液压系统原理图
液压系统原理

一、概述由电机、进口叶片泵、单向阀、溢流阀、耐震压力表,精滤器、冷却器、空气滤清器等元件组成。
油箱额定容积125L,电机功率2.2KW(或3KW),其流量Q=14升/分,P=7MPa,调压范围4~6MPa。
二、液压系统工作原理参见《液压系统原理图》,油液由油泵从油箱内吸入,经单向阀后分为二路,一路经电磁阀(用于自动手动转换)向电液伺服阀供油,另一路流向手动电磁阀,当伺服阀被脏物所堵时即可用手动方法对油缸进行操控,油缸速度由双单向节流阀调定。
油泵的出油同时经压力表和溢流阀,系统的压力由溢流阀调定,压力表上可反映所调定的工作压力。
溢流阀、伺服阀的回油经冷却器、精滤器后回油箱。
精滤器由滤油器和电接点压差表组成,过滤精度为20μ。
电接点压差表是防止纸质滤芯被堵后背压升高而造成其破裂的保护装置。
当滤油器进出油口压差达到0.35MPa时其表针指示会进入红色报警区域,并会接通触点。
用户可通过触点自接报警装置,触点容量为24V1A。
油液温度由温度计显示。
当油温达到50℃时应接通冷却水,使其进入冷却器进行循环冷却。
系统正常运行时,油温应控制在50℃以下。
常闭式盘式制动器液压站液压回路分析盘式制动器具有结构紧凑、可调性好、动作灵敏、重量轻、惯性小、安全程度高、通用性好等优点,而且盘式制动器成对使用,制动时主轴不承受轴向附加力。
在正常制动时,可以将制动器分成两组,先投入一组工作,间隔一定时间后,投入第二组,即实现了二级制动,二级制动使制动时产生的制动减速度不致过大。
只有在安全制动时才考虑二组同时投入制动,产生最大的制动力矩。
如果有一组产生故障时,也仍然还有一组制动器在工作,不致使制动器的作用完全失效。
由于盘式制动器的上述优点,它被广泛地应用于矿井提升设备的制动系统中。
例如,多绳摩擦式提升机和单绳缠绕式提升机采用的都是这种常闭式的盘式制动器。
图1为用于2JK型提升机的盘式制动器液压站液压回路。
泵5排出的压力油经滤油器8手动换向阀9、二级安全制动阀11(正常工作时带电),通过A、B管进入制动缸15,使盘闸16松开,提升机在运行过程中,为保持盘闸处于松开状态,液压系统处于开泵保压状态。
液压系统原理

一、概述由电机、进口叶片泵、单向阀、溢流阀、耐震压力表,精滤器、冷却器、空气滤清器等元件组成.油箱额定容积,电机功率(或),其流量升分,,调压范围~。
二、液压系统工作原理参见《液压系统原理图》,油液由油泵从油箱内吸入,经单向阀后分为二路,一路经电磁阀(用于自动手动转换)向电液伺服阀供油,另一路流向手动电磁阀,当伺服阀被脏物所堵时即可用手动方法对油缸进行操控,油缸速度由双单向节流阀调定.油泵的出油同时经压力表和溢流阀,系统的压力由溢流阀调定,压力表上可反映所调定的工作压力.溢流阀、伺服阀的回油经冷却器、精滤器后回油箱。
精滤器由滤油器和电接点压差表组成,过滤精度为μ.电接点压差表是防止纸质滤芯被堵后背压升高而造成其破裂的保护装置.当滤油器进出油口压差达到时其表针指示会进入红色报警区域,并会接通触点。
用户可通过触点自接报警装置,触点容量为。
ﻫ油液温度由温度计显示.当油温达到℃时应接通冷却水,使其进入冷却器进行循环冷却。
系统正常运行时,油温应控制在℃以下.常闭式盘式制动器液压站液压回路分析盘式制动器具有结构紧凑、可调性好、动作灵敏、重量轻、惯性小、安全程度高、通用性好等优点,而且盘式制动器成对使用,制动时主轴不承受轴向附加力。
在正常制动时,可以将制动器分成两组,先投入一组工作,间隔一定时间后,投入第二组,即实现了二级制动,二级制动使制动时产生的制动减速度不致过大。
