分)
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又 平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.

2018高考数学理二轮复习课时规范练:第二部分 专题四

2018高考数学理二轮复习课时规范练:第二部分 专题四

专题四 立体几何 第3讲 圆锥曲线的综合问题一、选择题1.在三棱柱ABC ­A 1B 1C 1中,底面是边长为1的正三角形,侧棱AA 1⊥底面ABC ,点D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C 所成的角为α,则sin α的值是( )A.32 B.22 C.104D.64解析:如图,建立空间直角坐标系,易求点D ⎝⎛⎭⎪⎫32,12,1.平面AA 1C 1C 的一个法向量是n =(1,0,0),所以cos 〈n ,AD →〉=322=64, 则sin α=64. 答案:D2.在三棱锥P ­ABC 中,侧面PAC 与底面ABC 均是等腰直角三角形.O 是斜边AC 的中点,平面PAC ⊥平面ABC ,且AC =4,设θ是二面角P ­AB ­C 的大小,则sin θ=( )(导学号 54850122)A.23B.53C.63D.73解析:连接PO ,过O作OD ⊥AB ,连接PD (如图).因为平面PAC ⊥平面ABC ,PO ⊥AC ,所以PO ⊥平面ABC ,PO ⊥AB .又OD ⊥AB .从而AB ⊥平面POD ,PD ⊥AB ,所以∠PDO 为二面角P ­AB ­C 的平面角,即θ=∠PDO . 由题设,OD =12BC =12×22=2,OP =2,所以PD =PO 2+OD 2= 6. 故sin θ=sin ∠PDO =PO PD =26=63. 答案:C 二、填空题3.(2017·衡阳联考)如图所示,在正方体AC 1中,AB =2,A 1C 1∩B 1D 1=E ,直线AC 与直线DE 所成的角为α,直线DE 与平面BCC 1B 1所成的角为β,则cos(α-β)=________.解析:连接BD ,⎩⎪⎨⎪⎧AC ⊥BD AC ⊥BB 1⇒AC ⊥平面BB 1D 1D ⇒AC ⊥DE ,所以α=π2.取A 1D 1的中点F ,连EF ,FD ,易知EF ⊥平面AD 1,则β=∠EDF ,cos(α-β)=cos ⎝ ⎛⎭⎪⎫π2-∠EDF =sin ∠EDF =66.答案:664.如图,在直三棱柱ABC ­A 1B 1C 1中,AB =BC =CC 1=2,AC =23,m 是AC 的中点,则异面直线CB 1与C 1M 所成角的余弦值为________.解析:在直三棱柱ABC ­A 1B 1C 1中,AB =BC =CC 1=2,AC =23,M 是AC 的中点,所以BM ⊥AC ,BM =4-3=1.以M 为原点,MA 为x 轴,MB 为y 轴,过M 作AC 的垂线为z 轴,建立空间直角坐标系,则C (-3,0,0),B 1(0,1,2),C 1(-3,0,2),M (0,0,0),所以CB 1→=(3,1,2),MC 1→=(-3,0,2), 设异面直线CB 1与C 1M 所成角为θ,则cos θ=|CB 1→·MC 1→||CB 1→|·|MC 1→|=18·7=1428.所以异面直线CB 1与C 1M 所成角的余弦值为1428. 答案:1428三、解答题5.(2017·西安质检)如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点.(1)求证:AF ∥平面BCE ;(2)求二面角C ­BE ­D 的余弦值的大小.解:设AD =DE =2AB =2a ,以AC 、AB 所在的直线分别作为x 轴、z 轴,以过点A 在平面ACD 上作出以AC 垂直的直线作为y 轴,建立如图所示的坐标系,A (0,0,0),C (2a ,0,0),B (0,0,a ),D (a ,3a ,0),E (a ,3a ,2a ).因为F 为CD 的中点,所以F ⎝ ⎛⎭⎪⎫32a ,3a 2,0.(1)证明:AF →=⎝ ⎛⎭⎪⎫32a ,32a ,0,BE →=(a ,3a ,a ),BC →=(2a ,0,-a ),所以AF →=12(BE →+BC →),AF ⊄平面BCE ,所以AF ∥平面BCE .(2)设平面BCE 的法向量m =(x ,y ,z ),则⎩⎨⎧m ·BE →=0,m ·BC →=0,即⎩⎨⎧x +3y +z =0,2x -z =0,不妨令x=1可得m =(1,-3,2).设平面BDE 的法向量n =(x 0,y 0,z 0),则⎩⎨⎧n ·BE →=0,n ·BD →=0,即⎩⎨⎧x 0+3y 0+z 0=0,x 0+3y 0-z 0=0.令x 0=3可得n =(3,-1,0). 于是cos 〈m ,n 〉=m ·n |m |×|n |=64.故二面角C ­BE ­D 的余弦值为64. 6.(2017·德州二模)如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中∠BAE =∠GAD =45°,AB =2AD =2,∠BAD=60°.(1)求证:BD ⊥平面ADG ;(2)求直线GB 与平面AEFG 所成角的正弦值.(1)证明:在△BAD 中,因为AB =2AD =2,∠BAD =60°. 由余弦定理,BD 2=AD 2+AB 2-2AB ·AD cos 60°,BD =3, 因为AB 2=AD 2+DB 2,所以AD ⊥DB ,在直平行六面体中,GD ⊥平面ABCD ,DB ⊂平面ABCD ,所以GD ⊥DB , 又AD ∩GD =D ,所以BD ⊥平面ADG .(2)解:如图以D 为原点建立空间直角坐标系D ­xyz ,因为∠BAE =∠GAD =45°,AB =2AD =2,所以A (1,0,0),B (0,3,0),E (0,3,2),G (0,0,1), AE →=(-1,3,2),AG →=(-1,0,1),GB →=(0,3,-1).设平面AEFG 的法向量n =(x ,y ,z ),⎩⎨⎧n ·AE →=-x +3y +2z =0,n ·AG →=-x +z =0,令x =1, 得y =-33,z =1, 所以n =⎝ ⎛⎭⎪⎫1,-33,1. 设直线GB 和平面AEFG 的夹角为θ,所以sin θ=|cos 〈GB →,n 〉|=⎪⎪⎪⎪⎪⎪GB →·n |GB →|·|n |=217, 所以直线GB 与平面AEFG 所成角的正弦值为217. 7.(2016·北京卷)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD= 5.(导学号 54850123)(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP的值;若不存在,说明理由.(1)证明:因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD . 又PA ⊥PD ,AB ∩PA =A , 所以PD ⊥平面PAB .(2)解:取AD 的中点O ,连接PO ,CO . 因为PA =PD ,所以PO ⊥AD .因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD . 所以PO ⊥平面ABCD .因为CO ⊂平面ABCD ,所以PO ⊥CO . 因为AC =CD ,所以CO ⊥AD .如图,建立空间直角坐标系O ­xyz .由题意,得A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1).则PB →=(1,1,-1),PC →=(-2,0,1),PD →=(0,1,1),CD →=(-2,-1,0). 设平面PCD 的一个法向量为n =(x ,y ,z ),则⎩⎨⎧n ·PD →=0,n ·PC →=0,即⎩⎪⎨⎪⎧-y -z =0,2x -z =0. 令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33. (3)解:设M 是棱PA 上一点, 则存在λ∈[0,1],使得AM →=λAP →. 因此点M (0,1-λ,λ), BM →=(-1,-λ,λ).因为BM ⊄平面PCD , 所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱PA 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.8.(2017·山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF ︵的中点.(1)设P 是CE ︵上的一点,且AP ⊥BE ,求∠CBP 的大小; (2)当AB =3,AD =2时,求二面角E ­AG ­C 的大小.解:(1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP , 又BP ⊂平面ABP ,所以BE ⊥BP , 又∠EBC =120°,所以∠CBP =30°. (2)法一:取EC ︵的中点H ,连接EH ,GH ,CH .因为∠EBC =120°, 所以四边形BEHC 为菱形,所以AE =GE =AC =GC =32+22=13. 取AG 中点M ,连接EM ,CM ,EC , 则EM ⊥AG ,CM ⊥AG ,所以∠EMC 为所求二面角的平面角. 又AM =1,所以EM =CM =13-1=2 3. 在△BEC 中,由于∠EBC =120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12, 所以EC =23,所以△EMC 为等边三角形, 故所求的角为60°.法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0), 故AE →=(2,0,-3),AG →=(1,3,0),CG →=(2,0,3), 设m =(x 1,y 1,z 1)是平面AEG 的一个法向量,由⎩⎨⎧m ·AE →=0,m ·AG →=0,可得⎩⎨⎧2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2). 设n =(x 2,y 2,z 2)是平面ACG 的一个法向量,由⎩⎨⎧n ·AG →=0,n ·CG →=0,可得⎩⎨⎧x 2+3y 2=0,2x 2+3z 2=0.取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2). 所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此所求的角为60°.9.(2017·郴州二模)如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.(导学号54850124)(1)求证:BD ⊥平面ACFE ;(2)当直线FO 与平面BED 所成角的大小为45°时,求AE 的长度. (1)证明:因为四边形ABCD 是菱形,所以BD ⊥AC . 因为AE ⊥平面ABCD ,BD ⊂平面ABCD , 所以BD ⊥AE .又AC ⊂平面ACFE ,AE ⊂平面ACFE ,AC ∩AE =A ,所以BD ⊥平面ACFE .(2)解:以O 为原点,以OA ,OB 所在直线为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系,则B (0,3,0),D (0,-3,0),F (-1,0,3).设AE =a ,则E (1,0,a ),所以OF →=(-1,0,3),DB →=(0,23,0),EB →=(-1,3,-a ),设平面BDE 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ·DB →=0,n ·EB →=0,即⎩⎨⎧23y =0,-x +3y -az =0.令z =1,得n =(-a ,0,1),所以cos 〈n ,OF →〉=n ·OF →|n ||OF →|=a +310 a 2+1 . 因为直线FO 与平面BED 所成角的大小为45°, 所以a +310 a 2+1=22,解得a =2或a =-12(舍), 所以|AE |=2.10.(2016·全国卷Ⅰ)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,平面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D-AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF ⊥平面EFDC ; (2)求二面角E -BC -A 的余弦值. (1)证明:在正方形ABEF 中,AF ⊥EF . 因为∠AFD =90°,所以AF ⊥DF . 因为DF ∩EF =F ,所以AF ⊥面EFDC .因为AF ⊂面ABEF , 所以平面ABEF ⊥平面EFDC . (2)解:过D 作DG ⊥EF ,垂足为G . 由(1)知DG ⊥平面ABEF.以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得AB ∥EF ,所以AB ∥平面EFDC . 又平面ABCD ∩平面EFDC =CD , 故AB ∥CD ,CD ∥EF .由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°. 从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎨⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4). 则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.11.(2017·天津卷)如图,在三棱锥P ­ABC 中,PA ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2.(导学号54850125)(1)求证:MN ∥平面BDE ; (2)求二面角C ­EM ­N 的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 解:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系,依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎨⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1,可得n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE .(2)易知n 1=(1,0,0)为平面CEM 的法向量.设n 2=(x 0,y 0,z 0)为平面EMN 的法向量,则⎩⎨⎧n 2·EM →=0,n 2·MN →=0.因为EM →=(0,-2,-1),MN →=(1,2,-1),所以⎩⎪⎨⎪⎧-2y 0-z 0=0,x 0+2y 0-z 0=0.不妨设y 0=1,可得n 2=(-4,1,-2).因此有cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-421,于是sin 〈n 1,n 2〉=10521. 所以二面角C ­EM ­N 的正弦值为10521. (3)依题意, 设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721,整理得10h 2-21h +8=0,解得h =85或h =12.所以线段AH 的长为85或12.[典例] (本小题满分12分)(2016·全国卷Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值. (1)规律解答:由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD,故AC ∥EF .(2分) 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.(4分) 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(6分)(2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则⎩⎨⎧m ·AB →=0,m ·AD →=0,即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0, 所以可取m =(4,3,-5).(9分)设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则⎩⎨⎧n ·AC →=0,n ·AD →′=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0, 所以可取n =(0,-3,1).(10分) 于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525. 因此二面角B -D ′A -C 的正弦值是29525.(12分)1.写全得分步骤:在立体几何类解答题中,对于证明与计算过程中得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写.如第(1)问中的AC ⊥BD ,AD =CD ,AC ∥EF ;第(2)问中的AB →,AC →,AD →的坐标,及两平面法向量的坐标.2.注意利用第(1)问的结果:在题设条件下,立体几何解答题的第(2)问建系,要用到第(1)问中的垂直关系时,可以直接用,有时不用第(1)问的结果无法建系,如本题即是在第(1)问的基础上建系.3.写明得分关键:对于解题过程中的关键点,有则给分,无则没分.所以在解立体几何类解答题时,一定要写清得分关键点,如第(1)问中一定写出判断D ′H ⊥平面ABCD 的三个条件,写不全则不能得全分,如OH ∩EF =H 一定要有,否则要扣1分;第(2)问中不写出cos 〈m ,n 〉=m ·n|m ||n |这个公式,而直接得出余弦值,则要扣1分.[解题程序] 第一步:利用平面几何性质,得AC ∥EF . 第二步:借助数学计算,证明D ′H ⊥OH .第三步:根据线面垂直的判断定理,得D ′H ⊥平面ABCD . 第四步:依题设建系,确定相关点、直线方向向量的坐标. 第五步:分别计算求得平面ABD ′与平面ACD ′的法向量. 第六步:由法向量夹角的余弦,得到二面角的正弦值.[跟踪训练] (2017·衡水中学质检)如图,在三棱锥A ­BCD 中,∠ABC =∠BCD =∠CDA =90°,AC =63,BC =CD =6,点E 在平面BCD 内,EC =BD ,EC ⊥BD .(1)求证:AE ⊥平面BCDE ;(2)在棱AC 上,是否存在点G ,使得二面角C ­EG ­D 的余弦值为105?若存在点G ,求出CGGA的值,若不存在,说明理由. (1)证明:因为△BCD 是等腰直角三角形,CO ⊥BD ,所以CO =12BD .又EC =BD ,所以点O 是BD 和CE 的中点. 因为EC ⊥BD ,所以四边形BCDE 是正方形. 则CD ⊥ED ,又CD ⊥AD ,AD ∩ED =D , 所以CD ⊥平面ADE ,CD ⊥AE .同理BC ⊥AE ,BC ∩CD =C , 所以AE ⊥平面BCDE.(2)解:由(1)的证明过程知四边形BCDE 为正方形,建立如图所示的坐标系,则E (0,0,0),D (0,6,0),A (0,0,6),B (6,0,0),C (6,6,0).假设在棱AC 上存在点G ,使得二面角C ­EG ­D 的余弦值为105, 设CG GA=t (t >0),G (x ,y ,z ), 由CG →=tGA →可得G ⎝ ⎛⎭⎪⎫61+t ,61+t ,6t 1+t ,则ED →=(0,6,0),EG →=⎝ ⎛⎭⎪⎫61+t ,61+t ,6t 1+t .易知平面CEG 的一个法向量为DB →=(6,-6,0). 设平面DEG 的一个法向量为n =(x 0,y 0,z 0),则⎩⎨⎧n ·ED →=0,n ·EG →=0,即⎩⎪⎨⎪⎧6y 0=0,61+tx 0+61+t y 0+6t1+t z 0=0. 令x 0=1得z 0=-1t,n =⎝ ⎛⎭⎪⎫1,0,-1t ,所以DB →·n|DB →|·|n |=105,662·1+1t2=105, 解得t =2.故存在点G (2,2,4),使得二面角C ­EG ­D 的余弦值为105,此时CGGA=2.。

