2016国家公务员考试行测重点题型梳理之行程问题

合集下载

公考行程题型归纳

公考行程题型归纳

公考行程题型归纳一、行程问题概述行程问题是公务员考试中的重要题型之一,主要考查考生对运动学知识的理解和应用能力。

行程问题涉及到的知识点包括路程、速度、时间等,通过不同的组合和变化,形成多种复杂的题型。

二、基础行程模型基础行程模型是行程问题的基本模型,包括直线行程和曲线行程两种。

直线行程模型涉及到的知识点包括速度、时间和距离之间的关系,即速度=距离/时间。

曲线行程模型涉及到圆周运动和匀速圆周运动等知识点。

三、相对速度问题相对速度问题是行程问题中的难点之一,主要考查考生对相对速度概念的理解和应用能力。

在相对速度问题中,需要考虑两个物体之间的相对速度,即一个物体相对于另一个物体的速度。

这种题型需要考生对速度的合成和分解有深入的理解。

四、相遇与追及问题相遇与追及问题是行程问题中的常见题型之一,主要考查考生对运动学规律的理解和应用能力。

在相遇与追及问题中,两个物体在同一直线上运动,一个物体追赶另一个物体,或者两个物体在某一地点相遇。

这种题型需要考生对追及和相遇的条件有深入的理解。

五、环形跑道问题环形跑道问题是行程问题中的另一种常见题型,主要考查考生对环形运动规律的理解和应用能力。

在环形跑道问题中,两个或多个物体在圆形跑道上运动,它们可能迎面相遇,也可能背向而行。

这种题型需要考生对环形跑道的运动规律有深入的理解。

六、多次往返问题多次往返问题是行程问题中的一种复杂题型,主要考查考生对往返运动规律的理解和应用能力。

在多次往返问题中,两个物体在同一直线上运动,一个物体从起点出发,经过多次往返运动后回到起点。

这种题型需要考生对往返运动的规律有深入的理解。

七、火车过桥问题火车过桥问题是行程问题中的另一种特殊题型,主要考查考生对火车过桥运动规律的理解和应用能力。

在火车过桥问题中,火车从桥的一端驶向另一端,同时桥上的路灯或其他物体也在移动。

这种题型需要考生对火车过桥的运动规律有深入的理解。

八、时间与距离计算时间与距离计算是行程问题的核心知识点之一,主要考查考生对时间和距离计算方法的理解和应用能力。

公务员行测数量关系十大知识要点

公务员行测数量关系十大知识要点

数量关系十大知识要点一、行程问题1.核心公式:S=V x T,路程二速度x时间2.平均速度二总路程!总时间3.若物体前一半时间以速度V1运动,后一半时间以速度V2, ... ............................. V1 + V 2运动,则全程平均速度为4.若物体前一半路程以V1运动,后一半路程以V2运动,则全程平均速度为个2V1 + V 25.相遇时间二相遇路程+速度和6.追及时间二追及路程+速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-1)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。

如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速=(顺水速度+逆水速度)+2;水速=(顺水速度-逆水速度)+210.火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)+火车速度二、几何问题1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2) 180°4. 几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的M倍,体积变为原来的n,倍三、十字交叉Aa + Bb=(A+B>cA c -b整理变用后可得B a~c (a>c>b).用图示可简单表示为::二c工二*B b - a-其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8 的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质♦溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。

国家公务员:重点题型之行程

国家公务员:重点题型之行程

国家公务员:重点题型之行程国考在行程问题中每年基本都会涉及到相关的题目,究其原因主要是因为行程问题有种类比较多的题型,变化的样式也比较多,需要广大考生能做到的就是举一反三,这样才能了解万变不离其中的涵义,行程问题涉及的变量就是路程、速度和时间,充分把握这三者之间的关系,熟悉常考的题型,才能确保在考试中游刃有余。

主要涉及的题型有基础行程问题,相对速度问题,间歇行程问题;主要涉及的技巧有赋值法,方程法,比例法和图示法。

【例1】(2016-国家(省部)-71.)A地到B地的道路是下坡路。

小周早上6:00从A地出发匀速骑车前往B地,7:00时到达两地正中间的C地。

到达B地后,小周立即匀速骑车返回,在10:00时又途经C地。

此后小周的速度在此前速度的基础上增加1米/秒,最后在11:30回到A地。

问A、B两地间的距离在以下哪个范围内?A. 小于30公里B. 30~40公里C. 40~50公里D. 大于50公里C【解析】基本行程问题,行程问题公式:路程=速度×时间。

