空调系统风道系统设计
空调系统风道设计word文档

/zykt/2/2.1.html第8章空调系统风道设计§8.1风道设计的基本知识一、道的布置原则风道布置直接与工艺、土建、电气、给排水等专业关系密切,应相互配合、协调一致。
1.空调系统的风道在布置时应考虑使用的灵活性。
2.风道的布置应符合工艺和气流组织的要求。
3.风道的布置应力求顺直,避免复杂的局部管件。
4.风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定孔、采样孔等)或预留安装测量装置的接口。
5.风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。
6.风道布置应在满足气流组织要求的基础上,达到美观、实用的原则。
二、管材料的选择用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、铝板、砖及混凝土等。
需要经常移动的风管—大多采用柔性材料制成各种软管,如塑料软管、金属软管、橡胶软管等。
薄钢板有普通薄钢板和镀锌薄钢板两种,厚度一般为0.5~1.5m m 左右。
对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢板制作的风管。
硬聚氯乙烯塑料板表面光滑,制作方便,但不耐高温,也不耐寒,在热辐射作用下容易脆裂。
所以,仅限于室内应用,且流体温度不可超过-10~+60℃。
以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的场合。
为了减少阻力、降低噪声,可采用降低管内流速、在风管内壁衬贴吸声材料等技术措施。
三、风管断面形状的选择风管断面形状:圆形断面的风管—强度大、阻力小、消耗材料少,但加工工艺比较复杂,占用空间多,布置时难以与建筑、结构配合,常用于高速送风的空调系统;矩形断面的风管—易加工、好布置,能充分利用建筑空间,弯头、三通等部件的尺寸较圆形风管的部件小。
为了节省建筑空间,布置美观,一般民用建筑空调系统送、回风管道的断面形状均以矩形为宜。
常用矩形风管的规格如下表所示。
为了减少系统阻力,进行风道设计时,矩形风管的高宽比宜小于6,最大不应超过10。
表8-1矩形风管规格§8.2风道设计的基本任务进行风道设计时应统筹考虑经济、实用两条基本原则。
通风空调设计中风道系统的设计原则

通风空调设计中风道系统的设计原则摘要:风道的合理设计,可降低通风空调系统噪声。
合理选择风机,可有效降低运行费用,以达到整个系统运行经济性提高运行效果。
关键词:风道系统;风道阻力;风道设计引言通风空调系统基本上可以满足各使用功能区域噪声标准的要求。
而如何做到经济、有效地降低大型公共建筑通风空调系统所产生的噪声,是当前以至今后一段相当长的时间内值得重视的研究课题,对于完善通风空调工程的设计和施工技术,减少噪声污染,构建和谐社会都具有重要的意义。
1、通风空调技术指标(1)能耗技术指标。
现代建筑的发展趋势是绿色节能。
通风空调工程做为建筑物的重要组成部分,其能源消耗水平是衡量通风空调系统质量优良的重要指标之一,也是空调系统运行中严格要求控制的一个技术指标。
在建筑中,人们利用变风量、自动温控、水量调节以及变频等技术来即时控制空调系统以消耗最少的能源来达到适宜的室内温度要求,并降低能耗水平。
(2)温度技术指标。
适宜的室内温度,是通风空调系统运行后满足建筑物内达到适宜人类居住工作环境的基本要求。
特殊情况下,设定全年固定的室内温度值,适用于少数有特殊要求的工业空调;通常情况下,冬天将空调系统温度设置到相对较高的温度,夏天将温度降低。
设定恒温的室温值方法,不但在舒适度上得不到良好的体验感,还会一定程度上造成能源浪费。
(3)新风量技术指标。
合理有效地调节通风空调系统的新风量,即有利于为室内创造一个舒适的生活工作环境,又可以大大降低空调系统的能耗水平。
新风量的大小通常与能源消耗成正比例关系。
因此,通风空调的新风量要控制在合理范围内。
空调系统的最小新风量是由室内环境的卫生要求、有害物质浓度、房间正压值以及排风量等来设定。
传统空调系统的新风量取值主要根据室内二氧化碳浓度,同时考虑温度、湿度、气味、粉尘等的影响。
现今,室内粉尘以及气味的影响相对较弱,而且还可以安装空气净化设备来达到净化室内空气的目的,这就需要在现阶段能源较为紧缺的情况下,重新确定合理的最小新风量值。
空调系统的风道设计、压力分布和计算

弯头内空气的流动 渐扩管内空气的流 合流三通内空气的流
状态
动状态
动
三、风道内空气流动阻力 风道内空气流动阻力,等于摩擦阻力和局部
阻力总和,即:
P ( P m Z ) ( lR m Z )
l 4Rs
v2
2
式中:λ-摩擦阻力系数
Rs-风道水力半径,m; l-风道长度,m;
v-风道内空气平均流速,m/s;
ρ-空气密度,kg/m3.
