有理数部分复习

合集下载

有理数单元复习

有理数单元复习

知识点一:有理数的概念(一)有理数:(1)整数与分数统称按定义分类:_______________⎧⎧⎫⎪⎪⎬⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩_ _ _ _ _ _ _ _ _有理数 _ _ _ _ __ _ _ _ _ _ _ _ _ _ 按符号分类:__________⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩_ _ _ _ _ _ _ _有理数零_ _ _ _ _ _ _ _注:①正数和零统称为 ;②负数和零统称为 ;③正整数和零统称为 ;④负整数和零统称为 .(2)认识正数与负数:①正数:像1,1.1,175,2008等大于 的数,叫做 .②负数:像-1,-1.1,-175,-2008等在正数前面加上“-”(读作负)号的数,叫注意: 都大于零, 都小于零.“0”即不是 ,也不是 .(3)用正数、负数表示相反意义的量:如果用正数表示某种意义的量,那么负数表示其 意义的量,如果负数表示某种意义的量,则正数表示其 意义的量.如:若-5米表示向东走5米,则+3米表示向 走3米; 若+6米表示上升6米,则-2米表示 ;+7C 表示零注意:0既不是_______,也不是____上7C ,-7C 则表示.(4)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数、是整数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态00C表示冰点表示正数与负数的界点0非正非负,是一个中性数(二)数轴(1)概念:规定了、和的直线注:①、、称为数轴的三要素,三者缺一不可.②单位长度和长度单位是两个不同的概念,前者指所取度量单位的,后者指所取度量单位的,即是一条人为规定的代表“1’的线段,这条线段,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变.(2)数轴的画法及常见错误分析①画一条水平的;②在这条直线上适当位置取一实心点作为:③确定向右的方向为,用表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的要一致.⑤数轴画法的常见错误举例:错例原因不统一没有 (3)有理数与数轴的关系一切有理数都可以用数轴上的 表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数 ,正数都大于 ,负数都小于 ,正数大于一切负数.注意:数轴上的点不都是有理数,如π.(三)相反数(1)相反数:只有 的两个数互称为相反数.特别地,0的相反数是;若a 与b 互为相反数,则___a b += ,反之亦然 .(2)相反数的性质:①代数意义:只有 的两个数叫做互为相反数,特别地,O 的相反数是0.相反数必须 出现,不能单独存在.例如+5和 互为相反数,或者说+5是 的相反数,-5是 的相反数,而单独的一个数不能说是 .另外,定义中的“只有”指除 以外,两个数 ,注意应与“只要符号不同”区分开.例如+3与-3互为相反数,而+3与-2虽然不同,但它们不是相反数.②几何意义:一对相反数在数轴上应分别位于 两侧,并且到原点的 相等.这两点是关于 对称的.③求任意一个数的相反数,只要在这个数的前面添上“”号即可.一般地,数a的相反数是;这里以a表示任意一个数,可以为、、负数,也可以是任意一个代数式.注意-a不一定是.注意:当a>0时,-a 0(正数的相反数是数);当a=0时,-a O(0的相反数是);当a<0时, a O (负数的相反数是).④互为相反数的两个数的和为,即若a与b互为,则a+b=0,反之,若a+b=O,则a与b互为.⑤多重符号的化简:一个正数前面不管有多少个“+”号,都可以全部;一个正数前面有个“-”号,也可以把“-”号全部去掉;一个正数前面有个“-”号,则化简后只保留一个“-”号,即“负正”(其中“奇偶”是指正数前面的“”号的个数的,“负正”是指化简的最后结果的.(四)绝对值(1)绝对值的代数意义及几何意义①绝对值的代数意义:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是.②绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的与的距离.数a的绝对值记作.注意:①取绝对值也是一种 ,这个 符号是“ ”,求一个数的绝对值,就是根据性质 绝对值符号.②绝对值具有 性,取绝对值的结果总是 .③任何一个有理数都是由 部分组成: 和它的 ,如:-5,符号是 ,绝对值是 .(2)字母a 的绝对值的分类___,()___,(0)___,(0)a o a a a >⎧⎪==⎨⎪<⎩ 或___,(0)___,(0)a a a ≥⎧=⎨<⎩ 或___,(0)___,(0)a a a >⎧=⎨≤⎩ (3)利用绝对值比较两个负有理数的大小规则:两个负数,绝对值大的反而 .步骤:①计算两个负数的 .②比较这两个 的大小.③写出正确的判断结果.④如果若干个非负数的和为0,那么这若干个非负数都必为 .例如:若0,____,_a b c a b c ++====则 知识点二:有理数运算(一)有理数比较大小(1)数轴上的数,右边的数总 左边的数.(2)正数大于0,负数小于0,正数大于负数;(3)两个负数,绝对值大的反而 ;(4)两数比较大小,可按符号情况分类:0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩同正:__________大的数大两数同号同负:__________大的反而小比较大小两数异号(一正一负):______大于_______正数与0:_______大于0其中有时负数与0:_______小于0(二)有理数的加减法(1)有理数加法法则①同号两数相加,取相同的 ,并把绝对值 .②绝对值不相等的异号两数相加,取 的加数的符号,并用较大的 减去较小的 .③一个数同0相加,仍得 .(2)有理数加法的运算步骤法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的 ;②求和的绝对值,即确定是两个加数的绝对值的 .(3)有理数加法的运算律①两个加数相加,交换加数的位置, 不变.即a+b=b+a(加法律)②三个数相加,先把前两个数相加,或者先把后两个数相加,不变.即(a+b)+c=a+(b+c)(加法律)(4)有理数加法的运算技巧①分数与小数均有时,应先化为形式.②带分数可分为与两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合得④若有可以凑整的数,即相加得整数时,可先结合.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥相同的数可以先结合在一起.(5)有理数减法法则减去一个数,等于,即a-b=a+( )(6)有理数减法的运算步骤①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.(7)有理数加减混合运算的步骤①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上,因此加减混合运算可以依据上述法则转变为只有的运算,即变为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式,例如:(+3)+(-0.15)+(-9)+(+5)+(-11)=3-0.15-9+5-11,它的含义是正3,负0.15,负9,正5,负11的和。