2018年高考数学浙江专版三维二轮专题复习讲义:第一部分+专题三 数列与数学归纳法+Word版含答案

2018年高考数学浙江专版三维二轮专题复习讲义:第一部分+专题三 数列与数学归纳法+Word版含答案

专题三 数列与数学归纳法第一讲数列的通项考点一 利用a n 与S n 的关系求通项一、基础知识要记牢a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,使用时要注意对第一项的求解与检验,如果符合a n =S n -S n -1的规律才能合并,否则要写成分段的形式.二、经典例题领悟好[例1] (2018届高三·浙东北三校联考)已知各项均为正数的数列{a n }的前n 项和为S n ,a 2n +1=4S n +4n +1,n ∈N *,且a 2,a 5,a 14恰是等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式;(2)记数列{b n }的前n 项和为T n ,若对任意的n ∈N *,⎝⎛⎭⎪⎫T n +32k ≥3n -6恒成立,求实数k 的取值范围.[解] (1)∵a 2n +1=4S n +4n +1(n ∈N *), ∴a 2n =4S n -1+4(n -1)+1(n ≥2), 两式相减,得a 2n +1-a 2n =4a n +4(n ≥2), ∴a 2n +1=(a n +2)2(n ≥2). 又a n >0,故a n +1=a n +2(n ≥2). 即a n +1-a n =2(n ≥2).又a 25=a 2a 14,即(a 2+6)2=a 2(a 2+24),解得a 2=3, 又a 22=4S 1+4+1,故a 1=S 1=1.∴a 2-a 1=3-1=2,故数列{a n }是以1为首项,2为公差的等差数列,故a n =2n -1. 易知b 1=a 2=3,b 2=a 5=9,b 3=a 14=27,∴b n =3n. (2)由(1)可知T n =31-3n1-3=3n +1-32. ∴⎝ ⎛⎭⎪⎫3n +1-32+32k ≥3n -6对任意的n ∈N *恒成立,即k ≥2n -43n 对任意的n ∈N *恒成立. 令C n =2n -43n ,则C n -C n -1=2n -43n -2n -63n -1=-22n -73n (n ≥2),故当n =2,3时,C n >C n -1,当n ≥4,n ∈N *时,C n <C n -1,∴C 3=227最大,∴k ≥227.故k 的取值范围为⎣⎢⎡⎭⎪⎫227,+∞.对于数列,a n 和S n 有关系a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这是一种重要的关系,是已知S n 求通项a n 的常用方法.首先利用S n “复制”出S n -1,就是“用两次”,再作差求出a n .三、预测押题不能少1.设各项均为正数的数列{a n } 的前n 项和为S n ,且 S n 满足 S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1 的值;(2)求数列{a n } 的通项公式; (3)证明:对一切正整数n ,有1a 1a 1+1+1a 2a 2+1+…+1a na n +1<13. 解:(1)由题意知,S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.令n =1,有S 21-(12+1-3)S 1-3×(12+1)=0, 可得S 21+S 1-6=0,解得S 1=-3或2, 即a 1=-3或2,又a n 为正数,所以a 1=2. (2)由S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *可得, (S n +3)(S n -n 2-n )=0,则S n =n 2+n 或S n =-3, 又数列{a n }的各项均为正数,所以S n =n 2+n ,S n -1=(n -1)2+(n -1), 所以当n ≥2时,a n =S n -S n -1=n 2+n -[(n -1)2+(n -1)]=2n .又a 1=2=2×1,所以a n =2n . (3)证明:当n =1时,1a 1a 1+1=12×3=16<13成立;当n ≥2时,1a na n +1=12n2n +1<12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以1a 1a 1+1+1a 2a 2+1+…+1a na n +1<16+12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫13-15+…+⎝⎛⎭⎪⎫12n-1-12n+1=16+12⎝⎛⎭⎪⎫13-12n+1<16+16=13.所以对一切正整数n,有1a1a1+1+1a2a2+1+…+1a n a n+1<13.考点二利用累加、累乘、代入等方法求通项一、基础知识要记牢累加即利用恒等式b n=b1+(b2-b1)+(b3-b2)+…+(b n-b n-1)求通项;累乘即利用恒等式a n=a1·a2a1·a3a2·…·a na n-1求通项.二、经典例题领悟好[例2] (1)已知正项数列{a n}中,a1=1,且(n+2)·a2n+1-(n+1)a2n+a n a n+1=0,则它的通项公式为( )A.a n=1n+1B.a n=2n+1C.a n=n+22D.a n=n(2)已知数列{a n}中,a1=1,且a n+1=a n(1-na n+1),则数列{a n}的通项公式为________.[解析] (1)因为(n+2)a2n+1-(n+1)a2n+a n a n+1=0,所以[(n+2)a n+1-(n+1)a n](a n+1+a n)=0.又{a n}为正项数列,所以(n+2)a n+1-(n+1)a n=0,即a n+1a n=n+1n+2,则当n≥2时,a n=a na n-1·a n-1a n-2·…·a2a1·a1=nn+1·n-1n·…·23·1=2n+1,又a1=1=21+1,满足上式,故a n=2n+1.故选B.(2)原数列递推公式可化为1a n+1-1a n=n,令b n=1a n,则b n+1-b n=n,因此b n=(b n-b n-1)+(b n-1-b n-2)+…+(b3-b2)+(b2-b1)+b1=(n-1)+(n-2)+…+2+1+1=n2-n+22,所以a n=2n2-n+2.[答案] (1)B (2)a n=2n2-n+21累加、累乘是课本中求等差比数列通项方法的推广,若已知a na n -1=g n 且g n 可以求积,则可以利用恒等式a n =a 1·a 2a 1·a 3a 2…a na n -1求通项.若已知b n +1-b n =f n且fn 可以求和,则可以利用恒等式b n =b 1+b 2-b 1+b 3-b 2+…+b n -b n -1解出通项;基本方法都有很大的“弹性空间”,把握其思想精髓就可以大有作为.2给出数列的递推关系求通项时通常利用代入法、整体换元法等求解,不必考虑特殊技巧.三、预测押题不能少2.(1)已知数列{a n },a 1=1,a n =2a n -1+1(n ≥2,n ∈N *),则数列{a n }的通项公式a n =________.解析:由a n =2a n -1+1(n ≥2,n ∈N *),设a n +t =2(a n -1+t )(n ≥2),所以2t -t =1,解得t =1,所以a n +1=2(a n -1+1)(n ≥2),所以a n +1a n -1+1=2,又a 1+1=2,所以{a n +1}是以2为首项,2为公比的等比数列,所以a n +1=2n,所以a n =2n-1.答案:2n-1(2)已知数列{a n }中,a 1=1,a n +1=a n a n +3(n ∈N *),则数列{a n }的通项公式为________.解析:因为a n +1=a na n +3(n ∈N *),所以1a n +1=3a n +1,设1a n +1+t =3⎝ ⎛⎭⎪⎫1a n +t ,所以3t -t =1,解得t =12,所以1a n +1+12=3⎝ ⎛⎭⎪⎫1a n +12,又1a 1+12=1+12=32,所以数列⎩⎨⎧⎭⎬⎫1a n +12是以32为首项,3为公比的等比数列,所以1a n +12=32×3n -1=3n2,所以a n =23n -1.答案:a n =23n-1[知能专练(九)]一、选择题1.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8B .10C .12D .14解析:选C 设等差数列{a n }的公差为d ,则S 3=3a 1+3d ,所以12=3×2+3d ,解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C.2.已知等差数列{a n }满足a 2=3,a 5=9,若数列{b n }满足b 1=3,b n +1=ab n ,则{b n }的通项公式为b n =( )A .2n-1 B .2n+1 C .2n +1-1 D .2n -1+2解析:选B 据已知易得a n=2n-1,故由b n+1=ab n可得b n+1=2b n-1,变形为b n+1-1=2(b n-1),即数列{b n-1}是首项为2,公比为2的等比数列,故b n-1=2n,解得b n=2n +1.故选B.3.已知数列{a n}中,a1=3,a2=5且对于大于2的正整数,总有a n=a n-1-a n-2,则a2 018等于( )A.-5 B.5 C.-3 D.3解析:选B a n+6=a n+5-a n+4=a n+4-a n+3-a n+4=-(a n+2-a n+1 )=-a n+2+a n+1=-(a n+1-a n)+a n+1=a n,故数列{a n}是以6为周期的周期数列,∴a2 018=a336×6+2=a2=5,故选B.4.已知数列{a n}满足a1=1,且a n=13a n-1+⎝⎛⎭⎪⎫13n(n≥2,且n∈N*),则数列{an}的通项公式为( )A.a n=3nn+2B.a n=n+23nC.a n=n+2 D.a n=(n+2)3n解析:选B 由a n=13a n-1+⎝⎛⎭⎪⎫13n(n≥2且n∈N*),得3n an=3n-1an-1+1,3n-1an-1=3n-2an-2+1,…,32a2=3a1+1,以上各式相加得3n a n=n+2,故a n=n+2 3n.5.(2017·宝鸡模拟)已知数列{a n}的前n项和为S n,且满足4(n+1)(S n+1)=(n+2)2a n,则数列{a n}的通项公式为a n=( )A.(n+1)3 B.(2n+1)2C.8n2 D.(2n+1)2-1解析:选A 当n=1时,4(1+1)(a1+1)=(1+2)2a1,解得a1=8,当n≥2时,由4(S n+1)=n+22a nn+1,得4(S n-1+1)=n+12a n-1n,两式相减得,4a n=n+22a nn+1-n+12a n-1n ,即a na n-1=n+13n3,所以a n=a na n-1·a n-1a n-2·…·a2a1·a1=n+13 n3·n3n-13·…·3323·8=(n+1)3,经验证n=1时也符合,所以a n=(n+1)3.6.在各项均不为零的数列{a n}中,若a1=1,a2=13,2a n a n+2=a n+1a n+2+a n a n+1(n∈N*),则a2 018=( )A.14 033B.14 034C.14 035D.14 037解析:选C 因为2a n a n +2=a n +1a n +2+a n a n +1(n ∈N *),所以2a n +1=1a n +1a n +2,所以⎩⎨⎧⎭⎬⎫1a n 是等差数列,其公差d =1a 2-1a 1=2,所以1a n =1+(n -1)×2=2n -1,a n =12n -1,所以a 2 018=14 035.二、填空题7.已知数列{a n }中,a 3=3,a n +1=a n +2,则a 2+a 4=________,a n =________. 解析:因为a n +1-a n =2,所以{a n }为等差数列且公差d =2,由a 1+2d =3得a 1=-1,所以a n =-1+(n -1)×2=2n -3,a 2+a 4=2a 3=6.答案:6 2n -38.设数列{a n }的前n 项和为S n ,且a 1=a 2=1,{nS n +(n +2)a n }为等差数列,则{a n }的通项公式a n =________.解析:因为{nS n +(n +2)a n }为等差数列,且S 1+3a 1=4,2S 2+4a 2=8,则该等差数列的公差为4,所以nS n +(n +2)a n =4+4(n -1)=4n ,即S n +n +2n a n =4,S n -1+n +1n -1a n -1=4(n ≥2),两式相减整理得a n a n -1=n 2n -1(n ≥2),则a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=12n -1×1×21×32×…×n n -1=n 2n -1,经验证n =1时也符合,所以a n =n2n -1. 答案:n2n -19.如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n +1A n +1的面积均相等.设OA n =a n .若a 1=1,a 2=2,则数列{a n }的通项公式是________.解析:设△A 1B 1O 的面积为S 0,梯形A n B n B n +1A n +1的面积为S ⇒S 0S 0+S =⎝ ⎛⎭⎪⎫a 1a22⇒S =3S 0, S 0+nS S 0+n +1S =⎝ ⎛⎭⎪⎫a n +1a n +22⇒1+3n 4+3n =⎝ ⎛⎭⎪⎫a n +1a n +22.由上面2种情况得3n -23n +1=⎝ ⎛⎭⎪⎫a n a n +12⇒⎝ ⎛⎭⎪⎫a 1a 22⎝ ⎛⎭⎪⎫a 2a 32⎝ ⎛⎭⎪⎫a 3a 42·…·⎝ ⎛⎭⎪⎫a n a n +12=⎝ ⎛⎭⎪⎫a 1a n +12=14·47·710·…·3n -23n +1=13n +1⇒⎝ ⎛⎭⎪⎫a 1a n +12=13n +1⇒a n +1=3n +1,且a 1=1⇒a n =3n -2,n ∈N *.答案:a n =3n -2,n ∈N *三、解答题10.已知数列{a n }满足a 1=1,a n =3n -1+a n -1(n ≥2).(1)求a 2,a 3; (2)证明:a n =3n-12.解:(1)易知a 2=4,a 3=13. (2)证明:由于a n =3n -1+a n -1(n ≥2),∴a n -a n -1=3n -1(n ≥2).∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =3n -1+3n -2+…3+1=3n -12(n ≥2),经检验,n =1时也满足上式,故a n =3n-12.11.数列{a n }满足a 1=1且8a n +1a n -16a n +1+2a n +5=0(n ≥1),记b n =1a n -12(n ≥1).(1)求b 1,b 2,b 3,b 4的值;(2)求数列{b n }的通项及数列{a n b n }的前n 项和S n . 解:(1)由b n =1a n -12,得a n =1b n +12. 代入递推关系8a n +1a n -16a n +1+2a n +5=0, 整理得4b n +1b n -6b n +1+3b n=0.即b n +1=2b n -43.由a 1=1得b 1=2, 所以b 2=83,b 3=4,b 4=203.(2)∵b n +1=2b n -43,∴b n +1-43=2⎝ ⎛⎭⎪⎫b n -43,b 1-43=23≠0.∴⎩⎨⎧⎭⎬⎫b n-43是以23为首项,以2为公比的等比数列. 故b n -43=13×2n ,即b n =13×2n+43.由b n =1a n -12得a n b n =12b n +1, 故S n =a 1b 1+a 2b 2+…+a n b n =12(b 1+b 2+…+b n )+n =131-2n1-2+53n =13(2n+5n -1). 12.(2016·浙江高考)设数列{a n }的前n 项和为S n ,已知S 2=4,a n +1=2S n +1,n ∈N *. (1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.解:(1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n ,又a 2=2,则a n=3n -1,而n =1时也符合该式,所以数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,则b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,n ≥3.设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3, 当n ≥3时,T n =3+91-3n -21-3-n +7n -22=3n -n 2-5n +112,因为当n =2时,也符合T n =3n-n 2-5n +112.所以T n =⎩⎪⎨⎪⎧2, n =1,3n -n 2-5n +112,n ≥2,n ∈N *.第二讲等差数列、等比数列考点一 等差、等比数列的基本运算 一、基础知识要记牢等差数列 等比数列概念 a n -a n -1=d ,n ≥2 a na n -1=q ,n ≥2 通项公式a n =a 1+(n -1)d a n =a 1q n -1(q ≠0) 前n 项和S n =n a 1+a n2=na 1+n n -12d(1)q ≠1,S n =a 11-q n1-q=a 1-a n q1-q(2)q =1,S n =na 1二、经典例题领悟好[例1] (1)(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏(2)设等比数列{a n }中,若a 3=3,且a 2 017+a 2 018=0,则S 101等于( ) A .3 B .303 C .-3D .-303[解析] (1)每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 11-271-2=381,解得a 1=3.(2)∵等比数列{a n }中,a 3=3,且a 2 017+a 2 018=0,∴⎩⎪⎨⎪⎧a 1q 2=3,a 1q2 0161+q =0,解得⎩⎪⎨⎪⎧a 1=3,q =-1,∴S 101=a 11-q 1011-q =3[1--1101]1--1=3×22=3.[答案] (1)B (2)A等差等比数列的基本运算,一般通过其通项公式及前n 项和公式建立关于a 1和d或q的方程或方程组解决.注意利用等比数列前n 项和公式求和时,不可忽视对公比q 是否为1的讨论. 三、预测押题不能少1.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.解:设{a n }的公差为d ,{b n }的公比为q , 则a n =-1+(n -1)d ,b n =q n -1.由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.②联立①②解得⎩⎪⎨⎪⎧d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21,得q 2+q -20=0, 解得q =-5,或q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6. 考点二 等差、等比数列的判定与证明 一、基础知识要记牢1.证明数列{a n }是等差数列的两种基本方法 (1)利用定义,证明a n +1-a n (n ∈N *)为一常数; (2)利用等差中项,即证明2a n =a n -1+a n +1(n ≥2). 2.证明{a n }是等比数列的两种基本方法 (1)利用定义,证明a n +1a n(n ∈N *)为一常数; (2)利用等比中项,即证明a 2n =a n -1a n +1(n ≥2,a n ≠0). 二、经典例题领悟好[例2] (2018届高三·浙江联考)已知数列{a n }的前n 项和为S n ,且S n =2-⎝ ⎛⎭⎪⎫2n+1a n (n ≥1).(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列;(2)设数列{2na n }的前n 项和为T n ,A n =1T 1+1T 2+1T 3+…+1T n ,试比较A n 与2na n的大小.[解] (1)证明:由a 1=S 1=2-3a 1得,a 1=12.由S n =2-⎝ ⎛⎭⎪⎫2n +1a n 得,S n -1=2-⎝ ⎛⎭⎪⎫2n -1+1a n -1,n ≥2,于是a n =S n -S n -1=⎝⎛⎭⎪⎫2n -1+1a n -1-⎝ ⎛⎭⎪⎫2n +1a n,整理得a n n =12×a n -1n -1(n ≥2),所以数列⎩⎨⎧⎭⎬⎫a n n 是首项及公比均为12的等比数列.(2)由(1)得a n n =12×⎝ ⎛⎭⎪⎫12n -1=12n ,于是2na n =n ,T n =1+2+3+…+n =n n +12,1T n =2nn +1=2⎝ ⎛⎭⎪⎫1n -1n +1,A n =⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=2n n +1. 又2na n=2n +1n 2,所以问题转化为比较2n +1n 2与2n n +1的大小,即比较2nn 2与n n +1的大小. 设f (n )=2nn2,g (n )=n n +1,因为f (n +1)-f (n )=2n[n n -2-1][n n +1]2, 当n ≥3时,f (n +1)-f (n )>0, 所以当n ≥3时,f (n )单调递增,所以当n ≥4时,f (n )≥f (4)=1,而g (n )<1, 所以当n ≥4时,f (n )>g (n ).经检验当n =1,2,3时,仍有f (n )>g (n ). 综上可得,A n <2na n.1判断一个数列是等差等比数列,还有通项公式法及前n 项和公式法,但不可作为证明方法.2若要判断一个数列不是等差等比数列,只需判断存在连续三项不成等差等比数列即可.3a 2n =a n -1a n +1n ≥2,n ∈N *是{a n }为等比数列的必要不充分条件,也就是要注意判断一个数列是等比数列时,各项不能为0.三、预测押题不能少2.在数列{a n }中,a 1=35,a n +1=2-1a n ,设b n =1a n -1,数列{b n }的前n 项和是S n .(1)证明数列{b n }是等差数列,并求S n ; (2)比较a n 与S n +7的大小. 解:(1)证明:∵b n =1a n -1,a n +1=2-1a n ,∴b n +1=1a n +1-1=1a n -1+1=b n +1,∴b n +1-b n =1,∴数列{b n }是公差为1的等差数列.由a 1=35,b n =1a n -1得b 1=-52,∴S n =-5n2+n n -12=n 22-3n .(2)由(1)知:b n =-52+n -1=n -72.由b n =1a n -1得a n =1+1b n =1+22n -7.∴a n -S n -7=-n 22+3n -6+22n -7.∵当n ≥4时,y =-n 22+3n -6是减函数,y =22n -7也是减函数,∴当n ≥4时,a n -S n -7≤a 4-S 4-7=0.又∵a 1-S 1-7=-3910<0,a 2-S 2-7=-83<0,a 3-S 3-7=-72<0,∴对任意的n ∈N *,a n -S n -7≤0,∴a n ≤S n +7.考点三 等差、等比数列的性质 一、基础知识要记牢等差数列等比数列性质 (1)若m ,n ,p ,q ∈N *,且m +n =p +q , 则a m +a n =a p +a q(2)a n =a m +(n -m )d(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等差数列(1)若m ,n ,p ,q ∈N *,且m +n =p +q , 则a m ·a n =a p ·a q (2)a n =a m qn -m(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等比数列(S n ≠0)[例3] (1)(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97(2)(2017·湖州模拟)在各项均为正数的等比数列{a n }中,a 2a 10=9,则a 5+a 7( ) A .