只有在安全制动时才考虑二组同时投入制动,产生最大的制动力矩。
如果有一组产生故障时,也仍然还有一组制动器在工作,不致使制动器的作用完全失效。
由于盘式制动器的上述优点,它被广泛地应用于矿井提升设备的制动系统中。
例如,多绳摩擦式提升机和单绳缠绕式提升机采用的都是这种常闭式的盘式制动器。
图为用于型提升机的盘式制动器液压站液压回路。
泵排出的压力油经滤油器手动换向阀、二级安全制动阀(正常工作时带电),通过、管进入制动缸,使盘闸松开,提升机在运行过程中,为保持盘闸处于松开状态,液压系统处于开泵保压状态。
液压基本回路(有图)_图文

类型: 调速回路、增速回路、速度换接回路等
一、调速回路
节流调速回路
类 型
容积调速回路
进油节流调速回路 回油节流调速回路
旁路节流调速回路
变量泵-定量执行元件 定量泵-变量执行元件 变量泵-变量执行元件
容积节流调速回路:变量泵+流量阀
(一)节流调速回路
1、进油节流调速回路
回路组成方式:
将流量控制阀串接在执行元件 的进油路上,且在泵与流量阀 之间有与之并联的溢流阀 。
:
速度刚度 活塞运动速度随负载变化而变化的程度。用T表示
:
。
速度负载特性曲线(v-R曲线)
v AT1
AT2 AT3
0
分析:
AT1 > AT2 > AT3
Rmax
R
① R一定时,v与AT成正比 ;高速时的速度刚度比低速 时的小; ② AT一定时,R增加则速 度减小;重载区域的速度刚 度比轻载时的小。
(2)特点
PP qP (1)速度-负载特性分析
※ 列活塞受力平衡方程 ※ 求出节流阀前后压差:ΔP ※ 求出活)
v
AT1< AT2< AT3 AT1
0
分析:
AT3 AT2
Rmax3 Rmax2 Rmax1
R
① R一定时, AT越大,v越小,速度刚度越差;
2、回油节流调速回路
A1 A2
Py
qy
P1
q1
P2
q2
qp
Pp
回路组成方式:
将流量控制阀串接 在执行元件的回油 路上,且在泵与执 行元件之间有与之 并联的溢流阀。
(1)速度-负载特性分析
系统稳定工作时,活塞受力平衡方程:
液压基本回路(有图)

液压系统中常见的问题
1 高温问题
引起润滑不良和物理性 能退化。
2 气泡问题
空气混入后气泡会导致 写作和噪音。
3 故障问题
由于系统构造复杂,故 障排除更加麻烦。
液压系统的故障检修方法
1
分析故障原因
了解故障原因,对故障进行排除。
检查液压油、滤器和密封
2
定期更换液压油和滤芯,检查密封是
否完好。
3
维护液压系统的正常工作
液压系统的节能环保
加装变频器
通过变频器的变换达到节 能的目的。
采用流量调节器
有助于减少液压泵的排量, 减少节能。
采用液压节能元件
采用液压系统节能元件, 比如液阻炬,调速马达等, 这些设备都能够减少能耗。
液压系统对人类生活的影响
1
机械行业
液压系统可以使各种机械的性能与功能得到提高,为现代生产模式提供强有力的 支撑。
闭环液压系统的工作原理
1
信号检测器检测执行机构反馈信息
信号检测器检测执行机构的反馈信息,通过反馈回路再次进入控制阀。
2
控制阀内部将反馈信息和设定值进行比较
控制阀内部将反馈信息和设定值进行比较,产生控制信号,调整执行机构的运动 状态。
3
执行机构接受控制信号
执行机构重新进行工作,产生新的反馈信息,经过反馈回路,形成闭环控制。
液压控制阀
调节液压流量和压 力。
液压泵
将液压油从低压区 送到高压区。通常 采用齿轮泵和柱塞 泵。
液压储能器