已知C为中点,6点出发,7点到达C,则8点到达终点;则返回过程前一半路程所用时间为2小时,设速度为v;后一半路程所用时间为 1.5小时,速度为v+3.6(1m/s=3.6km/h),则有2v=1.5(v+3.6),解得v=10.8,则全程为4v=43.2km。

因此,本题选C。

【例2】(2015-国家(省部)-70)甲、乙两名运动员在400米的环形跑道上练习跑步,甲出发1分钟后乙同向出发,乙出发2分钟后第一次追上甲,又过了8分钟、乙第二次追上甲、此时乙比甲多跑了250米,问两人出发地相隔多少米?()A. 200B. 150C. 100D. 50B【解析】相遇追及问题。

方法一:设甲与乙的速度分别为v甲和v乙,由题意,从第一次乙追上甲到第二次追及,甲与乙的路程差为400米,故400=(v乙-v甲)×8,解得两人速度差为50米每分钟,由于甲一共跑了11分钟,乙一共跑了10分钟,在后10分钟内,乙比甲多跑了50×10=500米,由于乙最终比甲多跑250米,故甲最开始的1分钟跑了250米,又根据乙2分钟时第一次追上甲,可得该过程中甲与乙的路程差为50×2=100米,故两人最初相距250-100=150米。

公务员考试特训:行程问题专题详解

公务员考试特训:行程问题专题详解

公务员考试特训:行程问题专题详解发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关. 甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.例题精讲:模块一发车问题【例 1】 某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?【解析】 这个题可以简单的找规律求解时间 车辆 4分钟 9辆 6分钟 10辆 8分钟 9辆 12分钟 9辆16分钟 8辆18分钟 9辆20分钟 8辆24分钟 8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。

公务员考试之行程问题

公务员考试之行程问题

行程问题行程问题是研究物体在一定的条件、环境、范围内运动的问题,这类问题主要涉及到路程、速度、时间三个量之间的关系。

较复杂的行程问题还要注意理解“速度和”、“速度差”以及行程中两车的出发时间、出发地点、运动方向与运动结果等四大要素,行程问题根据运动方向的不同可分为三类:一、相遇问题两个物体由于相向运动而相遇,这就是相遇问题。

解答相遇问题的关键是求出两个运动物体的速度之和,其基本公式有:相遇时间=两地路程÷速度和速度和=两地路程÷相遇时间两地路程=速度和×相遇时间二、相离问题两个运动物体由于背向运动而相离,就是相离问题。

解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。

基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间三、追及问题两个运动的物体同向而行,一快一慢,快车后,慢车前,经过一定的时间,快的追上慢的就是追及问题。

根据所给的条件不同,可分两种:(1)直接给追及距离的(同时不同地的);(2)间接给追及距离的(同地不同时)。

解答追及问题的关键是确定或求出追及距离和速度差,基本公式有:追及时间=追及距离÷速度差追及距离=速度差×追及时间速度差=追及距离÷追及时间1.一条街上,一个骑车人和一个步行人同向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。

每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A.6 B8 C 10 D122.一艘轮船从河的上游甲港顺流到达下游的丙港,然后调头逆流向上到达中游的乙港,共用了12小时。

已知这条轮船的顺流速度是逆流速度的2倍,水流速度是每小时2千米,从甲港到乙港相距18千米。

则甲、丙两港间的距离为( )A.44千米B.48千米C.30千米D.36千米3.甲、乙两人分别从A、B两地同时相向而行,甲的速度是乙的1.5倍,二人相遇后继续行进,甲到B地、乙到A地后立即返回。

2016年公务员考试行测:巧解行程问题

2016年公务员考试行测:巧解行程问题

2016年公务员考试行测:巧解行程问题行程问题是历年行政职业能力测验考试的难点题型,也是考查的重点内容之一。

行程问题所涉及的范围非常广,条件多,变化复杂,很难找到已知量与未知量之间的关系,从而列不出正确的方程,因而令许多考生望而生畏。

下面给大家介绍解决行程问题中常用的一种方法——比例法。

所谓比例法,就是根据题目给出的条件,利用基本关系式:速度×时间=距离,找出相关量之间的比例关系,通过比例差值,求出各项数值,最后得出需要的结果。

在行政职业能力测验行程问题中,比例法的应用主要包括以下三类:类型一:路程一定,速度与时间成反比关系【例1】A、B两地有一座桥,甲、乙两人分别从A、B两地同时出发,3小时在桥中间相遇,如果甲加快速度,每小时多行2千米,而乙提前0.5小时出发,则仍旧在桥中间相遇;如果甲延迟0.5小时出发,乙每小时少走2千米,还会在桥中间相遇,则A、B相距( )千米。

