高二寒假 第五讲 常用逻辑用语(提高)(文科)
(完整版)常用逻辑用语知识点总结

常用逻辑用语一、命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2、四种命题及其关系(1)、四种命题命题 表述形式原命题 若p,则q逆命题 若q,则p否命题 若⌝p则⌝q逆否命题 若⌝q则⌝p(2)、四种命题间的逆否关系(3)、四种命题的真假关系**两个命题互为逆否命题,它们有相同的真假性;*两个命题为互逆命题或互否命题,它们的真假性没有关系.二、充分条件与必要条件1、定义1.如果p⇒q,则p是q的充分条件,q是p的必要条件.2.如果p⇒q,q⇒p,则p是q的充要条件.2、四种条件的判断1.如果“若p则q”为真,记为p q⇒,如果“若p则q”为假,记为p q⇒/.2.若p q⇒,则p是q的充分条件,q是p的必要条件3.判断充要条件方法:(1)定义法:①p是q的充分不必要条件⇔p qp q⇒⎧⎨⇐/⎩ ②p是q的必要不充分条件⇔p qp q⇒⎧/⎨⇐⎩③p是q的充要条件⇔p qq p⇒⎧⎨⇒⎩ ④ p是q的既不充分也不必要条件⇔p qp q⇒⎧/⎨⇐/⎩(2)集合法:设P={p},Q={q},①若P Q,则p是q的充分不必要条件,q是p的必要不充分条件.②若P=Q,则p是q的充要条件(q也是p的充要条件).③若P Q且Q P,则p是q的既不充分也不必要条件.(3)逆否命题法:①⌝q是⌝p的充分不必要条件⇔p是q的充分不必要条件②⌝q是⌝p的必要不充分条件⇔p是q的充分不必要条件③⌝q是⌝p的充分要条件⇔p是q的充要条件④⌝q是⌝p的既不充分又不必要条件⇔p是q的既不充分又不必要条件三、简单的逻辑联结词(1) 命题中的“且”“或”“非”叫做逻辑联结词.①用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.②用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.③对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定”.(2)简单复合命题的真值表:p qp∧q p∨q¬p真 真 真 真 假假 真 假 真 真真 假 假 真 假假 假 假 假 真*p∧q: p、q有一假为假, *p∨q:一真为真, *p与¬p:真假相对即一真一假.四、量词1、全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.(3)全称量词用符号“∀”表示;存在量词用符号“∃”表示.2 全称命题与特称命题(1)含有全称量词的命题叫全称命题: “对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2)含有存在量词的命题叫特称命题: “存在M中的一个x0,使p(x0)成立”可用符号简记为∃x0∈M,P(x0),读作“存在M 中的元素x 0,使p (x 0)成立”.3命题的否定(1) 含有量词命题的否定全称命题p :,()x M p x ∀∈的否定⌝p :(),x M p x ∃∈⌝;全称命题的否定为存在命题 存在命题p :(),x M p x ∃∈的否定⌝p :(),x M p x ∀∈⌝;存在命题的否定为全称命题 其中()p x p (x )是一个关于x 的命题.(2) 含有逻辑连接词命题的否定“p 或q ”的否定:“ ⌝p 且⌝q ” ;“p 且q ”的否定:“ ⌝p 或⌝q ”(3) “若p 则q “命题的否定:只否定结论特别提醒:命题的“否定”与“否命题”是不同的概念,命题的否定:只否定结论;否命题:全否对命题p 的否定(即非p )是否定命题p 所作的判断,而“否命题”是 “若⌝p 则⌝q ”。
高中数学备课资料帮你复习常用逻辑用语

