离散数学 作业 6~7_31387
离散数学习题答案

离散数学习题答案1. 集合论1.1 基本概念集合论是离散数学中的一个重要分支,研究集合的性质、关系和运算等。
下面是一些常见的集合论学习题答案。
1.1.1 什么是集合?集合是由确定的元素所构成的整体。
集合中的元素是无序且不重复的。
例如,集合A = {1, 2, 3} 包含了元素1、2和3。
1.1.2 什么是空集?空集是不包含任何元素的集合,用符号∅表示。
1.1.3 什么是子集?集合A中的所有元素都是集合B中的元素时,称集合A为集合B的子集,记作A ⊆ B。
如果集合A是集合B的子集且集合B不等于集合A,则称集合A为集合B的真子集,记作A ⊂ B。
1.1.4 什么是并集和交集?集合A和集合B的并集,记作A ∪ B,表示包含了A和B中所有元素的集合。
集合A和集合B的交集,记作A ∩ B,表示包含了A和B中共有的元素的集合。
1.1.5 什么是补集和差集?对于给定的集合U,集合A在集合U中的补集,记作A’或A^c,表示集合U中所有不属于集合A的元素构成的集合。
集合A和集合B的差集,记作A - B,表示集合A中除去与集合B相同的元素后剩下的元素构成的集合。
1.2 集合的运算性质1.2.1 幂集给定一个集合A,包含A的所有子集的集合称为A的幂集,记作P(A)。
例如,对于集合A = {1, 2},它的幂集为P(A) = {{}, {1}, {2}, {1, 2}}。
1.2.2 结合律、交换律和分配律集合的并运算和交运算满足结合律、交换律和分配律。
•结合律:(A ∪ B) ∪ C = A ∪ (B ∪ C),(A ∩ B) ∩ C = A ∩ (B ∩ C)•交换律:A ∪ B = B ∪ A,A ∩ B = B ∩ A•分配律:A ∪ (B ∩ C) =(A ∪ B) ∩ (A ∪ C),A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩ C)1.2.3 求解集合的补集对于给定的集合A和全集U,集合A在全集U中的补集可以通过A’ = U - A求解。
离散数学集合论部分形成性考核书面作业离散数学作业

离散数学集合论部分形成性考核书面作业离散数学作业集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]离散数学集合论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握.本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业.要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2. 在线提交word文档3. 自备答题纸张,将答题过程手工书写,并拍照上传.一、填空题1.设集合{1,2,3},{1,2}==,则P(A)-P(B )=A B{{1,2},{2,3},{1,3},{1,2,3}} ,A B={<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3,2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系,则R的有序对集合为{<2,2>,<2,3>,<3,2>,<3,3>}.4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系R=}x∈y∈y<>=2,,x,{ByAx那么R-1= {<6,3>,<8,4>} .5.设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有的性质是反自反性.6.设集合A={a, b, c, d},A上的二元关系R={<a, a >, <b, b>, <b, c>, <c, d>},若在R中再增加两个元素<c,b>,<d,c>,则新得到的关系就具有对称性.7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个.8.设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1,1>,<2,2>} .9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少包含<1,1>,<2,2>,<3,3> 等元素.10.设A ={1,2},B ={a ,b },C ={3,4,5},从A 到B 的函数f ={<1, a >, <2, b >},从B 到C 的函数g ={< a ,4>, < b ,3>},则Ran(g f )= {<1,a>,<2,b>}或{<1,b>,<2,a>} .二、判断说明题(判断下列各题,并说明理由.)1.若集合A = {1,2,3}上的二元关系R ={<1, 1>,<2, 2>,<1, 2>},则(1) R 是自反的关系; (2) R 是对称的关系.解:(1)结论不成立.因为关系R 要成为自反的,其中缺少元素<3,3>.(2)结论不成立.因为关系R 中缺少元素<2,1>2.设A ={1,2,3},R ={<1,1>, <2,2>, <1,2> ,<2,1>},则R 是等价关系.解:(1)结论不成立.因为关系R 要成为自反的,其中缺少元素<3,3>.(2)结论不成立.因为关系R 中缺少元素<2,1>3.若偏序集<A ,R >的哈斯图如图一所示, 则集合A 的最大元为a ,最小元不存在. 答: 错误,按照定义,图中不存在最大元和最小元。
《离散数学》作业参考答案