A.60B.64C.72D.80【答案】C【解析】设甲的速度为x千米/时,乙的速度为y千米/时。

第一次与第二次相比时,乙的速度及所用时间是一样的,而甲的时间少了0.5小时,因此可得,解得x=10。

同理,第一次和第三次相比,可得,解得y=14。

故A、B间的距离为(10+14)×3=72千米。

因此,本题选择C选项。

【例2】甲乙两人在环湖小路上匀速行驶,且绕行方向不变,19时,甲从A点,乙从B点同时出发相向而行。

19时25分,两人相遇;19时45分,甲到达B点;20点5分,两人再次相遇,乙环湖一周需要多长时间?( )A.72B.81C.90D.100【答案】C【解析】19时25分钟第一次相遇后,甲19时45分(即经过20分钟)到达B点,而乙从B点到第一次相遇的地点需要25分钟,因此甲、乙的速度之比为5:4,两人两次相遇的时间间隔为40分钟,期间路程之和为环湖一周,甲40分钟的路程乙需要50分钟,因此,乙环湖一周需要40+50=90分钟。

公考行程问题技巧

公考行程问题技巧

公考行程问题技巧说起公考行程问题的技巧,我有一些心得想分享。

我刚开始备考公务员的时候,一遇到行程问题就头疼得不行。

就像走进了一个迷宫,绕来绕去找不到出口。

首先呢,咱们来说说最基本的公式:路程= 速度×时间,这个就像是做饭的基本食材一样,缺了它可不行。

比如说,有一道题是这样的,一辆汽车以每小时60千米的速度行驶了3小时,问行驶了多远?这就是直接套用公式的简单例子,这时候路程就等于60×3 = 180千米。

这种简单题就像是走路碰到一块小石头,轻松就能跨过去。

那要是复杂一点的呢?假如是相向而行或者相背而行的问题,这就像两个人面对面走路或者背对背走路。

两个人相向而行时,他们之间的距离减少的速度就是两人速度之和;相背而行时,距离增加的速度就是两人速度之和。

比如说,A、B两人,A的速度是每小时5千米,B的速度是每小时3千米,他们相向而行,一开始相距20千米,问多久能相遇?这时候就可以把A和B想象成两个合作的小蚂蚁,它们共同完成20千米的路程,二者速度和是5 + 3 = 8千米/小时,根据公式时间= 路程÷速度,那就是20÷8 = 小时就能相遇啦。

对于那些追击问题,就好比是两个人在赛跑,一个人在前面跑,一个人在后面追。

后面人的速度比前面人快,快出来的那部分速度就是用来缩短他们之间距离的关键。

比如说,甲速度是每小时8千米,乙速度是每小时6千米,乙先出发1小时,甲再出发追乙,甲追乙就是他们的距离在不断缩小,乙先走1小时就先走了6×1 = 6千米,甲每小时比乙多走8 - 6 = 2千米,那甲追上乙就需要6÷2 = 3小时。

对了,还有个事儿要说。

在解行程问题的时候,画图是个特别好的方法。

就像给你一堆乱线,你把它整理好画出来就清楚多了。

有时候单纯看题脑袋里乱糟糟的,但把图画出来,速度、路程和时间的关系就一目了然了。

但是,我得承认,这个画图法虽然好用,但也有局限性。

公务员考试行测技巧:数量关系之行程问题汇总

公务员考试行测技巧:数量关系之行程问题汇总

公务员考试行测技巧:数量关系之行程问题汇总近年来国考行测数量关系中的行程问题层出不穷、花样百出,例如相遇追及、队伍行程、流水行船、往返相遇等等一系列行程问题,让许多考生很是头疼。