(一)摩擦阻力系数λ的确定
对于层流,λ只与Re数有关;对于紊流,λ与 Re数及壁面粗糙度都有关。根据实验研究结果, 通常按流态、分区域给出不同的计算λ公式。
2.变径管
空气流经变径管时,由于过流断面的变化而引 起流速变化,在减速增压区产生边界层脱离并 形成旋涡,造成局部阻力损失。过流断面变化 愈大,损失也愈大,要想减小阻力损失,就必 须减小过流断面的变化,可以用渐变管来代替 突然扩大和突然缩小管。
3. 三通
三通形状是由总流与支流的夹角α及其面积比 F1/F3,F2/F3这几个几何参数确定的。但三通 的特征是它的流量前后有变化,因此,三通局 部阻力系数不仅与几何形状有关,而且与流量 比L1/L3,L2/L3有关。
若按水力粗糙管推导,得到:
DL
=1.265
a3b3 ab
0.2
若按水力光滑管推导,得到:
DL=1.31(aa3bb)31.25
0.21
在运用当量直径时,有两点需要注意。
第一,当量直径概念用于紊流流动是合适的, 用于层流则会产生较大误差。条缝行风道运用 当量直径时也会产生较大误差。
第二,在利用线算图查摩擦阻力时,一定要注 意对应关系。如采用Dv时,必须用矩形风道中 流速去查,如采用Dl时,必须用矩形风道中流 量去查。但是,无论用哪种当量直径去查,其 单位长度摩擦阻力Rm都是相等的。
空调系统风道系统设计【共23页】

空调系统风道系统设计----------专业最好文档,专业为你服务,急你所急,供你所需------------- 文档下载最佳的地方第六章空调系统的风道设计通风管道是空调系统的重要组成部分,风道的设计质量直接影响着空调系统的使用效果和技术经济性能。
风道设计计算的目的,是在保证要求的风量分配前提下,合理确定风管布置和尺寸,使系统的初投资和运行费用综合最优。
§6、1 风道设计的基本知识一、风道的布置原则风道布置直接关系到空调系统的总体布置,它与工艺、土建、电气、给排水等专业关系密切,应相互配合、协调一致。
1、空调系统的风道在布置时应考虑使用的灵活性。
当系统服务于多个房间时,可根据房间的用途分组,设置各个支风道,以便与调节。
2、风道的布置应根据工艺和气流组织的要求,可以采用架空明敷设,也可以暗敷设于地板下、内墙或顶棚中。
3、风道的布置应力求顺直,避免复杂的局部管件。
弯头、三通等管件应安排得当,管件与风管的连接、支管与干管的连接要合理,以减少阻力和噪声。
4、风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定孔、采样孔等)或预留安装测量装置的接口。
调节和测量装置应设在便于操作和观察的地方。
5、风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。
6、风道布置应在满足气流组织要求的基础上,达到美观、实用的原则。
二、风管材料的选择用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、铝板、砖及混凝土等。
需要经常移动的风管,则大多采用柔性材料制成各种软管,如塑料软管、金属软管、橡胶软管等。
薄钢板有普通薄钢板和镀锌薄钢板两种。
镀锌薄钢板是空调系统最常用的材料,其优点是易于工业化加工制作、安装方便、能承受较高温度,且具有一定的防腐性能,很适用于空调系统以及有净化要求的空调系统。
其钢板厚度,一般采用0、5~1、5mm左右。
对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢板制作的风管。
空调系统、通风系统及防排烟系统设计与施工说明

设计与施工说明(一)一。
工程概况:1、本项目位于三亚海棠湾B位10号地,建筑面积108279。