7 (P→Q) (P→R) ( P Q) ( P R) (合取范式) ( P Q (R R) ( P ( Q Q) R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R)(主合取范式)
(P ( Q Q)) (( P P) Q) (P Q) (P Q) ( P Q) (P Q) (P Q) (P Q) ( P Q)(主析取范式) 2.Q→( P R) Q P R(主合取范式) (Q→( P R)) ( P Q R) ( P Q R) ( P Q R) ( P Q R) (P Q R)
E
(6)
(8)
E
前提
(9) E E
(7),(8)
8 、A→(C B),B→ A,D→ C A→ D.
证明:
(1) A
附加前提
(2) A→(C B) 前提
(3) C B
(1),(2)
(4) B→ A
前提
(5) B
(1),(4)
(6) C
(3),(5)
(7) D→ C
前提
(8) D
( P (Q Q)) (( P P) Q) ( P Q) ( P Q) ( P Q) (P Q) ( P Q) ( P Q) (P Q)(主析取范式) 4. (P→Q) (R P) ( P Q) (R P) (P Q) (R P)(析取范式) (P Q (R R)) (P ( Q Q) R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R)(主析取范式) ( (P→Q) (R P)) (P Q R) ( P Q R) ( P Q R) ( P Q R) ( P Q R)
离散数学作业标准答案

离散数学作业标准答案离散数学作业⼀、选择题1、下列语句中哪个是真命题(C )。
A .我正在说谎。
B .如果1+2=3,那么雪是⿊⾊的。
C .如果1+2=5,那么雪是⽩⾊的。
D .严禁吸烟!2、设命题公式))((r q p p G →∧→=,则G 是( C )。
A. 恒假的B. 恒真的C. 可满⾜的D. 析取范式 3、谓词公式),,(),,(z y x yG x z y x F ??→中的变元x ( C )。
A .是⾃由变元但不是约束变元 B .既不是⾃由变元⼜不是约束变元 C .既是⾃由变元⼜是约束变元 D .是约束变元但不是⾃由变元4、设A={1,2,3},则下列关系R 不是等价关系的是(C )A .R={<1,1>,<2,2>,<3,3>}B .R={<1,1>,<2,2>,<3,3>,<2,3>,<3,2>}C .R={<1,1>,<2,2>,<3,3>,<1,4>}D .R={<1,1>,<2,2>,<3,3>,<1,2>,<1,3>,<2,3>,<2,1>,<3,1>,<3,2>} 5、设R 为实数集,映射σ=R →R ,σ(x )= -x 2+2x-1,则σ是( D )。
A .单射⽽⾮满射 B .满射⽽⾮单射 C .双射 D .既不是单射,也不是满射 6、下列⼆元运算在所给的集合上不封闭的是( D ) A. S={2x-1|x ∈Z +},S 关于普通的乘法运算 B. S={0,1},S 关于普通的乘法运算 C. 整数集合Z 和普通的减法运算D. S={x | x=2n ,n ∈Z +},S 关于普通的加法运算7、*运算如下表所⽰,哪个能使({a,b},*)成为含⼳元半群( D )b a b b a a b a * b b b a a a b a * a a b a a a b a * a b b b a a b a *A B C D8、下列图中是欧拉图的是( A )。
离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
离散数学复习题有答案