有最小值6 B .有最大值6 C .有最大值9D .有最小值3[解析] (1)法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8, ∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C. 法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.故选C.(2)因为等比数列{a n }各项为正数,且a 5·a 7=a 2·a 10=9, 所以a 5+a 7≥2a 5·a 7=29=6, 当且仅当a 5=a 7=3时等号成立, 所以a 5+a 7的最小值为6.故选A. [答案] (1)C (2)A等差、等比数列性质应用问题求解策略(1)等差数列{a n }的前n 项和S n =n a 1+a n2=nan +12(n 为奇数)是常用的转化方法.(2)熟练运用等差、等比数列的性质,可减少运算过程,提高解题正确率.(3)灵活利用等差、等比数列和的性质,等差(比)数列的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n ,…也是等差(比)数列(公比q 不为-1).三、预测押题不能少3.(1)设等差数列{a n }的前n 项和为S n ,已知a 2+a 8>0,S 11<0,则S n 的最大值为( ) A .S 5 B .S 6 C .S 9D .不能确定解析:选A 因为{a n }是等差数列,所以a 2+a 8=2a 5>0,a 5>0,又S 11=11a 1+a 112=11a 6<0,a 6<0,所以等差数列{a n }的前5项是正数,从第6项开始为负数,所以S n 的最大值为S 5,故选A.(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( )A .40B .60C .32D .50解析:选B 由等比数列的性质可知,数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是等比数列,即S 9-S 6=16,S 12-S 9=32,因此S 12=S 3+(S 6-S 3)+(S 9-S 6)+(S 12-S 9)=4+8+16+32=60,故选B.[知能专练(十)]一、选择题1.(2017·苏州模拟)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( )A.-6 B.-4C.-2 D.2解析:选A 根据等差数列的定义和性质可得,S8=4(a1+a8)=4(a3+a6),又S8=4a3,所以a6=0.又a7=-2,所以a8=-4,a9=-6.2.(2017·全国卷Ⅲ)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为( )A.-24 B.-3C.3 D.8解析:选A 设等差数列{a n}的公差为d,因为a2,a3,a6成等比数列,所以a2a6=a23,即(a1+d)(a1+5d)=(a1+2d)2.又a1=1,所以d2+2d=0.又d≠0,则d=-2,所以{a n}前6项的和S6=6×1+6×52×(-2)=-24.3.已知等比数列{a n}中,a4+a8=-2,则a6(a2+2a6+a10)的值为( )A.4 B.6C.8 D.-9解析:选 A ∵a4+a8=-2,∴a6(a2+2a6+a10)=a6a2+2a26+a6a10=a24+2a4a8+a28=(a4+a8)2=4.4.(2017·宝鸡质检)设等差数列{a n}的前n项和为S n,且S9=18,a n-4=30(n>9),若S n=336,则n的值为( )A.18 B.19C.20 D.21解析:选 D 因为{a n}是等差数列,所以S9=9a5=18,a5=2,S n=n a1+a n2=n a5+a n-42=n2×32=16n=336,解得n=21.5.(2016·浙江高考)如图,点列{A n},{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+2,n∈N *,|Bn B n+1|=|B n+1B n+2|,B n≠B n+2,n∈N*(P≠Q表示点P与Q不重合).若d n=|A n B n|,S n为△A n B n B n+1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列 C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.6.已知等比数列{a n }的公比为q ,记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m (m ,n ∈N *),则以下结论一定正确的是( )A .数列{b n }为等差数列,公差为q mB .数列{b n }为等比数列,公比为q 2mC .数列{c n }为等比数列,公比为m q 2D .数列{c n }为等比数列,公比为m m q 解析:选C 等比数列{a n }的通项公式a n =a 1q n -1,所以c n =a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m =a 1q m (n -1)·a 1qm (n -1)+1·…·a 1qm (n -1)+m -1=a m 1q m (n -1)+m (n -1)+1+…+m (n -1)+m -1=a m1q(m )(m )m (n )211+112+---=a m1qm m n 2(1)(1)2+--.所以数列{c n }为等比数列,公比为m q 2. 二、填空题7.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解析:设等比数列{a n }的公比为q , 则a 1+a 2=a 1(1+q )=-1,a 1-a 3=a 1(1-q 2)=-3,两式相除,得1+q 1-q 2=13,解得q =-2,a 1=1,所以a 4=a 1q 3=-8. 答案:-88.已知公比q 不为1的等比数列{a n }的首项a 1=12,前n 项和为S n ,且a 2+S 2,a 3+S 3,a 4+S 4成等差数列,则q =________,S 6=________.解析:由a 2+S 2=12+q ,a 3+S 3=12+12q +q 2,a 4+S 4=12+12q +12q 2+q 3成等差数列,得2⎝ ⎛⎭⎪⎫12+12q +q 2=12+q +12+12q +12q 2+q 3,化简得(2q 2-3q +1)q =0,q ≠1,且q ≠0,解得q=12,所以S 6=a 11-q61-q=1-⎝ ⎛⎭⎪⎫126=6364.答案:12 63649.(2018届高三·杭州七校联考)等比数列{a n }中a 1=2,公比q =-2,记Πn =a 1×a 2×…×a n (即Πn 表示数列{a n }的前n 项之积),Π8,Π9,Π10,Π11中值最大的是________.解析:由a 1=2,q =-2,Πn =a 1×a 2×…×a n =(a 1)nqn n (-)12,Π8=28(-2)28=236;Π9=29(-2)36=245;Π10=210(-2)45=-255;Π11=211(-2)55=-266.故Π9最大.答案:Π9 三、解答题10.已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d .由题意,a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ),于是d (2a 1+25d )=0. 又a 1=25,所以d =0(舍去),或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而S n =n2(a 1+a 3n -2)=n2·(-6n +56)=-3n 2+28n .11.已知数列{a n }的前n 项和为S n ,且S n =4a n -3(n ∈N *). (1)证明:数列{a n }是等比数列;(2)若数列{b n }满足b n +1=a n +b n (n ∈N *),且b 1=2,求数列{b n }的通项公式. 解:(1)证明:由S n =4a n -3可知, 当n =1时,a 1=4a 1-3,解得a 1=1.因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2), 所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1,又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列.(2)由(1)知a n =⎝ ⎛⎭⎪⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝ ⎛⎭⎪⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-⎝ ⎛⎭⎪⎫43n -11-43=3×⎝ ⎛⎭⎪⎫43n -1-1(n ≥2,n ∈N *). 当n =1时上式也满足条件.所以数列{b n }的通项公式为b n =3×⎝ ⎛⎭⎪⎫43n -1-1(n ∈N *).12.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q . 由题设可得⎩⎪⎨⎪⎧a 11+q =2,a 11+q +q 2=-6,解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =-2×[1--2n]1--2=-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2⎣⎢⎡⎦⎥⎤-23+-1n2n +13=2S n,故S n +1,S n ,S n +2成等差数列.第三讲数列的综合应用考点一 数列求和数列求和的关键是分析其通项,熟悉两个基本数列的求和公式以及体现的思想方法(如转化与化归思想、错位相减法、倒序相加法等),根据具体情形采取灵活手段解决.数列求和的基本方法有公式法、错位相减法、裂(拆)项相消法、分组法、倒序相加法和并项法等.考查类型(一) 利用公式、分组求和 一、经典例题领悟好[例1] (2016·北京高考)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4.(1)求{a n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和.[解] (1)设等比数列{b n }的公比为q ,则q =b 3b 2=93=3,所以b 1=b 2q=1,b 4=b 3q =27, 所以b n =3n -1(n ∈N *).设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27, 所以1+13d =27,即d =2. 所以a n =2n -1(n ∈N *).(2)由(1)知,c n =a n +b n =2n -1+3n -1.从而数列{c n }的前n 项和S n =1+3+…+(2n -1)+1+3+…+3n -1=n 1+2n -12+1-3n 1-3=n 2+3n-12.分组求和法的2种常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组法求和.二、预测押题不能少1.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d . ∵a 3+a 8-(a 2+a 7)=2d =-6. ∴d =-3,又a 2+a 7=2a 1+7d =-23,解得a 1=-1, ∴数列{a n }的通项公式为a n =-3n +2.(2)∵数列{a n +b n }是首项为1,公比为q 的等比数列, ∴a n +b n =qn -1,即-3n +2+b n =qn -1,∴b n =3n -2+q n -1.∴S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q 2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 考查类型(二) 错位相减求和 一、经典例题领悟好[例2] (2017·天津高考)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由b 2+b 3=12,得b 1(q +q 2)=12. 因为b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n. 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②联立①②,解得a 1=1,d =3,由此可得a n =3n -2. 所以{a n }的通项公式为a n =3n -2,{b n }的通项公式为b n =2n. (2)设数列{a 2n b n }的前n 项和为T n ,由a 2n b n =(6n -2)·2n.有T n =4×2+10×22+16×23+…+(6n -2)×2n,2T n =4×22+10×23+16×24+…+(6n -8)×2n +(6n -2)×2n +1,上述两式相减,得-T n =4×2+6×22+6×23+…+6×2n-(6n -2)×2n +1=12×1-2n1-2-4-(6n -2)×2n +1=-(3n -4)2n +2-16, 得T n =(3n -4)2n +2+16.所以数列{a 2n b n }的前n 项和为(3n -4)2n +2+16.1错位相减法适用于一个等差数列和一个等比数列对应项相乘所得的数列求和,属于等比数列求和公式的推导方法的应用.2利用错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应注意两式“错项对齐”;②当等比数列的公比为字母时,应对字母是否为1进行讨论.二、预测押题不能少2.已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和T n .解:(1)设{a n }的公比为q , 由题意知:a 1(1+q )=6,a 21q =a 1q 2. 又a n >0,解得a 1=2,q =2,所以a n =2n. (2)由题意知,S 2n +1=2n +1b 1+b 2n +12=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b n a n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n +12n +1=32+1-⎝ ⎛⎭⎪⎫12n -1-2n +12n +1=52-2n +52n +1,所以T n =5-2n +52n .考查类型(三) 裂项相消求和一、经典例题领悟好[例3] (2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和. [解] (1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式,从而{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=22n +12n -1=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.(1)裂项相消一般适用于通项公式为h nf ng n型数列的求和.(2)裂项相消求和法一般是把数列每一项分裂成两项的差,通过正、负项相消求和.常用裂项形式如:an n +k =a k ⎝ ⎛⎭⎪⎫1n -1n +k ,a n +n +k =a k (n +k -n )(a ,k 是不为0的常数).利用裂项相消法求和时,应注意抵消后并不一定只剩第一项和最后一项,也可能前面剩两项,后面也剩两项.(3)如果数列的通项公式不是常见的裂项形式,可以先猜后验,再确定如何裂项. 二、预测押题不能少3.设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且3a 2是a 1+3和a 3+4的等差中项.(1)求数列{a n }的通项公式; (2)设b n =a na n +1a n +1+1,数列{b n }的前n 项和为T n ,求证:T n <12.解:(1)由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,a 1+3+a 3+42=3a 2,解得a 2=2.设数列{a n }的公比为q ,则a 1q =2,∴a 1=2q,a 3=a 1q 2=2q .由S 3=7,可知2q+2+2q =7,∴2q 2-5q +2=0,解得q 1=2,q 2=12.由题意,得q >1,∴q =2.∴a 1=1.故数列{a n }的通项公式为a n =2n -1.(2)证明:∵b n =a na n +1a n +1+1=2n -12n -1+12n+1=12n -1+1-12n+1,∴T n =⎝ ⎛⎭⎪⎫120+1-121+1+⎝ ⎛⎭⎪⎫121+1-122+1+122+1-123+1+…+⎝ ⎛⎭⎪⎫12n -1+1-12n +1=11+1-12n +1=12-12n +1<12. 考点二 数列在实际问题中的应用 一、经典例题领悟好[例4] 某企业为扩大生产规模,今年年初新购置了一条高性能的生产线,该生产线在使用过程中的设备维修、燃料和动力等消耗的费用(称为设备的低劣化值)会逐年增加,第一年设备低劣化值是4万元,从第二年到第七年,每年设备低劣化值均比上年增加2万元,从第八年开始,每年设备低劣化值比上年增加25%.(1)设第n 年该生产线设备低劣化值为a n ,求a n 的表达式;(2)若该生产线前n 年设备低劣化平均值为A n ,当A n 达到或超过12万元时,则当年需要更新生产线,试判断第几年需要更新该生产线,并说明理由.[解] (1)当n ≤7时,数列{a n }是首项为4,公差为2的等差数列,所以a n =4+2(n -1)=2n +2.当n ≥8时,数列{a n }是首项为a 7,公比为54的等比数列,又a 7=16,所以a n =16×⎝ ⎛⎭⎪⎫54n -7,所以a n 的表达式为a n =⎩⎪⎨⎪⎧2n +2,n ≤7,16×⎝ ⎛⎭⎪⎫54n -7,n ≥8.(2)设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤7时,S n =4n +n (n -1)=n 2+3n ,当n ≥8时,由S 7=70,得S n =S 7+16×54×1-⎝ ⎛⎭⎪⎫54n -71-54=80·⎝ ⎛⎭⎪⎫54n -7-10.该生产线前n 年设备低劣化平均值为A n=S nn =⎩⎪⎨⎪⎧n +3,1≤n ≤7,80·⎝ ⎛⎭⎪⎫54n -7-10n,n ≥8.当1≤n ≤7时,数列{A n }为单调递增数列; 当n ≥8时,因为S n +1n +1-S n n =80·⎝ ⎛⎭⎪⎫54n -7⎝ ⎛⎭⎪⎫n 4-1+10n n +1>0,所以{A n }为单调递增数列.又S 77=10<12,S 88=11.25<12,S 99≈12.78>12, 则第九年需要更新该生产线.数列应用题中的常见模型(1)等差模型:即问题中增加(或减少)的量是一个固定量,此量即为公差. (2)等比模型:即问题中后一量与前一量的比是固定常数,此常数即为公比. (3)a n 与a n +1型:即问题中给出前后两项关系不固定,可考虑a n 与a n +1的关系. 二、预测押题不能少4.某公司一下属企业从事某种高科技产品的生产,该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产,设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).解:(1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4 500-52d . a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d =32⎝ ⎛⎭⎪⎫32a n -2-d -d=⎝ ⎛⎭⎪⎫322a n -2-32d -d…=⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2.整理得a n =⎝ ⎛⎭⎪⎫32n -1(3 000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1=⎝ ⎛⎭⎪⎫32n -1(3 000-3d )+2d .由题意,a m =4 000,即⎝ ⎛⎭⎪⎫32m -1(3 000-3d )+2d =4 000. ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1 000解得d =m m ⎡⎤⎛⎫⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎛⎫ ⎪⎝⎭3210002312--⨯=1 0003m -2m +13m -2m. 故该企业每年上缴资金d 的值为1 0003m-2m +13m -2m 时,经过m (m ≥3)年企业的剩余资金为4 000万元.[知能专练(十一)]一、选择题1.(2018届高三·金华十校联考)已知S n 为数列{a n }的前n 项和,且满足a 1=1,a 2=3,a n +2=3a n ,则S 2 018=( )A .2×31 009-2 B .2×31 009C.32 018-12 D.32 018+12解析:选A 由a n +2=3a n 可得数列{a n }的奇数项与偶数项分别构成等比数列,所以S 2 018=(a 1+a 3+…+a 2 017)+(a 2+a 4+…+a 2 018)=1-31 0091-3+31-31 0091-3=(-2)×(1-31 009)=2×31 009-2.2.(2017·长沙质检)已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为( )A .2 017B .2 016C .1 009D .1 008解析:选C 因为a n +2S n -1=n ,n ≥2,所以a n +1+2S n =n +1,两式相减得a n +1+a n =1,n ≥2.又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100=( )A .200B .-200C .400D .-400解析:选 B S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n.①第二步:将数列①的各项乘以n ,得数列(记为)a 1,a 2,a 3,…,a n . 则a 1a 2+a 2a 3+…+a n -1a n =( )A .n 2B .(n -1)2C .n (n -1)D .n (n +1)解析:选C a 1a 2+a 2a 3+…+a n -1a n =n 1·n 2+n 2·n 3+…+n n -1·nn =n 2⎣⎢⎡⎦⎥⎤11×2+12×3+…+1n -1n =n 2⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1-1n=n 2·n -1n=n (n -1). 5.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解析:选D 当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,∴当1≤n ≤100时,均有S n >0.6.(2017·全国卷Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .110解析:选A 设第一项为第1组,接下来的两项为第2组,再接下来的三项为第3组,依此类推,则第n 组的项数为n ,前n 组的项数和为n n +12.由题意可知,N >100,令n n +12>100,得n ≥14,n ∈N *,即N 出现在第13组之后.易得第n 组的所有项的和为1-2n 1-2=2n-1,前n 组的所有项的和为21-2n1-2-n =2n +1-n -2.设满足条件的N 在第k +1(k ∈N *,k ≥13)组,且第N 项为第k +1组的第t (t ∈N *)个数, 若要使前N 项和为2的整数幂,则第k +1组的前t 项的和2t-1应与-2-k 互为相反。