15平方米。
主要分为主体酒店、酒店别墅区及可售别墅区。
2、本设计内容包括空调系统、通风系统及防排烟系统.本次设计范围为酒店地下室后勤区及主楼部分后勤区。
二、主要设计依据:1、《高层民用建筑设计防火规范》( GB50045—95,2005)。
2、《民用建筑供暖通风与空气调节设计规范》<〈GB50736-2012>〉3、《公共建筑节能设计标准》( GB50189-2005)。
4、《海南省公共建筑节能设计标准》(DBJ03-2006).5、建筑条件图6,甲方对设计提出的有关文件。
三、室外空调设计参数:1、夏季空调计算干球温度:35。
1°C,湿球温度:28.1°C。
2、夏季风速为.2.6m/s.3、夏季大气压力:100。
34KPa。
4、冬季不采暖.四、室内通风空调设计参数:1、室内空调系统设计参数见附表一.2、通风换气次数3、冷源系统:a) 空调冷冻水供回水温度:7~12℃。
注:(改为6~12℃。
)b) 空调冷却水供回水温度:32~37℃。
4.排烟量:房间和走道机械排烟量按每小时每平方米面积不小于60立方米计算。
五、空调冷源设计:1.本项目空调计算总冷负荷为6988KW后2.冷冻站设在后勤区负二层,选用3台600RT的水冷式离心机组及1台200RT螺杆式冷水机组。
提供7~12管冷冻水。
机组采用环保型冷媒,如R134a。
冷水机组采用定频式,冷冻水泵及冷却水泵采用变频式。
3.冷却塔放置在室外地坪上。
提供32~37°C冷却水.4.酒店别墅区及可售别墅区采用一拖多联式小型中央空调空调机组。
室外机放置于室外地坪上。
详见别墅部分设计图纸.六、空调水管系统设计:1.本工程采用一次泵变频供水系统;整个项目供水分为二个回路:主楼回路及后勤区回路;每个区集水器回路供水干管上安装热量表,计量各回路的冷量消耗。
HVAC空调系统的风管设计

感谢您的观看!
第15页/共15页
• 校核性计算: 已知管道长度、各管段尺寸和风机参数, 校核各管段流量是否ቤተ መጻሕፍቲ ባይዱ到要求。
第5页/共15页
4. 风管水力计算
• 流速控制法
集中式全空气空调系统设计风管水力 计算一般都用流速控制法 最不利环路----选流速----定尺寸----总阻力---选风机 • 等压损法:总压力以定,作分支风管压损平衡 • 静压复得法:分支较多的风管,均匀送风管
第6页/共15页
风速选择
第7页/共15页
空调系统中的空气流速
第8页/共15页
用流速控制法进行管道设计计算
• 画管路系统图(各管长、风量) • 确定最不利环路(标注管段) • 选流速,定管道断面尺寸
• 按实际V (和 Dv) 查定 Rm
• 计算各管段阻力,系统总阻力 • 确定其余管道尺寸,检查平衡性
1. 风管设计基本原则
• 与建筑装修配合 • 与气流组织配合 • 合理确定流速,避免气流噪声 • 力求简洁,节省材料,降低能耗 • 保温隔热防结露,减少冷(热)量损失 • 安装、调节、维护方便
第2页/共15页
2. 风管材料
镀锌钢板 (薄钢板) 铝合金板 不锈钢板 硬聚氯乙烯塑料板
玻璃钢板 玻璃纤维板 混凝土风道 (砖砌风道 ) 复合风管(工业化)
第9页/共15页
例题7-3 设计计算
第10页/共15页
第11页/共15页
5.风管系统压力分布(单风机)
第12页/共15页
5.风管系统压力分布(双风机)
第13页/共15页
6. 风管保冷(保温)隔热 • 冷风管道----保冷
防结露;减少冷损失即减小管道温 升 • 热风管道----保温
空调风道制作方法教学设计

空调风道制作方法教学设计一、引言空调系统在现代建筑中扮演着重要的角色,而空调风道作为空调系统的关键组成部分,承担着输送和分布冷、暖气的重要功能。