帮你复习常用逻辑用语一、本章知识网络⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎨⎪⎩⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎨⎪⎪⎪⎩⎩命题命题及其关系四种命题四种命题的相互关系充分条件与必要条件充分条件与必要条件充要条件且简单的逻辑联结词或非全称量词全称量词与存在量词存在量词含有一个量词的命题的否定二、重点、难点回顾1.命题与其关系(1)写原命题的逆命题、否命题与逆否命题时,比较容易错的是写否命题.原命题是“若p ,则q ”的形式时,否命题应为“若p ⌝,则q ⌝”,既要否定条件,又要否定结论.(2)四种命题形式之间的关系是相对的,如逆命题的逆命题是原命题,逆否命题的逆否命题也是原命题.原命题与逆否命题同真假,原命题与逆命题(或否命题)不一定同真假.由于逆命题与否命题之间的关系是“互为逆否”,因此逆命题与否命题同真假.当原命题的真假不易判断时,常转换为判断它的逆否命题的真假.2.充分条件与必要条件在判断时应注意以下几点:(1)确定一个命题,条件是什么,结论是什么.(2)若原命题为真,则条件是结论的充分条件.(3)若逆命题为真,则原命题中条件是结论的必要条件.(4)若原命题及其逆命题同时为真,则条件(或结论)是结论(或条件)的充要条件.3.简单的逻辑联结词会判断由简单的逻辑联结词构成的命题的真假性.4.全称量词与存在量词(1)全称量词与存在量词的基本特征;(2)含一个量词的全称命题与特称命题的否定.特称命题:()p x A p x ∃∈,,它的否定是::p x A ⌝∀∈,()p x ⌝,全称命题:q x A ∀∈,()q x ,它的否定是::()q x A q x ⌝∃∈⌝,.非常提示:互为逆否命题的两个命题具有相同的真假性与充要条件是本章中两个特别重要的内容,它们在以后的学习中将经常用到,因此,要特别引起同学们的注意.三、学习中应注意的问题1.学习过程中要注意总结解题规律,反思章节知识中的数学思想方法总结解题规律,反思章节知识中的数学思想方法,这是对章节知识的升华,是对学习能力的进一步提高.学习知识要经过由表及里,从量变到质变的转化,经过这个环节的梳理,我们不再以"题海"为终结目标,而是通过真实的感受、愉快的体验、实效的互动,学习数学文化,接纳数学问题,提高数学品位.本章主要的数学思想方法有等价转化思想、逆向思想、递推法等.2.要注意对易错题的总结有用的经验都是在对数学问题的挫折与差异分析中总结出来的.同学们可通过这方面的积累与总结,降低出错率.如,在使用常用逻辑用语的过程中,要注意掌握常用逻辑用语的用法,纠正出现的逻辑错误,用心体会运用常用逻辑用语表述数学内容的准确性、简洁性.四、学习常用逻辑用语的意义正确地使用逻辑用语是现代社会公民应该具备的基本素质.无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思维.学习常用逻辑用语,要体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,从而更好地进行交流.通过本章的学习,还要努力培养自己观察、比较、抽象、概括、逻辑推理能力,初步形成运用逻辑知识准确地表达数学问题和实际问题的意识和能力,培养科学的、严谨的学习态度,为树立辩证唯物主义科学的世界观打下基础.。
(完整版)常用逻辑用语知识点总结

常用逻辑用语—、命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题•其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2、四种命题及其关系(1) 、四种命题(2) 、四种命题间的逆否关系(3) 、四种命题的真假关系**两个命题互为逆否命题,它们有相同的真假性;*两个命题为互逆命题或互否命题,它们的真假性没有关系.、充分条件与必要条件1、定义1 .如果p? q,则p是q的充分条件,q是p的必要条件.2•如果p? q, q? p,则p是q的充要条件.2、四种条件的判断1.如果若p则q ”为真,记为p q,如果若p则q ”为假,记为p q .2.若p q,则p是q的充分条件,q是p的必要条件3.判断充要条件方法:p q p q(1 )定义法:①p是q的充分不必要条件p q ②p是q的必要不充分条件p qp q p q③p是q的充要条件q p ④p是q的既不充分也不必要条件p q(2)集合法:设P={p}, Q={q},①若P Q,则p是q的充分不必要条件,q是p的必要不充分条件②若P=Q,则p是q的充要条件(q也是p的充要条件).③若P g.Q且Q ^ P,则p是q的既不充分也不必要条件.