将液体压缩以存储 能量,释放能量时 将其恢复原状。
压力控制元件的作用
压力表
测量液体在液压回路中的压力 值。
安全阀
当液体压力超过设置值时,自 动开启以减小压力。
液压原理、图形符号、液压回路图

14
二、液压油的污染、控制和选用
1、对液压油的要求 (1) 合适的粘度。即具有较好的粘―温性能。 (2) 具有良好的润滑性能和足够的油膜强度,使系统中的各摩擦表面获得足够
的润滑而不致磨损。 (3) 对金属和密封件有良好的相容性。没有腐蚀性。 (4)良好的化学稳定性。 (5)质地纯净,杂质少。 (6) 凝固点低,闪点(明火能使油面上油蒸汽闪燃,但油本身不燃烧时的温度)
5.静压传递原理(帕斯卡原理)在液压传动中的应用
p1
F1 A1
p2
G A2
p1 p2
F1 G A1 A2
液压系统中的压力取决于负载
23
【例1】液压千斤顶的压油过程中,柱塞泵活塞1的面积 A1 = 1.13×10-4m2,液压缸活塞2的面积A2 = 9.62×10-4m2, 压油时,作用在活塞1上的力F1 = 5.78×103N。试问柱塞泵 油腔3内油液压强p1为多大?液压缸能顶起多重的重物?
37
4.螺杆泵:转子式容积泵和回转式容积泵
单螺杆泵结构
38
螺杆泵工作原理图
39
四、液压泵的比较与选择
类型
优点
缺点
工作压力
结构简单,不需要配 齿轮泵 流装置,价格低,工
作可靠,维护方便
易产生振动和噪声,泄 漏大,容积效率低,径 向液压力不平衡。流量 不可调
低压
叶片泵
输油量均匀,压力脉 动小,容积效率高
和燃点高。一般液压油闪点在130℃~150℃之间。 对轧钢机、压铸机、挤压机、飞机等机器所用的液压油则必须突出油的耐
高温、热稳定性、不腐蚀、无毒、不挥发、防火等项要求。
液压系统原理

液压系统原理一、概述由电机、进口叶片泵、单向阀、溢流阀、耐震压力表,精滤器、冷却器、空气滤清器等元件组成。
油箱额定容积125L,电机功率2.2KW(或3KW),其流量Q=14升/分,P=7MPa,调压范围4~6MPa。
二、液压系统工作原理参见《液压系统原理图》,油液由油泵从油箱内吸入,经单向阀后分为二路,一路经电磁阀(用于自动手动转换)向电液伺服阀供油,另一路流向手动电磁阀,当伺服阀被脏物所堵时即可用手动方法对油缸进行操控,油缸速度由双单向节流阀调定。
油泵的出油同时经压力表和溢流阀,系统的压力由溢流阀调定,压力表上可反映所调定的工作压力。
溢流阀、伺服阀的回油经冷却器、精滤器后回油箱。
精滤器由滤油器和电接点压差表组成,过滤精度为20μ。
电接点压差表是防止纸质滤芯被堵后背压升高而造成其破裂的保护装置。
当滤油器进出油口压差达到0.35MPa时其表针指示会进入红色报警区域,并会接通触点。
用户可通过触点自接报警装置,触点容量为24V1A。
油液温度由温度计显示。
当油温达到50℃时应接通冷却水,使其进入冷却器进行循环冷却。
系统正常运行时,油温应控制在50℃以下。
常闭式盘式制动器液压站液压回路分析盘式制动器具有结构紧凑、可调性好、动作灵敏、重量轻、惯性小、安全程度高、通用性好等优点,而且盘式制动器成对使用,制动时主轴不承受轴向附加力。
在正常制动时,可以将制动器分成两组,先投入一组工作,间隔一定时间后,投入第二组,即实现了二级制动,二级制动使制动时产生的制动减速度不致过大。
只有在安全制动时才考虑二组同时投入制动,产生最大的制动力矩。
如果有一组产生故障时,也仍然还有一组制动器在工作,不致使制动器的作用完全失效。
由于盘式制动器的上述优点,它被广泛地应用于矿井提升设备的制动系统中。