2018年高考数学(理)二轮复习讲练测专题1.6解析几何(练)含解析

2018年高考数学(理)二轮复习讲练测专题1.6解析几何(练)含解析

2018年高考数学(理)二轮复习讲练测专题六 解析几何1.练高考1.【2017课标3,理5】已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为( )A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【答案】B故选B.2.【2017天津,文12】设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A.若120FAC ∠=︒,则圆的方程为 .【答案】22(1)(1x y ++-=【解析】3.【2017山东,理14】在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b -=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】22y x =±4.【2017课标1,理】已知双曲线C :22221x y a b-=(a>0,b>0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN=60°,则C 的离心率为________.【答案】3【解析】试题分析:5.【2017天津,理19】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62AP 的方程. 【答案】 (1)22413y x +=, 24y x =.(2)3630x y +-=,或3630x y --=. 【解析】(Ⅱ)解:设直线AP 的方程为1(0)x my m =+≠,与直线l 的方程1x =-联立,可得点2(1,)P m --,故2(1,)Q m-.将1x my =+与22413y x +=联立,消去x ,整理得22(34)60m y my ++=,解得0y =,或2634my m -=+.由点B 异于点A ,可得点222346(,)3434m m B m m -+-++.由2(1,)Q m-,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+,故2223(,0)32m D m -+.所以2222236||13232m m AD m m -=-=++.又因为APD△6221626232||m m m ⨯⨯=+,整理得23|20m m -+=,解得6||3m =,所以63m =±. 所以,直线AP 的方程为3630x -=,或3630x -=.6.【2017山东,理21】在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :13y k x =交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且12k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.【答案】(I )2212x y +=.(Ⅱ)SOT ∠的最大值为3π,取得最大值时直线l 的斜率为12k =.(Ⅱ)设()()1122,,,A x y B x y ,联立方程2211,23x y y k x ⎧+=⎪⎪⎨⎪=⎪⎩得()22114210k x x +--=,由题意知0∆>,且()1121222111,21221x x x x k k +==-++,所以121AB x =-=.由题意可知圆M 的半径r为1r =由题设知122k k =,所以212k =因此直线OC 的方程为12y =.联立方程2211,22,4x y y x k ⎧+=⎪⎪⎨⎪=⎪⎩得2221221181,1414k x y k k ==++,因此 2221211814k OC x y k +=++2.练模拟1.直线3y kx =+被圆()()22234x y -+-=截得的弦长为 ) A .566ππ或B .33ππ-或C .66ππ-或D .6π 【答案】A【解析】圆()()22234x y -+-=的圆心()3,2,半径2=r ,圆心()3,2到直线y kx =+直线3y kx =+被圆()()2223x y -+-=2.【2018届湖北省稳派教育高三上第二次联考】 已知椭圆()222210x y a b a b +=>>的半焦距为c ,且满足220c b ac -+<,则该椭圆的离心率e 的取值范围是__________.【答案】10,2⎛⎫ ⎪⎝⎭【解析】∵220c b ac -+<,∴()2220c a c ac --+<,即2220c a ac -+<,∴22210c c a a -+<,即2210e e +-<,解得112e -<<。