本文将重点介绍空调风道制作的方法和教学设计。
二、空调风道制作的材料准备1. 风道板材:风道板材通常使用镀锌板、不锈钢板或铝合金板等材料,具有良好的耐腐蚀性和耐火性能,并且具有一定的刚度和强度。
2. 风道连接件:风道连接件包括弯头、三通、四通、支架等,用于连接风道板材,并实现风道的变径和转向。
3. 密封材料:为了防止风道漏风,需要使用密封材料对风道连接处进行密封处理,常用的密封材料有胶带、胶水等。
三、空调风道制作方法1. 设计风道系统:根据建筑的需求和空调系统的布局,确定风道系统的走向、尺寸和数量,并制定详细的设计方案。
2. 制作风道板材:根据设计方案,将风道板材按尺寸要求进行切割,采用机械切割工具或手工工具均可。
3. 弯曲风道板材:在需要弯曲的位置,使用风道弯头或其他弯曲工具将风道板材弯曲成所需的角度或曲线形状。
4. 连接风道板材:使用风道连接件将风道板材连接起来,确保连接牢固,并注意风道的方向和变径要求。
5. 密封处理:使用密封材料对风道连接处进行密封处理,以防止漏风和能量损失。
6. 安装风道系统:将制作好的风道系统安装在空调系统中的预留位置上,并注意对风道系统进行支撑和固定,确保其稳固和安全。
四、空调风道制作方法教学设计1. 教学目标:a) 了解空调风道制作的基本材料和工具;b) 掌握风道系统的设计原理和制作方法;c) 能够正确使用风道连接件和进行密封处理;d) 能够安全、稳固地安装空调风道系统。
2. 教学内容:a) 空调风道制作的材料准备;b) 空调风道制作方法的详细步骤;c) 空调风道制作的注意事项和技巧;d) 空调风道系统的安装方法和要求。
3. 教学方法:a) 讲解法:通过教师的讲解,介绍空调风道制作的基本原理、材料准备和制作步骤。
b) 示范法:教师现场演示空调风道制作的过程,并注重操作技巧和注意事项的演示。
风道设计计算方法与步骤(带例题)

风道设计计算方法与步骤(带例题)一.风道水力计算方法风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。
风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。
对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。
1.假定流速法假定流速法也称为比摩阻法。
这种方法是以风道内空气流速作为控制因素,先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。
这是低速送风系统目前最常用的一种计算方法。
2.压损平均法压损平均法也称为当量阻力法。
这种方法以单位管长压力损失相等为前提。
在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。
一般建议的单位长度风管的摩擦压力损失值为0.8~1.5Pa/m。
该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。
3.静压复得法静压复得法的含义是,由于风管分支处风量的出流,使分支前后总风量有所减少,如果分支前后主风道断面变化不大,则风速必然下降。
风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。
此方法适用于高速空调系统的水力计算。
二.风道水力计算步骤以假定流速法为例:1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。
管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。