(3)逆否命题法:①q是p的充分不必要条件p是q的充分不必要条件②q是p的必要不充分条件p是q的充分不必要条件③q是p的充分要条件p是q的充要条件④q是p的既不充分又不必要条件p是q的既不充分又不必要条件三、简单的逻辑联结词⑴命题中的且”或”非”叫做逻辑联结词.①用联结词且”联结命题p和命题q,记作p A q,读作p且q”.②用联结词或”联结命题p和命题q,记作p V q,读作p或q”.③对一个命题p全盘否定,就得到一个新命题,记作?p,读作非p”或p的否定(2)简单复合命题的真值表:*p A q:p、q有一假为假, *p V q:一真为真, .四、量词1、全称量词与存在量词(1)常见的全称量词有:任意一个” 一切”每一个”任给”所有的”等.(2)常见的存在量词有:存在一个”至少有一个”有些”有一个”某个”有的”等.(3)全称量词用符号?”表示;存在量词用符号? ”表示.2全称命题与特称命题(1) 含有全称量词的命题叫全称命题:对M中任意一个x,有p(x)成立”可用符号简记为?x€ M, p(x),读作对任意x属于M,有p(x)成立”.(2) 含有存在量词的命题叫特称命题:存在M中的一个x o,使p(x o)成立"可用符号简记为?x o€ M , P(x o),读作存在M中的兀素x o,使p(x o)成立”3 命题的否定(1) 含有量词命题的否定全称命题p:x M , p(x) 的否定p:x M, p x ;全称命题的否定为存在命题存在命题p:x M, p x 的否定p:x M , p x ;存在命题的否定为全称命题其中p x p (x)是一个关于x的命题.(2) 含有逻辑连接词命题的否定“p 或q ”的否定:“ p 且q” ;p且q ”的否定:“ p或q”(3) “若p则q “命题的否定:只否定结论特别提醒:命题的“否定”与“否命题”是不同的概念,命题的否定:只否定结论;否命题:全否对命题p的否定(即非p)是否定命题p所作的判断,而否命题”是若p则q ”。
(完整版)常用逻辑用语知识点总结

常用逻辑用语一、命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2、四种命题及其关系(1)、四种命题(2)、四种命题间的逆否关系(3)、四种命题的真假关系**两个命题互为逆否命题,它们有相同的真假性;*两个命题为互逆命题或互否命题,它们的真假性没有关系.二、充分条件与必要条件1、定义1.如果p⇒q,则p是q的充分条件,q是p的必要条件.2.如果p⇒q,q⇒p,则p是q的充要条件.2、四种条件的判断1.如果“若p则q”为真,记为p q⇒,如果“若p则q”为假,记为p q⇒/.2.若p q⇒,则p是q的充分条件,q是p的必要条件3.判断充要条件方法:(1)定义法:①p是q的充分不必要条件⇔p qp q⇒⎧⎨⇐/⎩②p是q的必要不充分条件⇔p qp q⇒⎧/⎨⇐⎩③p是q的充要条件⇔p qq p⇒⎧⎨⇒⎩④p是q的既不充分也不必要条件⇔p qp q⇒⎧/⎨⇐/⎩(2)集合法:设P={p},Q={q},①若P Q,则p是q的充分不必要条件,q是p的必要不充分条件.②若P=Q,则p是q的充要条件(q也是p的充要条件).③若P Q且Q P,则p是q的既不充分也不必要条件.(3)逆否命题法:①⌝q是⌝p的充分不必要条件⇔p是q的充分不必要条件②⌝q是⌝p的必要不充分条件⇔p是q的充分不必要条件③⌝q是⌝p的充分要条件⇔p是q的充要条件④⌝q是⌝p的既不充分又不必要条件⇔p是q的既不充分又不必要条件三、简单的逻辑联结词(1)命题中的“且”“或”“非”叫做逻辑联结词.①用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.②用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.③对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定”.(2)简单复合命题的真值表:p qp∧q p∨q¬p真真真真假假真假真真真假假真假假假假假真*p∧q:p、q有一假为假,*p∨q:一真为真,*p与¬p:真假相对即一真一假.四、量词1、全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.