2018年全国各地高考数学试题及解答分类汇编大全(18 选修4:几何证明选讲、坐标系与参数方程、不等式选讲

2018年全国各地高考数学试题及解答分类汇编大全(18 选修4:几何证明选讲、坐标系与参数方程、不等式选讲

2018年全国各地高考数学试题及解答分类汇编大全(18选修4:几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换)一、几何证明选讲:选修4—1;几何证明选讲1.(2018江苏)[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长.1.【答案】2【解析】连结OC ,因为PC 与圆O 相切,所以OC PC ⊥. 又因为23PC =,2OC =,所以224OP PC OC =+=.又因为2OB =,从而B 为Rt OCP △斜边的中点,所以2BC =.二、坐标系与参数方程:选修4-4:坐标系与参数方程1.(2018北京理)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =__________. 1.【答案】12+【解析】因为222x y ρ=+,cos x ρθ=,sin y ρθ=,由()cos sin 0a a ρθρθ+=>,得()0x y a a +=>, 由2cos ρθ=,得22cos ρρθ=,即22=2x y x +,即()2211x y -+=, 112a -=,12a ∴=±0a >,12a ∴=2.(2018江苏)[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.2.【答案】直线l 被曲线C 截得的弦长为3 【解析】因为曲线C 的极坐标方程为4cos ρθ=, 所以曲线C 的圆心为()2,0,直径为4的圆.因为直线l 的极坐标方程为sin 2π6ρθ⎛⎫-= ⎪⎝⎭,则直线l 过()4,0A ,倾斜角为π6,所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则π6OAB ∠=. 连结OB ,因为OA 为直径,从而π2OBA ∠=,所以4cos6πAB ==.因此,直线l 被曲线C截得的弦长为3.(2018天津理)已知圆2220x y x +-=的圆心为C,直线1,232⎧=-+⎪⎪⎨⎪=-⎪⎩x y t (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 .3.【答案】12【解析】由题意可得圆的标准方程为()2211x y -+=, 直线的直角坐标方程为()31y x -=-+,即20x y +-=,则圆心到直线的距离为d ==,由弦长公式可得2AB =则1122ABC S ==△.4.(2018全国新课标Ⅰ文、理)[选修4—4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线1C 的方程为2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.4.答案:(1)22(1)4x y ++=;(2)423y x =-+ 解答:(1)由22cos 30ρρθ+-=可得:22230x y x ++-=,化为22(1)4x y ++=. (2)1C 与2C 有且仅有三个公共点,说明直线2(0)y kx k =+<与圆2C 相切,圆2C 圆心为(1,0)-,半径为2,则2=,解得43k =-,故1C 的方程为423y x =-+.5.(2018全国新课标Ⅱ文、理)[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin x θy θ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos ,2sin x t αy t α=+⎧⎨=+⎩(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.5.【答案】(1)221416x y +=,当cos 0α≠,tan 2tan y x αα=⋅+-;当cos 0α=,1x =;(2)2-. 【解析】(1)曲线C 的直角坐标方程为221416x y +=.当cos 0α≠时,l 的直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 的直角坐标方程为1x =.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程()()2213cos 42cos sin 80tt ααα+++-=.①因为曲线C 截直线l 所得线段的中点()1,2在C 内,所以①有两个解,设为1t ,2t ,则120t t +=. 又由①得()12242cos sin 13cos t t ααα++=-+,故2cos sin 0αα+=,于是直线l 的斜率tan 2k α==-.6.(2018全国新课标Ⅲ文、理)[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.22.答案:见解析 解答:(1)O 的参数方程为cos sin x y θθ=⎧⎨=⎩,∴O 的普通方程为221x y +=,当90α=︒时,直线::0l x =与O 有两个交点,当90α≠︒时,设直线l的方程为tan y x α=-由直线l 与O 有1<,得2tan 1α>,∴tan 1α>或tan 1α<-,∴4590α︒<<︒或90α︒<<,综上(45,135)α∈︒︒.(2)点P 坐标为(,)x y ,当90α=︒时,点P 坐标为(0,0),当90α≠︒时,设直线l 的方程为y kx =-1122(,),(,)A x y B x y,∴221x y y kx ⎧+=⎪⎨=-⎪⎩①②有22(1x kx +-=,整理得22(1)10k x +-+=,∴1221x x k +=+,12y y +=,∴2211x ky k ⎧=⎪⎪+⎨⎪=⎪+⎩③④得x k y=-代入④得220x y ++=.当点(0,0)P时满足方程220x y ++=,∴AB 中点的P的轨迹方程是220x y ++=,即221(2x y +=,由图可知,A,(22B --,则02y -<<,故点P的参数方程为cos 2sin 22x y ββ⎧=⎪⎪⎨⎪=-+⎪⎩(β为参数,0βπ<<).三、不等式选讲选:选修4-5:不等式选讲1.(2018江苏)[选修4—5:不等式选讲](本小题满分10分)若x,y,z为实数,且x+2y+2z=6,求222x y z++的最小值.D.【答案】4【解析】由柯西不等式,得()()()222222212222x y z x y z++++≥++.因为22=6x y z++,所以2224x y z++≥,当且仅当122x y z==时,不等式取等号,此时23x=,43y=,43z=,所以222x y z++的最小值为4.2.(2018全国新课标Ⅰ文、理)[选修4—5:不等式选讲](10分)已知()11f x x ax=+--.(1)当1a=时,求不等式()1f x>的解集;(2)若()01x∈,时不等式()f x x>成立,求a的取值范围.2.答案:(1)1{|}2x x>;(2)(0,2].解答:(1)当1a=时,21()|1||1|21121xf x x x x xx≥⎧⎪=+--=-<<⎨⎪-≤-⎩,∴()1f x>的解集为1{|}2x x>.(2)当0a=时,()|1|1f x x=+-,当(0,1)x∈时,()f x x>不成立.当0a<时,(0,1)x∈,∴()1(1)(1)f x x ax a x x=+--=+<,不符合题意. 当01a<≤时,(0,1)x∈,()1(1)(1)f x x ax a x x=+--=+>成立.当1a>时,1(1),1()1(1)2,a x xaf xa x xa⎧+-<<⎪⎪=⎨⎪-+≥⎪⎩,∴(1)121a-⋅+≥,即2a≤.综上所述,a的取值范围为(0,2].3.(2018全国新课标Ⅱ文、理)[选修4-5:不等式选讲](10分) 设函数()5|||2|f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围. 3.【答案】(1){}|23x x -≤≤;(2)(][),62,-∞-+∞.【解析】(1)当1a =时,()24,12,1226,2x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩,可得()0f x ≥的解集为{}|23x x -≤≤.(2)()1f x ≤等价于24x a x ++-≥,而22x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于24a +≥, 由24a +≥可得6a ≤-或2a ≥,所以a 的取值范围是(][),62,-∞-+∞.(,6][2,)-∞-+∞4.(2018全国新课标Ⅲ文、理)[选修4—5:不等式选讲](10分)设函数()|21||1|f x x x =++-. (1)画出()y f x =的图像;(2)当[0,)x ∈+∞,()f x ax b ≤+,求a b +的最小值.4.答案:见解答 解答:(1)13,21()2,123,1x x f x x x x x ⎧-≤-⎪⎪⎪=+-<<⎨⎪≥⎪⎪⎩,如下图:(2)由(1)中可得:3a ≥,2b ≥, 当3a =,2b =时,a b +取最小值, ∴a b +的最小值为5.四、矩阵与变换 选修4-2:矩阵与变换1. (2018上海)行列式4125的值为 。

2018年全国二卷立体几何(文理)详解

2018年全国二卷立体几何(文理)详解

2018年全国二卷立体几何(文理)详解各位铁子门,欢迎大家再次来到孙老师的鹏哥谈数学!上两节课带着大家分析了2018年全国一卷、三卷的立体几何解答题,大家有怎么样的感受?此时,你的内心有没有一点点涟漪浮起?……12分的解答题,简直是弱爆了,竟然只考……面面垂直、空间角……其实吧,所谓命题专家也就这点能耐了!……不信,你再看2018年的全国二卷之立体几何…………竟然……线面垂直、空间角……(据说葛大爷葛军退役后,江湖再无哭泣,人间宁静安详……)来看看二卷的这道题,心细的伙伴们有没有发现,我们二卷的立体几何经常考棱锥(文理科一样样),不信,你看………16年五棱锥(菱形对折)、17年四棱锥、18年三棱锥…….……额……19年要考谁?能考谁?来来来,孙老师偷偷告诉你……(哈哈,我总是低调不了,总是这么傲娇,我想总有一天会死得很惨,哈哈哈)我们先看18年二卷理科的这道题(孙老师忍不住想告诉你,18年理科这道题的题号发生了调整,干翻了解析几何老二的宝座,跑到了第20题,这是疏忽还是有意,各位童鞋们怎么看,哈哈哈!):(1)线面垂直……我不想多做解释了,实在记不起来,回头看我的前一篇帖子2018年全国一卷理科数学立体几何详解我还是忍不住想再说一遍,老师嘛,传道受业解惑也!……如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直……当然,我们需要先尝试找到边角关系,中点是突破口,等腰三角形是关键,勾股定理是核心,判定定理算锤子,于是乎……(2)空间角之线面角……还要再重复吗?no……你已成仙,再不晓得就自己挂掉吧!(童话里都是骗人的.......忽然想到了成龙大哥,金喜善.......年代久远,尔等可能不知道,历史人物......)建系……我们再看18年二卷文科的这道题:……立体几何,同样的三棱锥,长相神似理科,两个问题…………线面垂直、点面距……额,文科的特点来了,都说文科感性,理科理性,扯什么淡,有证据吗?我也会写诗,我也能抒情,原谅一个理工直男的表白吧!哈哈,我都说了些什么?嗯…….算了吧,不作践自己了!孙老师也是重情之人,脸皮薄,容易脸红,本来脸黑,一红就更黑了……(哈哈哈)点面距…..?什么东西?……垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段.垂线段的长度叫做这个点到平面的距离!那么,我们怎么解决点面距的问题?(三个方法,随便你爱那个,只要能放电就行!)(1)找点投影法求点面距(告诉你,这个基本帮不了什么你忙,所以,别多想……)(2)等体积法求点面距(学马克思的小伙伴们,注意啦!这个是需要你记住的,重要的事情孙老师历来只说一遍,这次孙老师说三遍三遍啊,什么概念?不想死就必须记下!)(3)空间向量法求点面距(哈哈哈,文科生不太能理解,专属理科生,万能的!重要性你懂得!)我们看这道题:(1)线面垂直……(2)点面距……等体积法(文科嘛!也只能这样了,局限性……)。