3.选定系统最不利环路,一般指最远或局部阻力最多的环路。
4.选择合理的空气流速。
风管内的空气流速可按下表确定。
表8-3空调系统中的空气流速(m/s)5.根据给定风量和选定流速,逐段计算管道断面尺寸,然后根据选定了的风管断面尺寸和风量,计算出风道内实际流速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章空调系统的风道设计通风管道是空调系统的重要组成部分,风道的设计质量直接影响着空调系统的使用效果和技术经济性能。
风道设计计算的目的,是在保证要求的风量分配前提下,合理确定风管布置和尺寸,使系统的初投资和运行费用综合最优。
§6.1 风道设计的基本知识一.风道的布置原则风道布置直接关系到空调系统的总体布置,它与工艺、土建、电气、给排水等专业关系密切,应相互配合、协调一致。
1.空调系统的风道在布置时应考虑使用的灵活性。
当系统服务于多个房间时,可根据房间的用途分组,设置各个支风道,以便与调节。
2.风道的布置应根据工艺和气流组织的要求,可以采用架空明敷设,也可以暗敷设于地板下、内墙或顶棚中。
3.风道的布置应力求顺直,避免复杂的局部管件。
弯头、三通等管件应安排得当,管件与风管的连接、支管与干管的连接要合理,以减少阻力和噪声。
4.风管上应设置必要的调节和测量装置(如阀门、压力表、温度计、风量测定孔、采样孔等)或预留安装测量装置的接口。
调节和测量装置应设在便于操作和观察的地方。
5.风道布置应最大限度地满足工艺需要,并且不妨碍生产操作。
6.风道布置应在满足气流组织要求的基础上,达到美观、实用的原则。
二.风管材料的选择用作风管的材料有薄钢板、硬聚氯乙烯塑料板、玻璃钢板、胶合板、铝板、砖及混凝土等。
需要经常移动的风管,则大多采用柔性材料制成各种软管,如塑料软管、金属软管、橡胶软管等。
薄钢板有普通薄钢板和镀锌薄钢板两种。
镀锌薄钢板是空调系统最常用的材料,其优点是易于工业化加工制作、安装方便、能承受较高温度,且具有一定的防腐性能,很适用于空调系统以及有净化要求的空调系统。
其钢板厚度,一般采用0.5~1.5mm左右。
对于有防腐要求的空调工程,可采用硬聚氯乙烯塑料板或玻璃钢板制作的风管。
硬聚氯乙烯塑料板表面光滑,制作方便,但不耐高温,也不耐寒,在热辐射作用下容易脆裂。
所以,仅限于室内应用,且流体温度不可超过-10~+60℃。
以砖、混凝土等材料制作风管,主要用于与建筑、结构相配合的场合。
它节省钢材,结合装饰,经久耐用,但阻力较大。
在体育馆、影剧院等公共建筑和纺织厂的空调工程中,常利用建筑空间组合成送、回风管道。
为了减少阻力、降低噪声,可采用降低管内流速、在风管内壁衬贴吸声材料等技术措施。
三.风管断面形状的选择风管断面形状有圆形和矩形两种。
圆形断面的风管强度大、阻力小、消耗材料少,但加工工艺比较复杂,占用空间多,布置时难以与建筑、结构配合,常用于高速送风的空调系统;矩形断面的风管易加工、好布置,能充分利用建筑空间,弯头、三通等部件的尺寸较圆形风管的部件小。
为了节省建筑空间,布置美观,一般民用建筑空调系统送、回风管道的断面形状均以矩形为宜。
常用矩形风管的规格如表6—1所示。
为了减少系统阻力,并考虑空调房间吊顶高度的限制,进行风道设计时,矩形风管的高宽比宜小于6,最大不应超过10 。
§6.2 风道设计的基本任务一.一.风道设计的原则进行风道设计时应统筹考虑经济、实用两条基本原则。
二.二.风道设计的基本任务1.确定风管的断面形状,选择风管的断面尺寸。
2.计算风管内的压力损失,最终确定风管的断面尺寸,并选择合适的通风机。