例如,多绳摩擦式提升机和单绳缠绕式提升机采用的都是这种常闭式的盘式制动器。
图1为用于2JK型提升机的盘式制动器液压站液压回路。
泵5排出的压力油经滤油器8手动换向阀9、二级安全制动阀11(正常工作时带电),通过A、B管进入制动缸15,使盘闸16松开,提升机在运行过程中,为保持盘闸处于松开状态,液压系统处于开泵保压状态。
液压系统气动原理图及电磁阀详解

小型化
随着液压系统向小型化方向发展,电磁阀也需要适应这一趋势。通过优化设计和制造工 艺,实现电磁阀的小型化和轻量化。
2024/1/27
智能化
将电磁阀与传感器、控制器等集成,实现电磁阀的智能化控制。例如,通过电磁阀内置 的传感器实时监测流量、压力等参数,并通过控制器实现自动调节。
25
提高液压系统可靠性措施
减压阀
将进口压力降低至某一需要的出口压 力,并保持出口压力稳定。例如,在 润滑系统中,利用减压阀将主油路压 力降低至适合润滑点的压力,保证设 备的正常运行。
17
流量控制阀应用实例
2024/1/27
节流阀
通过改变节流口的大小,调节通过阀的流量。例如,在调速 系统中,利用节流阀控制进入执行元件的流量,从而调节执 行元件的运动速度。
2024/1/27
13
不同类型电磁阀特点比较
直动式电磁阀
结构简单,动作可靠,但流体压 力对阀芯动作影响较大。
01
02
分布式直动电磁阀
03
结合了直动式和先导式的优点, 具有更高的控制精度和可靠性。
04
2024/1/27
先导式电磁阀
通过先导阀控制主阀芯动作,减 小了流体压力对阀芯动作的影响 ,提高了控制精度。
液压系统气动原理图及电磁阀详解
2024/1/27
1
目录
2024/1/27
• 液压系统基本原理与组成 • 气动原理图解读 • 电磁阀结构与工作原理 • 电磁阀在液压系统中的应用 • 液压系统故障诊断与排除方法 • 总结与展望
2
01
液压系统基本原理与组成
Chapter
2024/1/27
3
液压系统工作原理
(培训2)液压原理、图形符号、液压回路图

压力控制回路
压力控制回路用于调节液压系统中油液的压力。
溢流阀在系统压力超过设定值时开启,释放多余的油液, 保持系统压力稳定。
压力控制元件包括溢流阀、减压阀和顺序阀等。
减压阀则通过调节油液的压力来满足执行元件对不同压 力的需求。
速度控制回路
01
速度控制回路用于调节 液压系统中执行元件的 运动速度。
03
04
动力元件
将原动机的机械能转换为液体 的压力能,为液压系统提供动
力。
执行元件
将液体的压力能转换为机械能 ,驱动工作机构进行各种作业
。
控制元件
控制液体的流动方向、压力和 流量,以满足工作机构的需要
。
辅助元件
包括油箱、滤油器、蓄能器等 ,它们的作用是保证液压系统
的正常工作。
02 液压图形符号介绍
ABCD
常见的多执行元件动作控 制元件包括顺序阀和同步 阀。
同步阀则使多个执行元件 在相同的时间和速度下动 作,以实现精确的同步运 动。
05 液压系统设计实例
液压系统设计步骤
确定系统功能和性能要求
根据实际需求,明确液压系统的功能和性能要求,如压力、流量、速 度等参数。
确定液压元件
根据系统需求,选择合适的液压泵、液压阀、油缸等元件,并确定其 规格和参数。
液压元件图形符号
动力元件
执行元件
包括液压泵,其图形符号通常为一个 圆圈内画一个斜杠,表示泵的吸油和 排油过程。
包括液压缸和液压马达,其图形符号 通常为一个矩形或圆形,表示执行元 件的结构和工作原理。
控制元件