2018年高考数学浙江专版三维二轮专题复习讲义:第三部

2018年高考数学浙江专版三维二轮专题复习讲义:第三部

回扣一集合与常用逻辑用语[基础知识看一看]一、牢记概念与公式四种命题的相互关系二、活用定理与结论运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.[易错易混想一想]1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x|y=lg x}——函数的定义域;{y|y=lg x}——函数的值域;{(x,y)|y=lg x}——函数图象上的点集.2.易混淆0,∅,{0}:0是一个实数;∅是一个集合,它含有0个元素;{0}是以0为元素的单元素集合.但是0∉∅,而∅⊆{0}.3.集合的元素具有确定性、无序性和互异性.在解决有关集合的问题时,尤其要注意元素的互异性.4.遇到A∩B=∅时,你是否注意到“极端”情况:A=∅或B=∅;同样在应用条件A∪B=B ⇔A∩B=A⇔A⊆B时,不要忽略A=∅的情况.5.注重数形结合在集合问题中的应用.列举法常借助Venn图解题;描述法常借助数轴来运算,求解时要特别注意端点值.6.“否命题”是对原命题“若p ,则q ”既否定其条件,又否定其结论;而“命题p 的否定”即:非p ,只是否定命题p 的结论.7.要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A .[保温训练手不凉]1.(2017·天津高考)设集合A ={1,2,6},B ={2,4},C ={x ∈R|-1≤x ≤5},则(A ∪B )∩C =( )A .{2}B .{1,2,4}C .{1,2,4,6}D .{x ∈R|-1≤x ≤5}解析:选B A ∪B ={1,2,4,6},又C ={x ∈R|-1≤x ≤5},则(A ∪B )∩C ={1,2,4}. 2.“α≠β”是“sin α≠sin β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 命题“若α≠β,则“sin α≠sin β”等价于命题“若sin α=sin β,则α=β”,这个命题显然是假命题,故条件是不充分的;命题“若sin α≠sin β,则α≠β”等价于命题“若α=β,则sin α=sin β”,这个命题是真命题,故条件是必要的.因此,“α≠β是sin α≠sin β”的必要而不充分条件.3.命题p :m >7,命题q :f (x )=x 2+mx +9(m ∈R)有零点,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 当m >7时,方程x 2+mx +9=0的判别式Δ=m 2-36>0,此时f (x )有两个零点;反过来,当f (x )有零点时,Δ=m 2-36≥0,即m 2≥36,不能得知m >7.因此,p 是q 的充分不必要条件.4.已知集合A ={a ,b ,c }中任意2个不同元素的和的集合为{1,2,3},则集合A 的任意2个不同元素的差的绝对值的集合是( )A .{1,2,3}B .{1,2}C .{1,0}D .{0,1,2}解析:选B 不妨设a <b <c ,则⎩⎪⎨⎪⎧a +b =1,a +c =2,b +c =3,解得⎩⎪⎨⎪⎧a =0,b =1,c =2,故⎩⎪⎨⎪⎧|a -b |=1,|a -c |=2,|b -c |=1.由此知所求集合为{1,2}.5.已知集合M ={x |y =1-x },N ={y |y =2x},则M ∩N =________. 解析:M ={x |x ≤1},N ={y |y >0},所以M ∩N ={x |0<x ≤1}. 答案:(0,1]6.下面四个命题:①函数y=log a(x+1)+1(a>0且a≠1)的图象必过定点(0,1);②“若m>0,则方程x2+x-m=0有实根”的逆否命题;③过点(-1,2)且与直线2x-3y+4=0垂直的直线方程为3x+2y-1=0.其中所有真命题的序号是________.解析:①中,当x=0时,y=log a1+1=1,所以恒过定点(0,1)(也可由y=log a x的图象恒过定点(1,0),将图象左移1个单位,然后向上平移1个单位,故图象恒过(0,1)点),所以①为真命题;②中,Δ=1+4m,当m>0时,Δ>0,所以②为真命题,其逆否命题也为真命题;③中,直线2x-3y+4=0的斜率为23,所以和2x-3y+4=0垂直的直线斜率为-32,因为直线过点(-1,2),所以所求直线方程为y-2=-32(x+1),即3x+2y-1=0,所以③为真命题.综上真命题有①②③.答案:①②③回扣二函__数[基础知识看一看]一、牢记概念与公式1.函数的单调性、奇偶性、周期性(1)单调性是函数在其定义域或定义域某子区间I上的性质.对任意的x1,x2∈I,若x1<x2时都有f(x1)<f(x2),则称f(x)为I上的增函数;若x1<x2时都有f(x1)>f(x2),则称f(x)为I上的减函数.(2)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x(定义域关于原点对称),都有f(-x)=-f(x)成立,则f(x)为奇函数(都有f(-x)=f(x)成立,则f(x)为偶函数).(3)周期性是函数在其定义域上的整体性质,一般地,对于函数f(x),如果对于定义域内的任意一个x的值:若f(x+T)=f(x)(T≠0),则f(x)是周期函数,T是它的一个周期.2.指数与对数式的运算公式a m·a n=a m+n;(a m)n=a m n;log a(MN)=log a M+log a N;log a MN=log a M-log a N;log a M n=n log a M;a log a N=N;log a N=logb Nlog b a(a>0且a≠1,b>0且b≠1,M>0,N>0).3.指数函数与对数函数的性质1.抽象函数的周期性与对称性 (1)函数的周期性①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期. ②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期.③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期.(2)函数图象的对称性①若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.②若函数y =f (x )满足f (a +x )=-f (a -x ),即f (x )=-f (2a -x ),则f (x )的图象关于点(a,0)对称.③若函数y =f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.2.函数图象平移变换的相关结论(1)把y =f (x )的图象沿x 轴左右平移|c |个单位(c >0时向左移,c <0时向右移)得到函数y =f (x +c )的图象(c 为常数).(2)把y =f (x )的图象沿y 轴上下平移|b |个单位(b >0时向上移,b <0时向下移)得到函数y =f (x )+b 的图象(b 为常数).3.函数图象伸缩变换的相关结论(1)把y =f (x )的图象上各点的纵坐标伸长(a >1)或缩短(0<a <1)到原来的a 倍,而横坐标不变,得到函数y =af (x )(a >0)的图象.(2)把y =f (x )的图象上各点的横坐标伸长(0<b <1)或缩短(b >1)到原来的1b倍,而纵坐标不变,得到函数y =f (bx )(b >0)的图象.4.确定函数零点的三种常用方法(1)解方程判定法.若方程易解时用此法.(2)零点定理法.根据连续函数y =f (x )满足f (a )·f (b )<0,判断函数在区间(a ,b )内存在零点.(3)数形结合法.尤其是方程两端对应的函数类型不同时多用此法求解.[易错易混想一想]1.求函数的定义域,关键是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解,如开偶次方根,被开方数一定是非负数;对数式中的真数是正数.列不等式时,应列出所有的不等式,不应遗漏.2.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.3.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.4.分段函数是在其定义域的不同子集上,分别用不同的式子来表示对应关系的函数,它是一个函数,而不是几个函数.5.不能准确理解基本初等函数的定义和性质.如函数y =a x(a >0,a ≠1)的单调性忽视字母a 的取值讨论,忽视a x >0;对数函数y =log a x (a >0,a ≠1)忽视真数与底数的限制条件.6.易混淆函数的零点和函数图象与x 轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.[保温训练手不凉]1.下列函数中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( ) A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)解析:选A 由题意知,f (x )在(0,+∞)上是减函数,只有选项A 符合. 2.函数f (x )=11-x-x的最大值是( )A.45B.54C.34D.43解析:选D 首先讨论分母1-x (1-x )的取值范围:1-x (1-x )=x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34.因此,有0<11-x-x≤43.所以f (x )的最大值为43.3.(2016·全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:选D 函数y =10lg x的定义域与值域均为(0,+∞).函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).故选D.4.函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -2,x <0,x -1,x ≥0的所有零点的和等于( )A .-2B .-1C .0D .1解析:选C 令⎝ ⎛⎭⎪⎫12x-2=0,解得x =-1;令x -1=0,解得x =1.所以函数f (x )存在两个零点1和-1,其和为0.5.已知f (x )=⎩⎪⎨⎪⎧a xx ,⎝ ⎛⎭⎪⎫4-a2x +x 是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)解析:选B 由已知可得⎩⎪⎨⎪⎧a >1,4-a 2>0,a 1≥⎝ ⎛⎭⎪⎫4-a 2+2,解得4≤a <8,故选B.6.已知a =⎝ ⎛⎭⎪⎫1223,b =2-43,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c解析:选B a =⎝ ⎛⎭⎪⎫1223=⎝ ⎛⎭⎪⎫1413,b =2-43=⎝ ⎛⎭⎪⎫11613,c =⎝ ⎛⎭⎪⎫1213.考查幂函数y =x 13,显然该函数在(0,+∞)上是增函数,则易知c >a >b .7.若方程f (x )-2=0在(-∞,0)内有解,则y =f (x )的图象是( )解析:选D 方程f (x )-2=0在(-∞,0)内有解,即函数f (x )的图象与直线y =2在(-∞,0)内有交点,在各选项中画出直线y =2,满足在(-∞,0)内有交点的只有选项D.8.如果函数y =f (x )在区间I 上是增函数,且函数y =f xx在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫作“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0, 3 ]C .[0,1]D .[1, 3 ]解析:选D 因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f x x =12x -1+32x ,函数f x x =12x -1+32x在区间[1, 3 ]上单调递减,故“缓增区间”I 为[1, 3 ].9.已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈-1,0],x ,x ∈,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A.⎝ ⎛⎦⎥⎤-94,-2∪⎝ ⎛⎦⎥⎤0,12B.⎝ ⎛⎦⎥⎤-114,-2∪⎝ ⎛⎦⎥⎤0,12 C.⎝ ⎛⎦⎥⎤-94,-2∪⎝ ⎛⎦⎥⎤0,23 D.⎝ ⎛⎦⎥⎤-114,-2∪⎝ ⎛⎦⎥⎤0,23解析:选A g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点就是函数y =f (x )的图象与函数y =m (x +1)的图象有两个交点,在同一直角坐标系内作出函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈-1,0],x ,x ∈,1].和函数y =m (x +1)的图象,如图,当直线y =m (x +1)与y =1x +1-3,x ∈(-1,0]和y =x ,x ∈(0,1]都相交时0<m ≤12;当直线y =m (x +1)与y =1x +1-3,x ∈(-1,0]有两个交点时,由方程组⎩⎪⎨⎪⎧y =m x +,y =1x +1-3消元得1x +1-3=m (x +1),即m (x +1)2+3(x +1)-1=0,化简得mx 2+(2m +3)x +m +2=0,当Δ=9+4m =0,即m =-94时,直线y =m (x+1)与y =1x +1-3相切,当直线y =m (x +1)过点(0,-2)时,m =-2,所以m ∈⎝ ⎛⎦⎥⎤-94,-2.综上,实数m 的取值范围是⎝ ⎛⎦⎥⎤-94,-2∪⎝ ⎛⎦⎥⎤0,12,选A.10.设二次函数f (x )=ax 2-4x +c (x ∈R)的值域为[0,+∞),则1c +9a的最小值为________.解析:∵二次函数f (x )=ax 2-4x +c (x ∈R)的值域为[0,+∞),∴a >0,4ac -164a =0,∴ac=4,c >0,∴1c +9a≥29ac =3,当且仅当1c =9a ,即a =6,c =23时等号成立,∴1c +9a的最小值为3.答案:311.已知奇函数f (x )=m -g x1+g x的定义域为R ,其中y =g (x )为指数函数,且其图象过点(2,9),则函数y =f (x )的解析式为________.解析:设g (x )=a x (a >0,a ≠1),则a 2=9,∴a =3或a =-3(舍去),∴g (x )=3x,∴f (x )=m -3x1+3x,又f (x )为奇函数,∴f (-x )=-f (x ),即m -3-x1+3-x=-m -3x1+3x,整理得m (3x+1)+m (1+3-x)=3x+1+1+3-x,∴m =1(或由f (0)=0得m =1),∴f (x )=1-3x1+3x .答案:f (x )=1-3x1+3x12.设函数y =f (x )的定义域为D ,若对于任意的x 1,x 2∈D ,当x 1+x 2=2a 时,恒有f (x 1)+f (x 2)=2b ,则称点(a ,b )为函数y =f (x )图象的对称中心.研究函数f (x )=x 3+sin x +2的某一个对称中心,并利用对称中心的定义,可得到f (-1)+f ⎝ ⎛⎭⎪⎫-1920+…+f ⎝ ⎛⎭⎪⎫1920+f (1)=________.解析:由题意可得,对于函数f (x )=x 3+sin x +2,当x 1+x 2=0时,恒有f (x 1)+f (x 2)=4,所以f (-1)+f ⎝ ⎛⎭⎪⎫-1920+…+f ⎝ ⎛⎭⎪⎫1920+f (1)=4×20+f (0)=82.答案:82回扣三导数及其应用[基础知识看一看]一、牢记概念与公式 1.基本导数公式: (1)c ′=0(c 为常数); (2)(x m)′=mxm -1(m ∈Q);(3)(sin x )′=cos x ; (4)(cos x )′=-sin x ; (5)(a x)′=a xln a (a >0且a ≠1); (6)(e x)′=e x; (7)(log a x )′ =1x ln a(a >0且a ≠1); (8)(ln x )′=1x.2.导数的四则运算: (1)(u ±v )′=u ′±v ′; (2)(uv )′=u ′v +uv ′; (3)⎝ ⎛⎭⎪⎫u v′=u ′v -uv ′v 2(v ≠0). 二、活用定理与结论 1.导数的几何意义函数y =f (x )在x =x 0处的导数f ′(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f ′(x 0).2.函数的单调性与导数的关系在区间(a ,b )内,如果f ′(x )>0,那么函数f (x )在区间(a ,b )上单调递增;如果f ′(x )<0,那么函数f (x )在区间(a ,b )上单调递减.3.导数研究函数单调性的一般步骤①确定函数的定义域;②求导数f ′(x );③若求单调区间(或证明单调性),只需在函数f (x )的定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0即可;若已知f (x )的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题求解.4.求函数y=f(x)在某个区间上的极值的步骤第一步:求导数f′(x);第二步:求方程f′(x)=0的根x0;第三步:检查f′(x)在x=x0左右的符号:①左正右负⇔f(x)在x=x0处取极大值;②左负右正⇔f(x)在x=x0处取极小值.5.求函数y=f(x)在区间[a,b]上的最大值与最小值的步骤第一步:求函数y=f(x)在区间(a,b)内的极值(极大值或极小值);第二步:将y=f(x)的各极值与f(a),f(b)进行比较,其中最大的一个为最大值,最小的一个为最小值.[易错易混想一想]1.如果已知f(x)为减函数求参数取值范围,那么不等式f′(x)≤0恒成立,但要验证f′(x)是否恒等于0.增函数亦如此.2.导数为零的点并不一定是极值点,例如函数f(x)=x3,有f′(0)=0,但x=0不是极值点.3.求曲线的切线方程时,要注意题目条件中的已知点是否为切点.[保温训练手不凉]1.已知函数f(x)=1xcos x,则f′(x)=( )A.cos xx2B.-sin xx2C.cos x-x sin xx2D.-cos x+x sin xx2解析:选D f′(x)=-1x2cos x-sin xx=-cos x+x sin xx2.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则( ) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:选C 设f(x)=x3,f′(0)=0,但是f(x)是单调增函数,在x=0处不存在极值,故若p则q是一个假命题,由极值的定义可得若q则p是一个真命题.故选C.3.一直角坐标系中,函数y=ax2-x+a2与y=a2x3-2ax2+x+a(a∈R)的图象不可能的是( )解析:选B 分两种情况讨论:当a =0时,函数为y =-x 与y =x ,图象为D ,故D 有可能;当a ≠0时,函数y =ax 2-x+a 2的对称轴为x =12a,对函数y =a 2x 3-2ax 2+x +a 求导得y ′=3a 2x 2-4ax +1=(3ax -1)(ax -1),令y ′=0,则x 1=13a ,x 2=1a ,所以对称轴x =12a 介于两个极值点x 1=13a ,x 2=1a之间,A ,C 满足,B 不满足,所以B 不可能.故选B.4.x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B.⎣⎢⎡⎦⎥⎤-6,-98C .[-6,-2]D .[-4,-3]解析:选C 当x ∈(0,1]时,得a ≥-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令t =1x,则t ∈[1,+∞),a ≥-3t 3-4t 2+t ,令g (t )=-3t 3-4t 2+t ,t ∈[1,+∞),则g ′(t )=-9t 2-8t +1=-(t +1)(9t -1),显然在[1,+∞)上,g ′(t )<0,g (t )单调递减,所以g (t )max =g (1)=-6,因此a ≥-6;同理,当x ∈[-2,0)时,得a ≤-3⎝ ⎛⎭⎪⎫1x 3-4⎝ ⎛⎭⎪⎫1x 2+1x ,令m =1x ,则m ∈⎝ ⎛⎦⎥⎤-∞,-12,a ≤-3m 3-4m2+m ,令g (m )=-3m 3-4m 2+m ,m ∈⎝ ⎛⎦⎥⎤-∞,-12,则g ′(m )=-9m 2-8m +1=-(m +1)(9m -1).显然在(-∞,-1]上g ′(m )≤0,在⎝ ⎛⎦⎥⎤-1,-12上,g ′(m )>0,所以g (m )min =g (-1)=-2.所以a ≤-2.由以上两种情况得-6≤a ≤-2,显然当x =0时也成立.故实数a 的取值范围为[-6,-2].5.若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________. 解析:由题意有y ′=-e -x,设P (m ,n ),直线2x +y +1=0的斜率为-2,则由题意得-e-m=-2,解得m =-ln 2,所以n =e -(-ln 2)=2.答案:(-ln 2,2) 6.函数f 0(x )=sin xx(x >0),设f n (x )为f n -1(x )的导数,n ∈N *.则2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2=________.解析:由已知,得f 1(x )=f 0′(x )=⎝ ⎛⎭⎪⎫sin x x ′=cos x x-sin x x2,于是f 2(x )=f 1′(x )=⎝ ⎛⎭⎪⎫cos x x ′-⎝ ⎛⎭⎪⎫sin x x 2′=-sin x x -2cos x x 2+2sin x x 3,所以f 1⎝ ⎛⎭⎪⎫π2=-4π2,f 2⎝ ⎛⎭⎪⎫π2=-2π+16π3.故2f 1⎝ ⎛⎭⎪⎫π2+π2f 2⎝ ⎛⎭⎪⎫π2=-1. 答案:-1回扣四不_等_式[基础知识看一看]一、牢记概念与公式 1.不等式的性质 (1)a >b ,b >c ⇒a >c ;(2)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ; (3)a >b ⇒a +c >b +c ; (4)a >b ,c >d ⇒a +c >b +d ; (5)a >b >0,c >d >0⇒ac >bd ;(6)a >b >0,n ∈N ,n >1⇒a n>b n,n a >nb . 2.简单分式不等式的解法 (1)f xg x >0⇔f (x )g (x )>0,f xg x<0⇔f (x )g (x )<0. (2)f x g x ≥0⇔⎩⎪⎨⎪⎧f xg x ,g x,f xg x ≤0⇔⎩⎪⎨⎪⎧f xg x ,g x(3)对于形如f xg x>a (≥a )的分式不等式要采取:移项—通分—化乘积的方法转化为(1)或(2)的形式求解.3.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集:(2)|ax +b |≤①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解. ②利用零点分段法求解.③构造函数,利用函数的图象求解. 二、活用定理与结论 1.常用的六个重要不等式 (1)|a |≥0,a 2≥0(a ∈R). (2)a 2+b 2≥2ab (a ,b ∈R). (3)a +b2≥ab (a >0,b >0).(4)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R).(5)a 2+b 22≥a +b2≥ab (a >0,b >0).(6)||a |-|b ||≤|a +b |≤|a |+|b |. 2.可行域的确定“线定界,点定域”,即先画出与不等式对应的方程所表示的直线,然后代入特殊点的坐标,根据其符号确定不等式所表示的平面区域.3.