风管的压力损失∆P由沿程压力损失∆P y和局部压力损失∆P j两部分组成,即:∆P=∆P y+∆P j (Pa)(6—1) 沿程压力损失∆P y(Pa),是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,又称为摩擦阻力损失;局部压力损失∆P j(Pa),是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流而造成比较集中的能量损失。
(一)沿程压力损失的基本计算公式长度为l(m)的风管沿程压力损失可按下式计算:∆P y=∆p y l (Pa) (6—2)式中∆p y—单位管长沿程压力损失,也称为单位管长摩擦阻力损失,Pa/ m。
∆p y=λ/d e×υ2ρ/2 (Pa) (6—3)式中ρ—空气密度,标准状况下(大气压力为101325 Pa,温度为20℃),ρ=1.2kg/m3;υ—风管内空气的平均流速,m/s;d e—风管的当量直径,m,圆形风管的当量直径d e=d,d为风管直径;矩形风管的当量直径d e=2ab/(a+b),a、b分别为矩形风管的两个边长;λ—摩擦阻力系数,λ值可按下式计算:1/√λ=-2log(K/3.71 d e+2.51/Re√λ) (6—4)式中K—风管内壁的当量绝对粗糙度,各种材料的粗糙度见表6—2;Re—雷诺数:Re=υd e/νν—空气的运动粘度,标准状况下,ν=15.06×10-6m2/s。
风管的沿程压力损失可按上述诸公式进行计算,也可查阅附录13以及有关设计手册中《风管单位长度沿程压力损失计算表》进行计算:标准尺寸的圆形断面薄钢板风管计算表见附录13—1;标准尺寸的矩形断面薄钢板风管计算表见附录13—2;非标准尺寸的矩形断面薄钢板风管计算表见附录13—3。
(二)局部压力损失的基本计算公式风管的局部压力损失计算公式如下:∆P j=ζ×υ2ρ/2 (Pa)(6—5)式中ζ—局部阻力系数;υ—ζ与之对应的断面流速。
影响局部阻力系数ζ的主要因素有:管件形状、壁面粗糙度以及雷诺数。
由于空调系统的空气流动大都处于非层流区,故可认为ζ仅仅与管件形状有关。
ζ的数值,目前常用实验方法确定。
实验时先测出管件前后的全压差(即∆P j),再除以与速度υ相应的动压υ2ρ/2,则可求得局部阻力系数ζ值。
为方便起见,在附录14以及许多文献资料中,都载有各种各样管件的局部阻力系数ζ计算表,可供设计时选用。
§6.3 风道设计计算的方法与步骤一.风道水力计算方法风道的水力计算是在系统和设备布置、风管材料、各送、回风点的位置和风量均已确定的基础上进行的。
其主要目的是,确定各管段的管径(或断面尺寸)和阻力,保证系统内达到要求的风量分配,最后确定风机的型号和动力消耗。
风道水力计算方法比较多,如假定流速法、压损平均法、静压复得法等。
对于低速送风系统大多采用假定流速法和压损平均法,而高速送风系统则采用静压复得法。
1.假定流速法假定流速法也称为比摩阻法。
这种方法是以风道内空气流速作为控制因素,先按技术经济要求选定风管的风速,再根据风管的风量确定风管的断面尺寸和阻力。
这是低速送风系统目前最常用的一种计算方法。
2.压损平均法压损平均法也称为当量阻力法。
这种方法以单位管长压力损失相等为前提。
在已知总作用压力的情况下,取最长的环路或压力损失最大的环路,将总的作用压力值按干管长度平均分配给环路的各个部分,再根据各部分的风量和所分配的压力损失值,确定风管的尺寸,并结合各环路间的压力损失的平衡进行调节,以保证各环路间压力损失的差值小于15%。
一般建议的单位长度风管的摩擦压力损失值为0.8~1.5Pa/m。
该方法适用于风机压头已定,以及进行分支管路压损平衡等场合。