离散数学复习题有答案1. 什么是集合的子集?子集是指一个集合中的所有元素都属于另一个集合。
如果集合A中的每一个元素都是集合B的元素,那么集合A就是集合B的子集。
2. 描述有限集合和无限集合的区别。
有限集合是指元素数量有限的集合,可以被一一列举。
无限集合则包含无限多个元素,无法被完全列举。
3. 什么是二元关系?二元关系是集合A和集合B之间的一种对应关系,它由有序对(a, b)组成,其中a属于集合A,b属于集合B。
4. 什么是函数?函数是一种特殊的二元关系,其中每个定义域中的元素都与值域中的一个且仅一个元素相关联。
5. 什么是等价关系?等价关系是一种自反的、对称的、传递的二元关系。
在集合A上的等价关系将A划分为若干个不相交的等价类。
6. 什么是偏序关系?偏序关系是一种自反的、反对称的、传递的二元关系。
它在集合上定义了一个部分顺序。
7. 什么是有向图和无向图?有向图是一种图,其中的边有方向,表示从一个顶点指向另一个顶点。
无向图的边没有方向,表示两个顶点之间的双向连接。
8. 什么是强连通分量?在有向图中,强连通分量是指图中的一组顶点,这些顶点中的每一个顶点都可以到达集合中的其他任何顶点。
9. 什么是二进制数?二进制数是一种基数为2的数制,只使用0和1两个数字来表示数值。
10. 什么是逻辑运算?逻辑运算是对逻辑值(真或假)进行的操作,包括与(AND)、或(OR)、非(NOT)等运算。
11. 什么是归纳法?归纳法是一种数学证明方法,通过证明一个基本情况,然后假设某个情况成立,再证明下一个情况也成立,从而证明整个命题。
12. 什么是图的遍历?图的遍历是指按照一定的规则访问图中的每个顶点,确保每个顶点都被访问一次。
常见的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
13. 什么是正规表达式?正规表达式是一种描述字符串集合的模式,用于文本搜索和文本处理。
它由一系列字符和元字符组成,定义了字符串的匹配规则。
离散数学练习题及答案6

离散数学练习题及答案6离散数学是一门研究离散结构及其运算规律的数学学科,它在计算机科学、信息科学、电子工程等领域有着广泛的应用。
在学习离散数学的过程中,练习题是不可或缺的一部分。
通过解答练习题,我们可以巩固所学的知识,提高问题解决能力。
本文将为大家提供一些离散数学练习题及其答案,希望对大家的学习有所帮助。
1. 集合与命题逻辑(1) 设集合A={1,2,3,4,5},集合B={3,4,5,6,7},求A与B的交集、并集和差集。
答案:A与B的交集为{3,4,5},并集为{1,2,3,4,5,6,7},A与B的差集为{1,2}。
(2) 已知命题p:"我喜欢数学",命题q:"我喜欢编程",求命题“我既不喜欢数学也不喜欢编程”的否定。
答案:命题“我既不喜欢数学也不喜欢编程”的否定为“我喜欢数学或者喜欢编程”。
2. 关系与函数(1) 设A={1,2,3,4},B={a,b,c,d},关系R={(1,a),(2,b),(3,c),(4,d)},判断关系R是否为A到B的函数。
答案:关系R是A到B的函数,因为每个元素在关系R中只有一个对应的值。
(2) 设函数f(x)=2x+1,求f(3)的值。
答案:将x=3代入函数f(x)=2x+1,得到f(3)=2*3+1=7。
3. 图论(1) 给定一个无向图G,顶点集合V={A,B,C,D,E},边集合E={(A,B),(A,C),(B,D),(C,D),(D,E)},求图G的邻接矩阵。
答案:邻接矩阵为:A B C D EA 0 1 1 0 0B 1 0 0 1 0C 1 0 0 1 0D 0 1 1 0 1E 0 0 0 1 0(2) 给定一个有向图G,顶点集合V={A,B,C,D,E},边集合E={(A,B),(A,C),(B,D),(C,D),(D,E)},求图G的出度和入度。
答案:图G的出度为:A的出度为2,B的出度为1,C的出度为1,D的出度为2,E的出度为0;图G的入度为:A的入度为0,B的入度为1,C的入度为1,D的入度为2,E的入度为1。
离散数学习题与参考答案