(3)全称量词用符号“∀”表示;存在量词用符号“∃”表示.2 全称命题与特称命题(1)含有全称量词的命题叫全称命题: “对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2)含有存在量词的命题叫特称命题: “存在M中的一个x0,使p(x0)成立”可用符号简记为∃x0∈M,P(x0),读作“存在M 中的元素x 0,使p (x 0)成立”. 3命题的否定(1) 含有量词命题的否定全称命题p :,()x M p x ∀∈的否定⌝p :(),x M p x ∃∈⌝;全称命题的否定为存在命题 存在命题p :(),x M p x ∃∈的否定⌝p :(),x M p x ∀∈⌝;存在命题的否定为全称命题 其中()p x p (x )是一个关于x 的命题. (2) 含有逻辑连接词命题的否定 “p 或q ”的否定:“ ⌝p 且⌝q ” ; “p 且q ”的否定:“ ⌝p 或⌝q ”(3) “若p 则q “命题的否定:只否定结论特别提醒:命题的“否定”与“否命题”是不同的概念,命题的否定:只否定结论;否命题:全否 对命题p 的否定(即非p )是否定命题p 所作的判断,而“否命题”是 “若⌝p 则⌝q ”。
常用逻辑用语(命题及其关系)

常用逻辑用语(命题及其关系)知识点一、命题定义:一般地,我们用语言、符号或式子表达的,可以判断真假的陈述句,叫做命题;其中判断为正确的命题,为真命题;判断为不正确的命题,为假命题。
辨析:能够分辨哪一个是命题及其真假①判断一个语句是否是命题,关键在于能否判断其真假。
语句可分为疑问句、祈使句、感叹句与陈述句。
一般的,只有陈述句能分辨真假,其他类型的句子无所谓真假,我们把每个能分辨真假的陈述句作为一个命题。
②对于一个句子,有时我们可能无法判断其真假,但对这个句子却是有真假的,如:“太阳系外存在外星人”,对于这个句子所描述的情形,目前确定其真假,但从事物的本质而言,句子本身是可以判断其真假的。
这类语句也称为命题。
语句是不是命题,关键在于能不能判断其真假,也就是判断其是否成立。
③不判断真假的语句,就不能叫命题。
“ X<2”。
知识点二、四种命题1.原命题与逆命题即在两个命题中,如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题;如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.例如,如果原命题是:⑴同位角相等,两直线平行;它的逆命题就是:⑵两直线平行,同位角相等2.否命题与逆否命题即在两个命题中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题就叫做互否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.例如,⑶同位角不相等,两直线不平行;⑷两直线不平行,同位角不相等3.原命题与逆否命题即在两个命题中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题就叫做互为逆否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.4.四种命题的形式一般到,我们用p和q分别表示原命题的条件和结论,用「种命题的形式就是:原命题:若p则q; 逆命题:若q则p ;否命题:若「p则「q;逆否命题:若「q贝归p.【例1】判断下列命题的真假。
高中数学常用逻辑用语

逆否命题: 若 q 则 p
结论1:要写出一个命题的另外三个命
题关键是分清命题的题设和结论(即
把原命题写成“若p则q”的形式)
注意:三种命题中最难写 的是否命题。 高中数学常用逻辑用语
三、四种命题之间的 关系
原命题
பைடு நூலகம்若p则q
互逆 逆命题
若q则p
互
互
否
否
否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
高中数学常用逻辑用语
x∈N”是“x∈M∩N”的
B
A.充要条件
B必要不充分条件
C充分不必要 D既不充分也不必要
注、集合法
2、a∈R,|a|<3成立的一个必要不充分条件是
A.a<3 B.|a|<2 C.a2<9 D.0<a<2
A
高中数学常用逻辑用语
练习5、
1.已知p是q的必要而不充分条件, 那么┐p是┐q的___充__分_不__必__要_条__件__.