3.静压复得法静压复得法的含义是,由于风管分支处风量的出流,使分支前后总风量有所减少,如果分支前后主风道断面变化不大,则风速必然下降,众所周知,当流体的全压一定时,风速降低,则静压增加,利用这部分“复得”的静压来克服下一段主干管道的阻力,以确定管道尺寸,从而保持各分支前的静压都相等,这就是静压复得法。
此方法适用于高速空调系统的水力计算。
二.风道水力计算步骤下面以假定流速法为例,来说明风道水力计算的方法步骤:1.确定空调系统风道形式,合理布置风道,并绘制风道系统轴测图,作为水力计算草图。
2.在计算草图上进行管段编号,并标注管段的长度和风量。
管段长度一般按两管件中心线长度计算,不扣除管件(如三通、弯头)本身的长度。
3.选定系统最不利环路,一般指最远或局部阻力最多得环路。
4.选择合理的空气流速。
风管内的空气流速对空调系统的经济性有较大的影响。
流速高,风管断面小,材料消耗少,投资费用小,但是系统的阻力大,动力消耗增加,运行费用增大,而且系统噪声比较大。
流速低,阻力小,动力消耗少,但是风管断面大,材料和投资费用增加,风管占用的空间也比较大。
所以必须通过全面的技术经济比较,选择合理的空气流速,使系统的造价和运行费用的综合最经济。
根据经验总结,风管内的空气流速可按表6—3确定。
5.根据给定风量和选定流速,逐段计算管道断面尺寸,并使其符合表6—1所列的矩形风管统一规格(或圆形风管标准管径)。
然后根据选定了的断面尺寸和风量,计算出风道内实际流速。
通过矩形风管的风量G可按下式计算:G=3600abυ (m3/h) (6—6)式中a,b—分别为风管断面净宽和净高,m。
通过矩形风管的风量可按下式计算:G=900πd2υ (m3/h) (6—7)式中d—为圆形风管内径,m。
6.计算风管的沿程阻力根据风管的断面尺寸和实际流速,查阅查阅附录13或有关设计手册中《风管单位长度沿程压力损失计算表》求出单位长度摩擦阻力损失∆p y,再根据公式6—2以及管长l,进一步求出管段的摩擦阻力损失。
7.计算各管段局部阻力按系统中的局部构件形式和实际流速υ,查阅附录14或有关设计手册中《局部阻力系数ζ计算表》取得局部阻力系数ζ值,再根据公式6—5求出局部阻力损失。
8.计算系统的总阻力,∆P=∑(∆p y l +∆P j )。
9.检查并联管路的阻力平衡情况。
10.根据系统的总风量、总阻力选择风机。
三.风道设计计算实例某公共建筑直流式空调系统,如图7—1所示。
风道全部用镀锌钢板制作,表面粗糙度K=0.15mm。
已知消声器阻力为50Pa,空调箱阻力为290 Pa,试确定该系统的风道断面尺寸及所需风机压头。
图7—1 某直流式空调系统图A. 孔板送风口600×600;B.风量调节阀;C.消声器;D.防火调节法;E.空调器;F.进风格栅[解]1.1.绘制系统轴测图,并對各管段进行编号,标注管段长度和风量,如图7—1所示。
2.2.选定最不利环路,逐段计算沿程压力损失和局部压力损失。
本系统选定管段1—2—3—4—5—6为最不利环路。
3.3.列出管道水力计算表6—4,并将各管段流量和长度按编号顺序填入计算表中。
4.4.分段进行管道水力计算,并将结果均列入计算表6—4中。
管段1—2:风量1500m3/h,管段长l=9m沿程压力损失计算:由表6—3初选水平支管空气流速为4m/s,根据公式6—6算得风道断面面积为F’=1500/(3600×4)=0.104m2取矩形断面为320×320mm的标准风管,则实际断面积F=0.102m2,实际流速υ=1500/(3600×0.102)=4.08m/s根据流速4.08m/s,查附录13 ,得到单位长度摩擦阻力∆p y=0.7Pa/m,则管段1—2的沿程阻力∆P y=∆p y×l=0.7×9=6.3Pa局部压力损失计算:该管段存在局部阻力的部件有孔板送风口、连接孔板的渐扩管、多叶调节阀、弯头、渐缩管及直三通管。