包括各种阀类,如溢流阀、节流阀等, 其图形符号通常为方框内画有不同形 状的线条或箭头,表示阀的工作原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
给运动是在工作台往复运动行程终了工作台反向 启动之前进行的。砂轮架的周期进给运动由进给 阀G操纵,由砂轮架进给缸通过其活塞上的拨爪 棘轮、齿轮、丝杠螺母等传动副来实现。 (5)工作台液动Байду номын сангаас动的互锁:由互锁缸实现 (6)尾架顶尖的退出:进油路:液压泵→快 动阀左位→尾架阀右位→尾架缸下腔进油使活塞 上移,通过杠杆机构使顶尖向右退回。 (7)机床的润滑 (8)压力的测量 返回
8.2.2 动力滑台液压系统的工作原理 YT4543型动力滑台的工作压力为4~5MPa 最大进给力为4.5×104N,进给速度范围为6.6~ 660mm/min。图8-1和表8-2分别给出了该动力 滑台液压系统图及电磁铁、压力继电器和行程阀 的动作顺序表。 该系统由限压式变量叶片泵、单杆活塞式液 压缸及液压元件等组成,在机、电、液的联合控 制下能实现工作循环,即:快进→第一次工作进 给→第二次工作进给→死挡铁停留→快退→原位 停止。 返回
返回
8.4.2 YB32-200型压力机液压系统工作原理 液压系统如图8-5所示,其动作循环如表8-3。 该系统由高压轴向柱塞泵供油,由减压阀调定控 制回路的压力,系统的工作原理如下。 1.上滑块工作循环 (1)快速下行 进油路:液压泵1→顺序阀7→上缸换向阀6(左 位) →单向阀10→上液压缸上腔。 回油路:上液压缸下腔→液控单向阀11→上 缸换向阀6(左位) →下缸换向阀14(中位) →油箱。
8.3.4 M1432A万能外圆磨液压系统的特点 (1)采用活塞杆固定的双杆液压缸,机床的 占地面积少,左、右两个方向运动速度的一致。 (2)采用回油节流阀调速回路,液压缸回油 中有背压力,有助于工作稳定和加速工作台的 制动。 (3)采用了HYY21/3P—25T型快跳操纵箱 结构紧凑,操纵方便,换向精度和换向平稳性 较高。此外,这种操纵箱还能使工作台高频抖 动,有利于保证切入式磨削和阶梯轴(孔)磨 削的加工质量。
8.3.2外圆磨床工作台的换向回路
返回
8.3.3 M1432A万能外圆磨床液压系统工作原理 M1432A万能外圆磨床液压系统主要由开停 阀A、节流阀B、先导阀C、换向阀D和抖动缸等 元件组成,如图8-3所示。 (1)工作台往复运动 工作台向右运动时,主油路的油流情况为 : 进油路:液压泵→换向阀D(右位)→工作 台液压缸右腔; 回油路:工作台液压缸左腔→换向阀D(右 位)→先导阀C(右位)→开停阀A(右位)→ 节流阀B→油箱。 返回
回油路(变换二):换向阀D阀芯左端→节 流阀L1→先导阀(左位)→油箱。 工作台迅速反向启动 : 回油路(变换三):换向阀D阀芯左端→通 道b1→换向阀左部环槽→先导阀(左位)→油箱 (3)砂轮架的快进快退运动:砂轮架快速进 退可以完成刀具快速接近工件,快速退刀或快速 松开工件等动作。砂轮架的快速进、退是由快动 阀E操纵,由快动缸来实现。 (4)砂轮架的周期进给运动:砂轮架周期进
(2)自动换向 (3)换向精度要高: 同速换向精度应小于 0.02mm,异速换向精度应小于0.2mm。 (4)端点停留:停留时间在0~5s范围内可调 (5)工作台可做微量抖动: 即工作台作短距 离(1~3mm),频率为100~150次/min的往 复运动。 由以上要求可知,在外圆磨床液压系统中, 除第一项属于调速要求外,其余四项均和工作台 换向有关,故换向问题则是磨床液压系统中的核 心问题。 返回