(2)从这个假设出发,经过推理 论证,得出矛盾;
(3) 由矛盾判定假设不正确, 从而肯定命题的高中数结学常用论逻辑正用语 确。
归谬 结论
1.写出命题“当c>0时,若a>b, 则ac>bc“的逆命题,否命题 与逆否命题,并分别判断他们的真假
2.写出命题“若x≠a且x≠b, 则x2-(a+b)x+ab≠0”的否命题
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件 4)若A=B ,则甲是高中乙数学的常用逻充辑用分语 且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
高中数学:常用逻辑用语

常用逻辑用语一、知识框架1.命题定义:用语言、符号或式子表达的、可以判断正误的陈述语句,叫做命题。
其中,判断为真的即为真命题,为假的即为假命题。
2.命题的判断以及命题真假的判断(1)命题的判断:①判断该语句是否是陈述句;②能否判断真假。
(2)命题真假的判断:首先,分清条件与结论,其次,再判断命题真假。
3.一般地,用p 和q 分别表示原命题的条件和结论,用¬p 和¬q 表示p 与q 的否定,即如下:(四种命题的关系)4.充分条件和必要条件 (1)充分条件:如果A 成立,那么B 成立,则条件A 是B 成立的充分条件。
(2)必要条件:如果A 成立,那么B 成立,这时B 是A 的必然结果,则条件B 是A 成立的必要条件。
(3)充要条件:如果A 既是B 成立的充分条件,又是B 成立的必要条件,则A 是B 成立的充要条件,与此同时,B 也一定是A 成立的重要条件,所以此时,A 、B 互为充要条件。
【注意】充分条件与必要条件是完全等价的,是同一逻辑关系“A =>B ”的不同表达方法。
5.逻辑联结词(1)不含逻辑联结词的命题是简单命题,由简单命题和逻辑联结词“或”“且”“非”构成的命题是复合命题,它们有以下几种形式:p 或q (p ∨q );p 且q (p ∧q );非p (¬p )。
(2)逻辑联结词“或”“且”“非”的含义的理解 在集合中学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切。
6.量词与命题量词名称 常见量词表示符号全称量词 所有、一切、任意、全部、每一个、任给等 ∀存在量词 存在一个、至少有一个、某个、有些、某些等∃命 题 表述形式 原命题 若p 则q 逆命题 若q 则p 否命题 若¬p 则¬q 逆否命题若¬q 则¬p(2)全称命题与特称命题 命题全称命题“()x p M x ,∈∀”特称命题“()00,x p M x ∈∃”定义短语“对所有的”“对任意一个”等,在逻辑中通常叫做全称量词,用符号“∀”表示。
高二数学上学期期末复习备考讲练 专题05 常用逻辑用语课件 文

K12课件
22
7.写出命题“一组对边平行且相等的四边形是平行四边形”的逆命题、 否命题和逆否命题,并且判断它们的真假.
【解析】:逆命题:如果一个四边形是平行四边形,那么这个 四边形的一组对边平行且相等(真命题); 否命题:如果一个四边形的一组对边不平行或不相等,那么 这个四边形不是平行四边形(真命题); 逆否命题:如果一个四边形不是平行四边形,那么这个四边形 的一组对边不平行或不相等(真命题).