习题六格与布尔代数
一、填空题
1、设是偏序集,如果_________, 则称<A, ≤>是(偏序)格.
2、设〈B,∧,∨,′,0,1〉是布尔代数,对任意的a∈B,有a∨a′=____,a∧a′=______.
3、一个格称为布尔代数,如果它是______格和______格.
4、设<>是有界格,a,b L,若a b=0,则a=b=_____;若a b=1,则a=b=____.
二、证明题
1、设<L, ≤>是格,a,b,c,d∈L。
试证:若a≤b且c≤d,则
a∧c≤b∧d
2、证明:在有补分配格中,每个元素的补元一定唯一。
3、设<S,⊕,⊙,′,0,1>是一布尔代数,则
R={<a,b> | a⊕b=b}是S上的偏序关系
4、若<A,≤>是一个格,则对任意a、b 、c∈A,有若a≤c且b≤c,则a∨b ≤c。
5、若<A,≤>是一个格,则对于任意a,b∈A,证明以下两个公式等价;(1)a≤b
(2)a∨b =b
6、证明:如果格中交对并是分配的,那么并对交也是分配的,反之亦然。
7、如果<A,≤>是有界格,全上界和全下界分别是1和0,则对任意元素a∈A,证明:
a∨1=1∨a=1 ,a∨0=0∨a=a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
『离散数学』课程
作业6:
1、已知偏序集<A, R>的哈斯图为:
a)求集合A和关系R。
b)求A的极小元, 最小元, 极大元, 最大元。
c) B = { b, c, d }, 求B的上界、上确界、下界、下确界。
d) C = { d, e }, 求C的上界、上确界、下界、下确界。
2、设 A={1,2,3,4,5},A上的偏序关系R={〈1,2〉,〈3,2〉,〈4,1〉,〈4,2〉,
〈4,3〉,〈3,5〉,〈4,5〉}∪IA,画出
..偏序关系R对应的哈斯图。
若 B = {1,2,3,5},则:
B的极大元,最大元,
极小元,最小元,
上界为,上确界,
下界为,下确界。
3、设A={a,b,c},P(A)是A的幂集,R为P(A)上的包含⊆关系,试给出<P(A),R>的哈斯图,并给出子集{{a,b},{a,c},{c}}的极大元、极小元、最大元、最小元。
4、N表示整数集,给定函数f和集合A、B如下:
(a)求A在f下的像f(A)和B在f下的原像 f−1(B)。
(b)f是不是满射、单射和双射?———————————————————————————————————————两次作业间空5行!———————————————————————————————————————作业7:
1、设p:天下雨,q:我有时间,r:我上街,可以将“仅当天不下雨且我有时间,才上街”符号化为。
2、设p:我上街,q:我去书店看看,r:我很累,可以将“如果我上街,我就去书店看看,除非我很累”符号化为。
3、构造下列复合命题的真值表,并由此判断它是否为重言式。
⌝
→
∧
P⌝
∨
⌝
Q
∧
→
P
))
(
)
Q
(
R
((R
)
4、用等价演算法证明下面的等价式或推理
5、一位计算机工作者协助公安人员审查一件谋杀案,警方掌握的线索如下;
(1)会计张某或邻居王某谋害了厂长。
(2)如果会计张某谋害了厂长,则谋害不能发生在半夜。
(3)如果邻居王某的证词是正确的,则谋害发生在半夜。
(4)如果邻居王某的证词不正确,则半夜时屋里灯光未灭。
(5)半夜时屋里灯光灭了,且会计张某曾贪污过。
计算机工作者用他的数理逻辑知识,很快推断出谋害者是谁?请问:谁是谋害者?怎样推理发现他?
6、如果他是计算机系本科生或者是计算机系研究生,那么他一定学过C语言而且学过JAVA语言。
只要他学过C语言或者JAVA语言,那么他就会编程序。
因此如果他是计算机系本科生,那么他就会编程序。
请用命题逻辑推理方法,证明该推理的有效结论。
作业已经布置了7次,之前有错或者漏写的一定订正或补齐,否则影响平时成绩。
最后一次作业会留做当堂练习。
6月23日(周四)下午补课,请大家到时带作业本来。