(5)原位停止 在上滑块上升至挡块碰着行程 开关,使电磁铁2YA断电,先导阀5和换向阀6 都处于中位时,上滑块停止运动,这时液压泵 在较低压力下卸荷。 2.下滑块工作循环 (1)向上顶出 当电磁铁4YA通电,换向阀14 右位接入系统时,下液压缸活塞杆向上顶出, 这时的油路为: 进油路:液压泵1→顺序阀7→换向阀6(中位 →换向阀14(右位)→下液压缸下腔。 回油路:下液压缸上腔→换向阀14(右位) →油箱。 返回
8.2 组合机床动力滑台液压系统
8.2.1 动力滑台液压系统的功能 动力滑台是组合机床用来实现进给运动的通 用部件,根据加工工艺的需要,可在滑台台面上 装置动力箱、多轴箱及各种专用切削头等动力部 件,以完成钻、扩、铰、镗、铣、刮端面、倒角 和攻丝等加工工序以及完成多种复杂进给工作循 环。 液压动力滑台的机械结构简单,配上电器后 能很容易地实现进给运动的自动循环,同时工进 速度也可方便地进行调节,应用比较广泛。 返回
(2)停留 当下滑块上移至下液压缸活塞碰上 缸盖时,便停留在此位置。这时液压缸下腔的 压力由下缸溢流阀15调定,阀16为下液压缸安 全阀。 (3)向下退回 使电磁铁4YA断电、3YA通电 下液压缸便快速退回,此时油路为: 进油路:液压泵1→顺序阀7→换向阀6(中位 →换向阀14(左位)→下液压缸上腔。 回油路:下液压缸下腔→换向阀14(左位) →油箱。 (4)原位停止 原位停止是在电磁铁3YA、 4YA都断电,换向阀14处于中位时的 状况。
返回
8.4.3 YB32—200型压力机液压系统的特点 (1)采用高压大流量的恒功率变量泵供油。 (2)设置顺序阀7确保了控制油路的工作压力 (3)采用专用的QF-1型释压阀来实现上滑块 快速回程时,上液压缸上腔先卸压,换向阀6再换 向保证动作平稳。 (4)利用管道、油液的弹性变形和液控单向 阀来实现保压。 (5)由两个换向阀6和14的互锁来保证上下两 缸的动作协调。 返回
返回
8.3 万能外圆磨床液压系统
8.3.1 概述 磨床必须具有下列运动:砂轮旋转、工件 旋转、工作台带动工件的往复运动和砂轮架的 周期切入运动等。此外,还有砂轮架的快速进、 退和尾座顶尖的伸缩等辅助运动。 机床对各种运动性能都有较高的要求,尤其 对工作台往复运动的性能要求最高,还应满足 以下要求: (1)较宽的调速范围:工作台运动速度能在 0.05~4m/min范围内实现无级调速,修整砂 轮的速度最低为10~30m/min。 返回
返回
6.原位停止 滑台快速退回到原位,挡块压下行程开关,发出信 号,使电磁铁1YA、2YA和3YA全部断电,换向阀6处 于中位,滑台停止运动。 8.2.3 动力滑台液压系统的特点 *采用限压式变量叶片泵和调速阀组成的联合进油调 速回路。 *采用行程阀和液控顺序阀进行速度切换。 *采用限压式变量叶片泵和油缸差动连接实现快进 *采用M型机能的三位五通电液动换向阀的
返回
工作台向左运动时,主油路的油流情况为 : 进油路:液压泵→换向阀D(左位)→工作 台液压缸左腔; 回油路:工作台液压缸右腔→换向阀D(左 位)→先导阀C(左位)→开停阀A(右位)→ 节流阀B→油箱。 (2)工作台换向过程 工作台换向,是由机动先导阀和液动换向阀 所组成的换向回路完成的。 工作台的换向经历迅速制动、停留和迅速反 向启动三个阶段。 返回