(4)会区别一个否命题、命题的否定、含有一个命题量 词的否定.
K12课件
2
二、基础知识整合
1.命题: 可以判断真假 的语句叫命题; 逻辑联结词: “或”“且”“非”这些词就叫做逻辑联结词; 简单命题:不含 逻辑联结词的命题; 复合命题:由 简单命题与逻辑联结词 构成的命题. 常用小写的拉丁字母,,,,……表示命题.
K12课件
20
5.有下列四个命题:①“若xy=1,则x,y互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题;③若“b≤-1,则方程 x2-2bx+b2+b=0有实根”的逆否命题;④若p∨q为假命题,则 p,q均为假命题.其中真命题的序号是 ①③④ .(把所有正 确命题的序号都填上)
【解析】对①,逆命题“若x,y互为倒数,则xy=1”是真命题;对 ②,否命题“不相似的三角形的周长不相等”是假命题; 对③,Δ=4b2-4(b2+b)≥0,即b≤0,∴b≤-1时,方程有实根,即命题 为真命题,逆否命题也为真命题;对④,p∨q假时,p,q一定均 假,∴④正确.故①③④正确.
A.0
B.3
C.2
D.1
【解析】p真,q假。所以p且q假;p或q真,非p假。故选D。
4.在命题“若抛物线y=ax2+bx+c的开口向下,则{x|ax2+bx+c<0} ≠⌀”的逆命题、否命题、逆否命题中结论成立的是( D ) A.都为真 B.都为假 C.否命题为真 D.逆否命题为真
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用逻辑用语(提高)辅导教案1、求函数2254x y x +=+的值域。
2、设,x y 满足不等式组60210320x y x y x y +-≤⎧⎪--≤⎨⎪--≥⎩,若z ax y =+的最大值为24a +,最小值为1a +,则实数a 的取值范围为( ) A.[]12-, B.[]21-, C.[]32--, D.[]31-,1.给出下列四个命题:(1)若为假命题,则、均为假命题;(2)命题“[)21,2,0x x a ∀∈-≤”为真命题的一个充分不必要条件可以是1a ≥;(3)已知函数2211,f x x x x ⎛⎫-=+ ⎪⎝⎭则()26f =; (4)若函数2143mx y mx mx -=++的定义域为R ,则实数m 的取值范围是30,4⎛⎫⎪⎝⎭. 其中真命题的个数是( )A.0B.1C.2D.32、已知命题:p x A ∈,且{|11}A x a x a =-<<+,命题:q x B ∈,且2{|430}B x x x =-+≥.(Ⅰ)若,A B A B R =∅=,求实数a 的值; (Ⅱ)若p 是q 的充分条件,求实数a 的取值范围.1、 对于四种命题(、原命题否命题、逆命题、逆否命题)不理解。
2、 命题关系不清晰,混乱。
3、 充分条件、必要条件的概念不清晰。
q p ∨p q一、命题及其关系、充分条件与必要条件(1)命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.(2)四种命题及相互关系(3)四种命题的真假关系(a)两个命题互为逆否命题,它们有相同的真假性;(b)两个命题互为逆命题或互为否命题,它们的真假性没有关系.(4)充分条件与必要条件(a)如果p⇒q,则p是q的充分条件,q是p的必要条件;(b)如果p⇒q,q⇒p,则p是q的充要条件.2、简单的逻辑联结词、全称量词与存在量词(1)命题p∧q,p∨q,非p的真假关系表p q p∧q p∨q 綈p真真真真假真假假真假假真假真真假假假假真(2)全称量词和存在量词量词名称常见量词表示符号全称量词所有、一切、任意、全部、每一个、任给等∀存在量词存在一个、至少有一个、有一个、某个、有些、某些等∃(3)全称命题和特称命题1.