不要怕,今天拯救你,给大家汇总了数量关系当中的行程问题的公式,通过归纳、整理、例题让各位各位考生更加清晰的掌握这些公式,从而解决实际问题。

行程问题(1)火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)(2) 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间(3)队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间(4)流水行船问题公式:顺速=船速+水速,逆速=船速-水速(5)往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2)左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N 次追上相遇,路程差=(2N-1)×全程同一点出发:第N次迎面相遇,路程和=2N×全程;第N次追上相遇,路程差=2N×全程以上就是数量关系之行程问题的汇总,接下来给大家分享一道例题,来帮助大家巩固!【真题演练】小张和小王两人错过末班公交车,小王以60米/分钟的速度步行回家,与此同时小张以80米/分钟的速度沿反方向回家。

3分钟后小张发现小王的身份证在自己包里,于是立即调头以180米/分钟的速度跑步追小王,但每跑1分钟休息1分钟,那么从两人分开到小张追上小王需要多长时间?(追上时,小王还没到家)A.14分钟B.20分钟C.17分钟D.11分钟【正确答案】A【解析】根据题意,两人分开3分钟后相距(80 + 60)x3 = 420米,此时小张开始追小王,每2分钟追180 - 60 x 2 = 60米,经过5次(10分钟)追赶,可以追上60 x 5 = 300米,最后还剩420 - 300= 120米,只需120/(180 - 60) = 1分钟,则追赶总时间为10 + 1 = 11分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016国家公务员考试行测重点题型梳理之行程问题
2016年国家公务员考试网络课程
2016年国家公务员考试常德面授培训课程
常德中公教育在线互动交流学习平台
行程问题是多省公务员考试的重点题型,但从考生的得分率上来看,并不乐观。

那么,如此重点的题型,为什么得分率很低呢,其根本原因并不是考生不重视,而是行程问题对于大部分考生是一道难以逾越的鸿沟,只能饮恨放弃。

中公教育专家认为,行程问题只要我们掌握重点题型如相遇问题,追及问题等,并在理解的基础上熟练重点解题方法如特值法,比例法等,提高得分率便指日可待。

下面,我们通过真题分析一下如何速解。

【例题1】
环形跑道长400米,老张、小王、小刘从同一地点同向出发。

围绕跑道分别慢走、跑步和骑自行车。

已知三人的速度分别是1米/秒,3米/秒和6米/秒,问小王第3次超越老张时,小刘已经超越了小王多少次? A.3B.4C.5D.6
本题答案:B;
本题考点:行程问题环形追及;
运用方法:速度差×时间=路程差;
中公解析:每追及一次要多跑一圈,所以小王第三次追上老张时的追及时间是400×3÷(3-1)=600秒,则小刘比小王多跑了多少米,(6-3)×600=1800米,1800÷400=4.5,取整后为追上了4次,即超越了4次。

【例题2】
甲乙两辆车从A地驶往90公里外的B地,两车的速度比为5∶6。

甲车于上午10点半出发,乙车于10点40分出发,最终乙车比甲车早2分钟到达B地。

问两车的时速相差多少千米/小时?
A.10
B.12
C.12.5
D.15
本题答案:D;
考点:行程问题;
运用方法:比例法;
中公解析:甲乙的速度比为5:6,则时间之比为6:5,甲比乙多走了10+2=12分,对应比例量为一份,则甲乙全程所用时间分别为5份60分钟和6份72分钟,则对应的速度为90÷(60÷60)=90千米/小时,90÷(72÷60)=75,则时速差为15千米/小时。

【例题3】
小张、小王二人同时从甲地出发,驾车匀速在甲乙两地之间往返行驶。

小张的车速比小王快,两人出发后第一次和第二次相遇都在同一地点,那么小张的车速是小王的倍。

A.1.5
B.2
C.2.5
D.3
本题答案:B;
考点:行程问题多次相遇;
运用方法:多次相遇基本公式;
中公解析:第一次相遇小张、小王二人的路程和为甲乙两地距离的2倍,从第一次相遇到第二次相遇,两人路程和仍为甲乙两地距离的2倍,即两次相遇所用时间相同。

第一次相遇小王走的路程为x,相遇后小张需要走x到甲地,然后从甲地折返x回到同一地点相遇。

所以相同时间内小张走的距离是小王的2倍,即
车速是小王的2倍。

【例题4】
四名运动员参加4×100米接力,他们100米速度分别为v1,v2,v3,v4,不考虑其他影响因素,他们跑400米全程的平均速度为:
更多信息请访问:国家公务员考试网湖南常德站。

相关文档
最新文档