(4)快速返回 当保压延时结束时,时间继 电器使电磁铁2YA通电。 上液压缸上腔卸压时,其卸压油路为: 上液压缸上腔→液控单向阀I3→释压阀(上位) →油箱。 阀6右位接入系统时,实现上滑块的快速返回 此时,液控单向阀11被打开,油液流动情况为: 进油路:液压泵1→顺序阀7→换向阀6(右位 →液控单向阀11→上液压缸下腔。 回油路:上液压缸上腔→液控单向阀12→充 液筒。 返回
第8章 典型液压系统
8.1 8.2
怎样看液压系统图 组合机床动力滑台液压系统 万能外圆磨床液压系统 液压压力机液压系统
8.3
8.4
8.1 怎样看液压系统图
液压系统是由一定数量的动力和执行元件、基本回 路组成的能实现特定运动循环和工作目的的一个网络。 阅读和分析液压系统图,可按以下步骤进行: (1)了解液压设备的功用及其对液压系统的动作要求。 (2)初步浏览整个液压系统图,分清主油路与控制回 路 ,将系统分解为若干个子系统。 (3)分析每一个子系统,了解其执行元件与相应的阀 泵之间的关系。 (4)根据系统对各执行元件间的具体要求,分析各子 系统之间的联系。 (5)在全面读懂液压系统的基础上,根据系统所使用 的基本回路的性能,对系统做全面分析,归纳。 返回
返回
返回
(2)慢速加压 当上滑块下移到接触工件时 因受阻减速,使上液压缸上腔压力升高,液控单 向阀12关闭,其加压速度由液压泵流量决定,油 液流动情况与快速下行时相同。 (3)保压延时 当系统中压力升高到使压力继 电器9动作时,电磁铁1YA断电,先导阀5和换 向阀6均处于中位时,保压开始。保压时间由时 间继电器(图中未画出)控制,可在0~24min内 调节保压时除了液压泵在较低压力下卸荷外, 系统中没有油液流动。其卸荷线路为: 液压泵1→顺序阀7→上缸换向阀6(中位)→下 缸换向阀14 (中位)→油箱。 返回
返回
3.第二次工作进给 进油路:过滤器→泵1→单向阀2→换向阀6左位→调 速阀7、8→液压缸左腔。 回油路:液压缸右腔→换向阀6左位→液控顺序阀 4→背压阀3→油箱。 4.死挡铁停留 当滑台完成第二次工作进给后,碰上死挡铁而停止 运动,停留时间由时间继电器来调定。 5.快退 进油路:过滤器→泵1→单向阀2→换向阀6右位→液 压缸右腔。 回油路:液压缸左腔→单向阀10→换向阀6右位→油 箱。
左、右抖动缸进回油路为: 进油路:液压泵→滤油器→先导阀C(左位) →a2 →左抖动缸。 回油路:右抖动缸→a1→先导阀C(左位) →油箱。 工作台迅速制动 : 进油路:液压泵→滤油器→先导阀(左位) →a2→单向阀I2→换向阀D阀芯右端。 回油路(变换一):换向阀D阀芯左→a1→ 先导阀C(左位)→油箱。 工作台在反向前的端点停留 : 返回
小结
本章主要介绍了阅读液压系统的一般方法和步骤 并详细介绍了几种典型的液压系统。 通过本章的学习要掌握如何阅读液压系统,会分 析、写出系统中每一条回路的进、回油路路线,最后 看懂整个回路系统。同时还要学会分析和总结液压系 统的特点。 在阅读液压系统时首先要对设备的功能、运动、 动作间的关系以及设备对液压系统的要求等有明确了 解,然后按照阅读液压系统的一般方法和步骤逐步进 行,否则,很难对系统有一个清晰、完整的印象。
返回
1.快进 进油路:过滤器→泵1→单向阀2→换向阀6 左位→行程阀11下位→液压缸左腔。 回油路:液压缸右腔→换向阀6左位→单向 阀5→行程阀11下位→液压缸左腔。 2.第一次工作进给 进油路:过滤器→泵1→单向阀2→换向阀6 左位→调速阀7→电磁换向阀12右位→液压缸左 腔。 回油路:液压缸右腔→换向阀6左位→液控 顺序阀4→背压阀3→油箱。 返回