下列命题中是真命题的是( )①“若220x y +≠,则,x y 不全为零”的否命题; ②“正多边形都相似”的逆命题;③“若0m >,则20x x m +-=有实根”的逆否命题; ④“2,+20x R x x ∃∈+≤”的否定. A.①②③④ B.①③④ C.②③④ D.①④2.命题“若12<x ,则11<<-x ”的逆否命题是( ) A .若12≥x ,则1≥x 或1-≤x B.若11<<-x ,则12<x C.若1>x 或1-<x ,则12>x D.若1≥x 或1-≤x ,则12≥x3.“a 和b 都不是偶数”的否定形式是( )A .a 和b 至少有一个是偶数B .a 和b 至多有一个是偶数C .a 是偶数,b 不是偶数D .a 和b 都是偶数4、设命题p:方程表示双曲线;命题q:(I )若命题P 为真命题,求实数m 的取值范围; (II )若命题q 为真命题,求实数m 的取值范围; (III )求使为假命题的实数m 的取值范围.221122x y m m +=-+2000R,220x x mx m ∃∈++-=""p q ∨1、 掌握四种命题的书写注意。
2、 掌握命题之间的关系,(原命题与逆否命题同真假)(否命题与逆命题同真假)3、充分、必要、充要条件的概念(小范围推出大范围。
)1.设命题:对,则为( ) A . B . C . D .2.条件甲:“00>>b a 且”,条件乙:“方程122=-by a x 表示双曲线”,那么甲是乙的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.“存在()∞+∈,0x 使不等式022>++m x mx 成立”为假命题,则m 的取值范围为__________________________4.下列说法中错误的是_______(填序号)①命题“,,212,1x x M x x ≠∈∃有0))](()([1221>--x x x f x f ”的否定是“,,212,1x x M x x ≠∉∀有0))](()([1221≤--x x x f x f ”; ②若一个命题的逆命题为真命题,则它的否命题也一定为真命题; ③已知032:2>-+x x p , 131:>-xq ,若命题p q ∧⌝)(为真命题,则x 的取值范围是(,3)(1,2)[3,)-∞-+∞;④“3≠x ”是“3≠x ”成立的充分条件.p x e R x x ln ,>∈∀+p ⌝00ln ,0x e R x x <∈∃+x e R x x ln ,<∈∀+00ln ,0x e R x x ≤∈∃+x e R x x ln ,≤∈∀+1.下列命题: ①2>1或1<3;②方程x 2-3x -4=0的判别式大于或等于0;③周长相等的两个三角形全等或面积相等的两个三角形全等; ④集合A ∩B 是集合A 的子集,且是A ∪B 的子集. 其中真命题的个数是( ) A .1 B .2 C .3 D .42.p :函数f (x )=lg x +1有零点;q :存在α、β,使sin(α-β)=sin α-sin β,在p ∨q ,p ∧q ,非p ,非 q 中真命题有( ) A .1个 B .2个 C .3个 D .4个3.已知命题“非空集合M 的元素都是集合P 的元素”是假命题,那么下列说法: ①M 的元素都不是P 的元素;②M 中有不属于P 的元素; ③M 中有P 的元素;④M 中元素不都是P 的元素. 其中正确的个数为( ) A .1 B .2 C . 3D .44、命题p :关于x 的不等式0)1(22≤+-+a x a x 的解集为φ;命题q :函数x a a y )2(2-=为增函数.p ∨q 是真命题且p ∧q 是假命题.求实数a 的取值范围.2、设命题:p 函数1y kx =+在R 上是增函数,命题()2:,2310q x R x k x ∃∈+-+=,如果p q ∧是假命题,p q ∨是真命题,求k 的取值范围.