一元二次不等式的恒成立问题 (1)ax2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.4.基本不等式求最值问题 若a ,b ∈R +,则a +b2≥ab ,当且仅当“a =b ”时取等号.应用基本不等式求最值应注意“一正、二定、三相等”.[易错易混想一想]1.不等式两端同时乘以一个数或同时除以一个数,不讨论这个数的正负,从而出错. 2.解一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.3.应注意求解分式不等式时正确进行同解变形,不能把f xg x≤0直接转化为f (x )·g (x )≤0,而忽视g (x )≠0.4.容易忽视使用基本不等式求最值的条件,即“一正、二定、三相等”导致错解,如求函数f (x )=x 2+2+1x 2+2的最值,就不能利用基本不等式求解最值;求解函数y =x +3x (x <0)时应先转化为正数再求解.5.解绝对值不等式易出现解集不全或错误.对于含绝对值的不等式不论是分段去绝对值号还是利用几何意义,都要不重不漏.6.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.7.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y )与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y )到点(1,1)的距离的平方等.[保温训练手不凉]1.已知-1<a <0,那么-a ,-a 3,a 2的大小关系是( ) A .a 2>-a 3>-a B .-a >a 2>-a 3C .-a 3>a 2>-aD .a 2>-a >-a 3解析:选B ∵-1<a <0,∴0<-a <1,∴-a >(-a )2>-a 3,即-a >a 2>-a 3.2.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个解析:选B 直线2x +y -10=0与不等式组表示的平面区域的位置关系如图所示,故直线与此区域的公共点有1个.3.已知a ,b ∈R ,且ab =50,则|a +2b |的最小值是( ) A .20 B .150 C .75D .1510解析:选A 依题意得,a ,b 同号,于是有|a +2b |=|a |+|2b |≥2|a |×|2b |=22|ab |=2100=20(当且仅当|a |=|2b |时取等号),因此|a +2b |的最小值是20.4.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y确定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM ―→·OA ―→的最大值为( )A .3B .4C .3 2D .4 2解析:选B 画出区域D ,如图所示,而z =OM ―→·OA ―→=2x +y ,故y =-2x +z ,令l 0:y =-2x ,平移直线l 0,相应直线过点(2,2)时,截距z 有最大值,故z max =2×2+2=4.5.若对任意正实数x ,不等式1x 2+1≤ax恒成立,则实数a 的最小值为( ) A .1 B. 2 C.12D.22解析:选C 因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x≤12(当且仅当x =1时取等号),所以a ≥12,故a 的最小值为12.6.(2017·北京高考)若x ,y 满足⎩⎪⎨⎪⎧x ≤3,x +y ≥2,y ≤x ,则x +2y 的最大值为( )A .1B .3C .5D .9解析:选 D 不等式组所表示的可行域如图中阴影部分所示,是以点A (1,1),B (3,3),C (3,-1)为顶点的三角形及其内部.设z =x +2y ,当直线z =x +2y 经过点B 时,z 取得最大值,所以z max =3+2×3=9.7.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1恒成立. 所以不等式的解集为{x |x ≥1}. 答案:{x |x ≥1}8.若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象恒在x 轴上方,则a 的取值范围是________.解析:函数图象恒在x 轴上方,即不等式(a 2+4a -5)x 2-4(a -1)x +3>0对于一切x ∈R 恒成立.(1)当a 2+4a -5=0时,有a =-5或a =1.若a =-5,不等式化为24x +3>0,不满足题意;若a =1,不等式化为3>0,满足题意;(2)当a2+4a -5≠0时,应有⎩⎪⎨⎪⎧a 2+4a -5>0,a -2-a 2+4a -,解得1<a <19.综上可知,a 的取值范围是1≤a <19. 答案:[1,19)回扣五三角函数、解三角形与平面向量 [基础知识看一看]一、牢记概念与公式 1.同角三角函数的基本关系(1)商数关系:sin αcos α=tan α⎝ ⎛⎭⎪⎫α≠k π+π2,k ∈Z ;(2)平方关系:sin 2α+cos 2α=1(α∈R). 2.三角函数的诱导公式诱导公式的记忆口诀:奇变偶不变,符号看象限.其中,“奇、偶”是指“k ·π2±α(k ∈Z)”中k 的奇偶性;“符号”是把任意角α看作锐角时,原函数值的符号.3.三种函数的性质4.三角恒等变换的主要公式sin(α±β)=sin αcos β±cos αsin β; cos(α±β)=cos αcos β∓sin αsin β; tan(α±β)=tan α±tan β1∓tan αtan β;sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=sin 2αcos 2α=2tan α1-tan 2α. 5.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.6.平面向量的有关运算(1)两个非零向量平行(共线)的充要条件:a ∥b ⇔a =λb . 两个非零向量垂直的充要条件:a ⊥b ⇔a ·b =0⇔|a +b |=|a -b |. (2)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (3)若A (x 1,y 1),B (x 2,y 2 ), 则|AB ―→|=x 2-x 12+y 2-y 12.(4)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 二、活用定理与结论 1.三角函数的两种常见变换2.正、余弦定理 (1)正弦定理①a =2R sin A ,b =2R sin B ,c =2R sin C ; ②sin A =a 2R ,sin B =b 2R ,sin C =c2R ;③a ∶b ∶c =sin A ∶sin B ∶sin C . 注:R 是三角形的外接圆半径. (2)余弦定理①cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.②b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .3.三点共线的判定三个点A ,B ,C 共线⇔AB ―→,AC ―→共线;向量PA ―→,PB ―→,PC ―→中三终点A ,B ,C 共线⇔存在实数α,β使得PA ―→=αPB ―→+βPC ―→,且α+β=1.[易错易混想一想]1.注意角的集合的表示形式不是唯一的,如终边在y 轴的负半轴上的角的集合可以表示为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2k π+π2,k ∈Z ,也可以表示为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2k π+3π2,k ∈Z .2.三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置决定.3.在解决三角问题时,应明确正切函数的定义域,正弦函数、余弦函数的有界性. 4.求y =A sin(ωx +φ)的单调区间时,要注意ω,A 的符号.ω<0时,应先利用诱导公式将x 的系数转化为正数后再求解;在书写单调区间时,不能弧度和角度混用,需加2k π时,不要忘掉k ∈Z ,所求区间一般为闭区间.5.对三角函数的给值求角问题,应选择该角所在范围内是单调函数,这样,由三角函数值才可以唯一确定角,若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围是⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好. 6.利用正弦定理解三角形时,注意解的个数讨论,可能有一解、两解或无解.在△ABC 中,A >B ⇔sin A >sin B .7.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意非零向量平行;λ0=0(λ∈R),而不是等于0;0与任意向量的数量积等于0,即0·a =0;但不说0与任意非零向量垂直.8.当a ·b =0时,不一定得到a ⊥b ,当a ⊥b 时,a ·b =0;a ·b =c ·b ,不能得到a =c ,消去律不成立;(a ·b )·c 与a ·(b ·c )不一定相等;(a ·b )·c 与c 共线,而a ·(b·c )与a 共线.9.两向量夹角的范围为[0,π],向量的夹角为锐角与向量的数量积大于0不等价.[保温训练手不凉]1.已知cos 2α=14,则sin 2α=( )A.12 B.34C.58D.38解析:选D 由倍角公式,得sin 2α=12(1-cos 2α).又cos 2α=14,所以sin 2α=12·⎝ ⎛⎭⎪⎫1-14=38.2.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为( ) A .75° B .60° C .45°D .30°解析:选B 依题意,33=12×4×3sin C ,解得sin C =32.故角C 为60°.3.已知角α的终边上一点的坐标为⎝⎛⎭⎪⎫sin 5π6,cos 5π6,则角α的最小正值为( ) A.5π6 B.2π3 C.5π3D.11π6解析:选C 因为角α的终边上一点的坐标为⎝⎛⎭⎪⎫sin5π6,cos 5π6,所以角α在第四象限,tan α=cos5π6sin5π6=-3,故α的最小正值为5π3.4.设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB ―→|=2|AP ―→|,则点P 的坐标为( ) A .(3,1)B .(1,-1)C .(3,1)或(1,-1)D .无数多个解析:选C 设P (x ,y ),由点P 在直线AB 上,且|AB ―→|=2|AP ―→|得AB ―→=2AP ―→,或AB ―→=-2AP ―→.而AB ―→=(2,2),AP ―→=(x -2,y ),由(2,2)=2(x -2,y ),解得x =3,y =1,此时点P 的坐标为(3,1);由(2,2)=-2(x -2,y ),解得x =1,y =-1,此时点P 的坐标为(1,-1).综上所述,点P 的坐标为(3,1)或(1,-1).5.若函数f (x )=1-2sin 2⎝ ⎛⎭⎪⎫x +π8+sin ⎝⎛⎭⎪⎫2x +π4,则f (x )图象的一个对称中心为( ) A.⎝ ⎛⎭⎪⎫π2,0B.⎝ ⎛⎭⎪⎫π3,0C.⎝ ⎛⎭⎪⎫π4,0 D.⎝ ⎛⎭⎪⎫π6,0 解析:选C f (x )=cos ⎝ ⎛⎭⎪⎫2x +π4+sin ⎝ ⎛⎭⎪⎫2x +π4=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos 2x ,由题设知2x=k π+π2(k ∈Z),解得x =k π2+π4(k ∈Z),当k =0时,对称中心为⎝ ⎛⎭⎪⎫π4,0.6.已知在三角形ABC 中,AB =AC ,BC =4,∠BAC =120°,BE =3EC ,若P 是BC 边上的动点,则AP ―→·AE ―→的取值范围是( )A .[-1,3]B .⎣⎢⎡⎦⎥⎤-23,3 C .⎣⎢⎡⎦⎥⎤-23,103 D .⎣⎢⎡⎦⎥⎤-1,103 解析:选C 以BC 的中点D 为坐标原点,BC 所在的直线为x 轴,AD 所在的直线为y 轴建立平面直角坐标系,则B (-2,0),C (2,0),A ⎝⎛⎭⎪⎫0,23,E (1,0).设P (x,0),x ∈[-2,2],所以AP ―→·AE ―→=⎝⎛⎭⎪⎫x ,-23·⎝ ⎛⎭⎪⎫1,-23=x +43∈⎣⎢⎡⎦⎥⎤-23,103.7.若函数y =tan ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位后,与函数y =tan ⎝⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为( )A.16 B.14 C.13 D.12解析:选D 函数y =tan ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位后,得y =tan ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π6+π4的图象,由题知tan ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π6+π4=tan ⎝ ⎛⎭⎪⎫ωx +π6,即π4-π6ω+k π=π6(k ∈Z),解得ω=6k +12(k ∈Z).又因ω>0,故ω的最小值为12.8.为得到函数y =sin ⎝⎛⎭⎪⎫x +π3的图象,可将函数y =sin x 的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正数),则|m -n |的最小值是________.解析:由题意可知,m =π3+2k 1π,k 1为非负整数,n =-π3+2k 2π,k 2为正整数,∴|m -n |=2π3+2(k 1-k 2)π, ∴当k 1=k 2时,|m -n |min =2π3. 答案:2π39.设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________. 解析:∵f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3,∴x =π2,x =2π3均不是f (x )的极值点,其极值应在x =π2+2π32=7π12处取得,∵f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6,∴x =π2+π62=π3,即⎝ ⎛⎭⎪⎫π3,0应是与对称轴x =7π12相邻的对称中心,∴T =4×⎝ ⎛⎭⎪⎫7π12-π3=π.答案:π10.已知圆O 的半径为2,圆O 的一条弦AB 长为3,P 是圆O 上任意一点,点Q 满足BP ―→=12PQ ―→,则AB ―→·AQ ―→的取值范围是________.解析:AB ―→·AQ ―→=AB ―→·(AB ―→+BQ ―→)=AB ―→·(AB ―→+3BP ―→)=AB ―→·(AB ―→+3BO ―→+3OP ―→)=AB ―→2+3AB ―→·BO ―→+3AB ―→·OP ―→, 由已知得AB =3,OB =OA =OP =2. 〈AB ―→,BO ―→〉=π-∠ABO ,由余弦定理得cos ∠ABO =32+22-222×3×2=34.∴cos 〈AB ―→,BO ―→〉=-34,AB ―→·OP ―→∈[-6,6].∴AB ―→·AQ ―→=9-272+3AB ―→·OP ―→∈⎣⎢⎡⎦⎥⎤-452,272答案:⎣⎢⎡⎦⎥⎤-452,272 回扣六数列与数学归纳法[基础知识看一看]一、牢记概念与公式等差数列、等比数列S n =n a 1+a n2=na 1+n n -2d(1)q ≠1,S n =a 1-q n1-q=a 1-a n q1-q(2)q =1,S n =na 11.等差、等比数列的常用性质2.判断等差数列的常用方法 (1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列.(2)通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列.(3)中项公式法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. (4)前n 项和公式法:S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列.3.判断等比数列的三种常用方法 (1)定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列. (2)通项公式法:a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列.(3)中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.4.证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立;(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.[易错易混想一想]1.已知数列的前n 项和求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1.2.易混淆几何平均数与等比中项,正数a ,b 的等比中项是±ab .3.等差数列中不能熟练利用数列的性质转化已知条件,灵活整体代换进行基本运算.如等差数列{a n )与{b n }的前n 项和分别为S n 和T n ,已知S n T n =n +12n +3,求a nb n时,无法正确赋值求解.4.易忽视等比数列中公比q ≠0,导致增解,易忽视等比数列的奇数项或偶数项符号相同造成增解.5.运用等比数列的前n 项和公式时,易忘记分类讨论.一定分q =1和q ≠1两种情况进行讨论.6.对于通项公式中含有(-1)n的一类数列,在求S n 时,切莫忘记讨论n 的奇偶性;遇到已知a n +1-a n -1=d 或a n +1a n -1=q (n ≥2),求{a n }的通项公式,要注意分n 的奇偶性讨论.7.数列相关问题中,切忌忽视公式中n 的取值范围,混淆数列的单调性与函数的单调性.如数列{a n }的通项公式a n =n +2n ,求最小值,既要考虑函数f (x )=x +2x(x >0)的单调性,又要注意n 的取值限制条件.8.求等差数列{a n }前n 项和S n 的最值,易混淆取得最大或最小值的条件. 9.数学归纳法证题的关键是第二步,证题时应注意:必须利用归纳假设作基础;解题时要搞清从n =k 到n =k +1的过程中增加了哪些项或减少了哪些项.[保温训练手不凉]1.若等差数列{a n }的前n 项和为S n ,且a 2+a 3=6,则S 4的值为( ) A .12B .11C .10D .9解析:选A 由题意得S 4=a 1+a 2+a 3+a 4=2(a 2+a 3)=12.2.设{a n }是等比数列,则“a 1<a 2<a 3”是“数列{a n }是递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选C 由题可知,若a 1<a 2<a 3,即⎩⎪⎨⎪⎧a 1<a 1q ,a 1q <a 1q 2,当a 1>0时,解得q >1,此时数列{a n }是递增数列,当a 1<0时,解得0<q <1,此时数列{a n }是递增数列;反之,若数列{a n }是递增数列,则a 1<a 2<a 3成立,所以“a 1<a 2<a 3”是“数列{a n }是递增数列”的充分必要条件.3.已知{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( )A .35B .33C .31D .29解析:选C 设数列{a n }的公比为q ,则由等比数列的性质知,a 2·a 3=a 1·a 4=2a 1,即a 4=2.由a 4与2a 7的等差中项为54知,a 4+2a 7=2×54,∴a 7=12⎝ ⎛⎭⎪⎫2×54-a 4=14.∴q 3=a 7a 4=18,即q =12.∴a 4=a 1q 3=a 1×18=2,∴a 1=16,∴S 5=16⎝ ⎛⎭⎪⎫1-1251-12=31.4.数列{a n}定义如下:a 1=1,当n ≥2时,a n=⎩⎪⎨⎪⎧1+a n2,n 为偶数,1a n -1,n 为奇数,若a n =14,则n的值为( )A .7B .8C .9D .10解析:选C 因为a 1=1,所以a 2=1+a 1=2,a 3=1a 2=12,a 4=1+a 2=3,a 5=1a 4=13,a 6=1+a 3=32,a 7=1a 6=23,a 8=1+a 4=4,a 9=1a 8=14,所以n =9.5.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差d =________. 解析:∵a 4+a 6=2a 5=6,∴a 5=a 1+4d =3, 又S 5=5a 1+5×42d =5a 1+10d =10,解得公差d =12. 答案:126.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0,则d 的取值范围是________.解析:由S 5S 6+15=0得(5a 1+10d )(6a 1+15d )+15=0,即30a 21+135a 1d +150d 2+15=0,即2a 21+9da 1+10d 2+1=0,由于a 1,d 为实数,故(9d )2-4×2×(10d 2+1)≥0,即d 2≥8,故d ≥22或d ≤-2 2.答案:(-∞,-2 2 ]∪[22,+∞)7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 解析:∵数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,∴a 8>0.又a 7+a 10=a 8+a 9<0,∴a 9<0.∴当n =8时,其前n 项和最大.答案:8回扣七立_体_几_何[基础知识看一看]一、牢记概念与公式1.简单几何体的表面积和体积(1)S 直棱柱侧=c ·h (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式S 圆柱侧=2πrl (r 为底面半径,l 为母线长),S 圆锥侧=πrl (同上),S 圆台侧=π(r ′+r )l (r ′,r 分别为上、下底面的半径,l 为母线长).(5)体积公式V 柱=S ·h (S 为底面面积,h 为高), V 锥=13S ·h (S 为底面面积,h 为高),V 台=13(S +SS ′+S ′)h (S 、S ′为上、下底面面积,h 为高).(6)球的表面积和体积S 球=4πR 2,V 球=43πR 3.2.“向量法”求解“空间角” (1)向量法求异面直线所成的角若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=|a ·b ||a ||b |.(2)向量法求线面所成的角求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=|n ·a ||n ||a |. (3)向量法求二面角求出二面角α­l ­β的两个半平面α与β的法向量n 1,n 2,若二面角α­l ­β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|;若二面角α­l ­β所成的角θ为钝角,则cosθ=-|cos 〈n 1,n 2〉|=-|n 1·n 2||n 1||n 2|.二、活用定理与结论 1.把握两个规则(1)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.(2)画直观图的规则画直观图时,与坐标轴平行的线段仍平行,与x 轴、z 轴平行的线段长度不变,与y 轴平行的线段长度为原来的一半.2.线、面位置关系判定的六种方法。