答案 复习检查1.C 【解析】 试题分析:(1)根据复合命题的真假关系可知,若p ∨q 为假命题,则p 、q 均为假命题,正确(2)命题“[)21,2,0x x a ∀∈-≤”为真命题,则2a x ≥,∵x ∈[1,2),∴2x ∈[1,4),则a ≥4,则a ≥1是命题为真命题的一个必要不充分条件,故(2)错误,(3)已知函数222111,2f x x x x x x ⎛⎫⎛⎫-=+=-+ ⎪ ⎪⎝⎭⎝⎭,则()22f x x =+,则f (2)=6;故(3)正确, (4)若函数2143mx y mx mx -=++的定义域为R ,则等价为2430mx mx ++≠,当2∀∈+,x R x由原命题和其逆否命题同真假,故真命题个数为2答案:2考点:四种命题的真假关系.10.[1,2]【解析】试题分析:根据逆否命题的等价性,得到原命题为真命题,建立不等式关系即可. 解:“若1≤x≤2,则m ﹣1≤x≤m+1”的逆否命题为真命题,则等价为“若1≤x≤2,则m ﹣1≤x≤m+1”为真命题,则,即,解得1≤m≤2,故答案为:[1,2]考点:四种命题.11.(I )2m <-或12m >.(II )2m ≤-或1m ≥(III )]21,2(- 【解析】 试题分析:(I )命题p 为真命题时,方程221122x y m m +=-+表示双曲线,求出(1-2m )(m+2)<0时的解集即可;(II )命题q 为真命题时,方程200220x mx m ++-=有解,△≥0,求出解集即可;(III )“p ∨q ”为假命题时,p 、q 都是假命题,求出m 的取值范围即可试题解析:(I )因为方程221122x y m m +=-+表示双曲线, 所以(12)(2)0m m -+<,即2m <-或12m >. (II )命题q 为真命题,则2m ≤-或1m ≥(III )要使“q p ∨”为假命题,则p 、q 都是假命题,所以⎪⎩⎪⎨⎧<<-≤≤-12212m m 得:212≤<-m 所以m 的取值范围为]21,2(-考点:命题的真假判断与应用12.(1) (2,3) (2) (1,2]【解析】,22 ⎪⎝⎭试题分析:首先由一次函数二次函数性质可求得命题由p q ∧是假命题k 的取值范围1522k ∴<<,22 ⎪⎝⎭14.⎭⎬⎫⎩⎨⎧-<≤≤<211131a a a -或 【解析】试题分析:由题已知.p ∨q 是真命题且p ∧q 是假命题,则可推知,p q 必为一真一假,可分别求出对应的a 的取值范围,可分两种情况求出a 的取值范围. 试题解析: p 命题为真时,∆=<0,即a >,或a <-1.①q 命题为真时,2-a >1,即a >1或a <- .②p ∨q 是真命题且p ∧q 是假命题,有两种情况:p 真q 假时,<a ≤1;p 假q 真时,-1≤a <- .故p ∨q 是真命题且p ∧q 是假命题时,a 的取值范围为⎭⎬⎫⎩⎨⎧-<≤≤<211131a a a -或 考点:复合命题的真假判断及二次不等式和幂函数的性质;15.]1,(--∞;【解析】试题分析:本题由“p 且q ”是真命题,可知它们都为真。
分别分析p ,易得1a ≤, 而q ,二次方程有解。
则:0∆≥,可求出a 的范围,求交集可得。
试题解析:.1)(min 2=≤⇔x a p .210)2(442≥-≤⇔≥+-=∆⇔a a a a q 或∵“p 且q ”为真命题,∴p 、q 都是真命题∴1-≤a ∴“p 且q ”是真命题时, 实数a 的取值范围是]1,(--∞考点:“p 且q ”命题真假的判断及二次方程的解和最值问题.16.(1) 2a =; (2) 04a a ≤≥或【解析】试题分析:(1)由题,A B A B R =∅=,因为集合A 含有参数a ,可结合图像进行分析,即满足集合A ,B 无公共部分且占满整个数轴,可建立关于a 的方程组,可求。
(2)由题p 是q 的充分条件,可推知;A B ⊆,集合A 含有参数a ,可结合图像13。