最新-2018新高考全案高考数学 17-4几何证明选讲2课件 精品

最新-2018新高考全案高考数学 17-4几何证明选讲2课件  精品
• 1.熟悉下列与圆有关的概念 • 圆的切线、割线、三角形的内切圆与旁切圆,圆心角,圆 弧的度数,圆周角,弦切角.
• 2.圆的切线的判定 • 经过圆的半径的外端且 垂直 于这条半径的直线,是圆 的切线.
• 3.圆的切线的性质 • 圆的切线 垂直 过切点的半径. • 推论:①从圆外的一个已知点所引的两条切线长 相等 . • ②经过圆外的一个已知点和圆心的直线, 平分 从这点向 圆所作的两条切线所夹的角. • 4.圆周角定理 • 圆周角的度数 等于 它所对弧的度数的一半. • 推论:①直径(或半圆)所对的圆周角是 直角 . • ②同弧或等弧所对的圆周角 相等 . • ③等于直角的圆周角所对的弦是圆的 直径 .
∴CP=PPAD2=
223a2=98a.
3a
[答案]
9 8a


如图,梯形ABCD是等腰梯形,AD∥BC,求证:A
、B、C、D共圆.
• [证明] ∵梯形ABCD是等腰梯形. • ∴∠A=∠D • 又∵AD∥BC • ∴∠C+∠D=180° • ∵∠A+∠C=180° • ∴A、B、C、D共圆. • [点评与警示] 证明四点共圆通常证四边形的对角互补或 它的一个外角等于它的内角的对角.
• 8.圆内接四边形的判定 • 如果一个四边形的一组对角 互补 内接于圆.
,那么这个四边形
• 9.圆内接四边形的性质
• 圆的内接四边形的对角互补,并且任何一个外角都 等于 它的内对角.
• 1.(2011·广州一模)(几何证明选讲选做题)如下图所示, CD是圆O的切线,切点为C,点A、B在圆O上,BC=1, ∠BCD=30°,则圆O的面积为________.
• [答案] 3
3.(2011·惠州二模)(几何证明选讲选做题)如图,已知 AB 是⊙O 的直径,AB=2,AC 和 AD 是⊙O 的两条弦,AC = 2,AD= 3,则∠CAD=________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何证明选讲1.如图,BD ⊥AE ,∠C =90°,AB =4,BC =2,AD =3,则CE =( )A.92B. C. D. 【答案】B【解析】如图,作CH ⊥AE 于H ,则BD ∥CH , ∴4342AB AD AC AH AH=⇒=+,∴AH =,∴在Rt△AHC 中,CH ,又Rt△CHE ∽Rt△AHC ,∴CE ACCE CH AH=⇒=B 2.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,∠DAB =80°,则∠ACO 等于( )A. 30°B. 35°C. 40°D. 45° 【答案】C【解析】连接OC ,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°,∴∠OCD+∠ADC=180°,∴AD∥OC,∴∠1=∠2,∵OA=OC,∴∠2=∠3,∴∠1=∠3,则AC平分∠DAB;又∠DAB=80°,∴∠ACO=40°故选:C3.(2009•崇文区一模)如图,半径相等的两圆⊙O1,⊙O2相交于P,Q两点.圆心O1在⊙O2上,PT是⊙O1的切线,PN是⊙O2的切线,则∠TPN的大小是()A.90°B.120°C.135°D.150°【答案】B【解析】试题分析:由题意可知△PO1O2是等边三角形,所以∠O1PO2=60°,又PT是⊙O1的切线,PN是⊙O2的切线,可以得到∠TPO1=∠NPO2=90°,由此即可求出∠TPN的度数.解:∵半径相等的两圆⊙O1,⊙O2相交于P,Q两点,圆心O1在⊙O2上,∴△PO1O2是等边三角形,∴∠O1PO2=60°.∵PT是⊙O1的切线,PN是⊙O2的切线,∴∠TPO1=∠NPO2=60°,∴∠TPN=360°﹣90°﹣90°﹣60°=120°.故选B.点评:本题利用了等边三角形的判定和性质,切线的性质等知识解决问题,属于基础题.4.圆上有10个点,过每3个点都可画1个圆的内接三角形,则所有圆的内接三角形的个数为()A.120 B.240 C.360 D.720【答案】A【解析】试题分析:圆上10个点,任意3点都不共线,故从10个中任选3个都可以构成一个三角形,故一共可以画出三角形个数为310120C ,故选A.考点:组合及组合数的应用.5.如图,直线AD与△ABC的外接圆相切于点A,若∠B=60°,则∠CAD等于()A.30°B.60°C.90°D.120° 【答案】B 【解析】试题分析:由于弦切角∠DAC 所夹弧的圆周角正好是∠B ,因此可直接利用弦切角定理求解.解:∵DA 与△ABC 的外接圆相切于点A , 由弦切角定理得: ∴∠CAD=∠B=60°. 故选B .点评:本题主要考查圆的切线的性质定理的证明、弦切角定理的应用.属于基础题.6 ) A .相切 B .相交 C .相切或相离 D .相交或相切【答案】 C 【解析】圆心)0,0(到直线的距离为21m +,可知若m m=+21,即1=m 时,此时直线与圆相切,若0>m 且1≠m 时,m m>+21恒成立,此时直线与圆相离. 7.如图所示,AE 切⊙D 于点E ,AC=CD=DB=10,则线段AE 的长为( )A. 10B. 16C. 10D. 18 【答案】C【解析】试题分析:根据切线的性质得∠AED=90°,然后利用已知条件根据勾股定理即可求出AE .解:∵AE 切⊙D 于点E , ∴∠AED=90°, ∵AC=CD=DB=10, ∴AD=20,DE=10, ∴AE==="10".故选C .点评:此题主要是综合运用了切线的性质以及勾股定理等知识解决问题.8.如图所示,PA 、PB 是⊙O 的两条切线,A 、B 为切点,连接OP 交AB 于C ,连接OA 、OB ,则图中等腰三角形、直角三角形的个数分别为A.1,2 B.2,2 C.2,6 D.1,6【答案】C【解析】∵PA、PB为⊙O切线,∴OA⊥AP,OB⊥PB,PA=PB,OP平分∠APB,∴OP⊥AB.∴直角三角形有6个,等腰三角形有2个.即直角三角形有:△OAP,△OBP,△OCA,△OCB,△ACP,△CBP;等腰三角形有:△OAB,△ABP.9.如图,AB是的直径,PB,PE分别切⊙O于B,C,∠ACE=40°,则∠P=()A.60°B.70°C.80°D.90°【答案】C【解析】试题分析:要求∠P的大小,我们要首先分析∠P与已知的角∠ACE=40°的关系,结合AB为圆的直径,联想直径所对的圆周角为90°,再结合弦切角定理,我们易在已知角与未知角之间找到联系,从而求解.解:连接BC,∵AB是⊙O的直径∴∠ACB=90°,又∠ACE=40°,且PB=PC∴∠PCB=∠PBC=50°,∴∠P=180°﹣50°﹣50°=80°故选:C.点评:要求一个角的大小,先要分析未知角与已知角的关系,然后再选择合适的性质来进行计算.10.如图所示,分别延长圆内接四边形ABCD两组对边相交于E和F两点,如果∠E=30°,∠F=50°,那么∠A为A.55° B.50°C.45° D.40°【答案】B【解析】由∠A+∠ADC+∠E=180°,∠A+∠ABC+∠F=180°,∠ADC+∠ABC=180°,∴∠A=12(180°-∠E-∠F)=50°.11.选修4-1:几何证明选讲如图,已知四边形是圆的内接四边形,是圆上的动点,与交于,圆的切线与线段的延长线交于.(1)证明:是的平分线;(2)若过圆心,,求的长.【答案】(1)证明见解析;(2).【解析】试题分析:(1)由弦切角等于所夹的弧所对的圆周角,得,又所以,故是的平分线;(2)因为为直径,由垂径定理得,且,再由切割线定理列方程,求解得. 试题解析:(1)因为是圆的切线,所以,又,所以,故是的平分线(2)因为为圆心,易得,因为,所以,所以,由切割线定理得,即,即,解得考点:几何证明选讲.12.如图,在△ABC 中,∠C =90°,BE 是角平分线,DE ⊥BE 交AB 于D ,圆O 是△BDE 的外接圆.(1)求证:AC 是圆O 的切线;(2)如果AD =6,AE =BC 的长.【答案】(1)见解析(2)4【解析】(1)证明:连OE ,∵BE ⊥DE , ∴O 点为BD 的中点.∵OB =OE ,∴∠OEB =∠OBE.∵∠OEC =∠OEB+∠CEB=∠OBE+∠CEB=∠CEB +∠CBE=90°,即OE⊥AC. 又E 是AC 与圆O 的公共点,∴AC 是圆O 的切线. (2)解:∵AE 是圆的切线,∴∠AED =∠ABE. 又∠A 共用,∴△ADE ∽△AEB ,∴AD AE AE AB =AB =,解得AB =12, ∴圆O 的半径为3. 又∵OE∥BC,∴OE AO BC AB =,即3912BC =,解得BC =4. 13.如图,已知圆O 是ABC ∆的外接圆,,AB BC AD =是BC 边上的高,AE 是圆O 的直径.(1)求证:AC BC AD AE ⋅=⋅;(2)过点C 作圆O 的切线交BA 的延长线于点F ,若4,6AF CF ==,求AC 的长. 【答案】(1)证明见解析;(2)103. 【解析】 试题分析:(1)首先连接BE ,由圆周角定理可得和直角三角形ABE ∆,得90ABE ADC ∠=∠=︒,可证得ABE ADC ∆∆∽,然后由相似三角形的对应边成比例,即可证得AC BC AD AE ⋅=⋅;(2)根据圆的切割线定理得FC 为圆的切线,所以2FC FA FB =⋅,利用AFC CFB ∆∆∽,即可求解AC 的长.试题解析:(1)连接.BE 则有ABE ∆为直角三角形,所以90ABE ADC ∠=∠=︒,又AEB ACB ∠=∠所以ABE ADC ∆∆∽,所以AB AEAD AC= 即AB AC AD AE ⋅=⋅,又AB BC =,故AC BC AD AE ⋅=⋅(2)因为FC 为圆的切线,所以2FC FA FB =⋅又4,6AF CF ==,从而解得9,5BF AB BF AF ==-= 因为,ACF CBF CFB AFC ∠=∠∠=∠, 所以AFC CFB ∆∆∽,所以AF AC CF CB =,即103AF CB AC CF ⋅==. 考点:圆的性质及与圆相关的比例线段.14.如图,C 点在圆O 直径BE 的延长线上,CA 切圆O 于A 点,∠ACB 平分线DC 交AE 于点F ,交AB 于D 点.(I )求ADF ∠的度数; (II )若AB=AC ,求AC:BC .【答案】(I )︒=∠-︒=∠45)180(21DAE ADF (II )tan tan30AC AE B BC AB ==∠=︒【解析】本试题主要是考查了圆内的性质和三角形的相似的综合运用。

(1)利用角平分线的定义和直径所对的圆周角为直角,结合分析得到所求的角。

(2)根据第一问的结论,分析三角形ACE 相似于三角形ABC ,然后得到线段的比例 关系式,结合直角三角形得到结论解:(I ) AC 为圆O 的切线,∴EAC B ∠=∠又知DC 是ACB ∠的平分线, ∴DCB ACD ∠=∠ ∴ACD EAC DCB B ∠+∠=∠+∠即AFD ADF ∠=∠ 又因为BE 为圆O 的直径, ∴︒=∠90DAE ∴︒=∠-︒=∠45)180(21DAE ADF (4)分(II ) EAC B ∠=∠,ACB ACB ∠=∠,∴ACE ∆∽ABC ∆∴AB AEBCAC =… 6分又 AB=AC, ∴︒=∠=∠30ACB B , ……………… 8分∴在RT △ABE 中,tan tan30AC AE B BC AB==∠=︒=15.(本小题满分10分)选修4-1:几何证明选讲如图,直线AB 经过⊙O 上的点C ,并且,,CB CA OB OA ==⊙O 交直线OB 于E ,D ,连接CD EC ,.(Ⅰ)求证:直线AB 是⊙O 的切线; (Ⅱ)若,21tan =∠CED ⊙O 的半径为3,求OA 的长.【答案】证明:(1)如图,连接AB OC CB CA OB OA OC ⊥∴==,,,OC 是圆的半径, AB ∴是圆的切线.-------------------------------3分 (2)ED 是直径,︒︒=∠+∠∴=∠∴90,90EDC E ECD又EBC CBD E BCD ODC OCD OCD BCD ∠=∠∠=∠∴∠=∠=∠+∠︒又,,,90,BCD ∆∴∽BEC ∆,BE BD BC BCBDBE BC ⋅=⇒=∴2,-----------5分 21tan ==∠EC CD CED , BCD ∆∽BEC ∆,21==EC CD BC BD -----------------------7分设,2,x BC x BD ==则2)6()2(22=∴+=∴⋅=BD x x x BE BD BC --------9分532=+=+==∴OD BD OB OA .------------------------10分【解析】略16.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE:AC=3:5,DE =6,则 |PF|有取值范围为【答案】4 【解析】略17.如图,_____,2////,====DP BCPE DE FG DB FD AF 则【答案】6 【解析】18.如图,ABC ∆是圆的内接三角形,PA 切圆于点A ,PB 交圆于点D 。

相关文档
最新文档