有理数总复习

有理数总复习

a 10b第一章 有理数总复习知识点梳理:1.正数与负数:负数产生的必要性;具有相反意义的量。

2.有理数的分类:3.数轴、相反数、倒数、绝对值:(1)数轴的三要素是:________________________________(2)只有符号不同的两个数叫做互为____________,a 的相反数为___ ;(3)互为倒数的两个数乘积是 , 没有倒数;(4)一个正数的绝对值是____________;一个负数的绝对值是____________;零的绝对值是_______.(5)有理数的大小比较:方法一:0 一切正数,0 一切负数;两个负数作比较,绝对值大的 .方法二:在数轴上,________表示的数总比________表示的数大。

4.科学记数法:把一个大于10的数表示成a ×10n 的形式, (其中a 是____________ ,n 是____________ )5.近似数【自主学习、巩固训练】要求:自主完成下列各题,并把自己疑惑的、不懂的做好批注,时间10分钟.1. 在 -1,+7, 0, 23-, 516中,正数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个2.在–2,+3.5,0,32-,–0.7,11中.负分数有…………( ) A 、l 个 B 、2个 C 、3个 D 、4个3. 下列数据是近似数的是( )A.小白数学得了90分B. 小明身高约173cmC.数学课本有86页D.(1)班有45名同学4.如图 , ,那么下列结论正确的是( ) A .a 比b 大 B .b 比a 大C .a 、b 一样大D .a 、b 的大小无法确定5.我国最长的河流长江全长约为6300千米,用科学记数法表示为( )A. 63×102千米B. 6.3×102千米或者有理数 有理数C. 6.3×104千米D. 6.3×103千米6.用数轴上的点表示下列有理数, 并求其相反数、倒数和绝对值。

七年级数学有理数知识点章节复习与练习题

七年级数学有理数知识点章节复习与练习题
2.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是( )
A. B. C. D.
三、相反数
1.概念:只有符号不同的两个数叫做互为相反数。0的相反数仍是0.
2.几何定义:在数轴上原点的两侧,到原点的距离相等的两点所表示数为相反数。
3.任何一个数都有它的相反数
4.相反数性质:a与b互为相反数,则a+b=0.
1.如果a和b是符号相反的两个数,在数轴上a所对应的数和b所对应的点相距6个单位长度,如果a=-2,则b的值为_________________.
2.已知x、y互为相反数,则-15(x+y)=__________________.
3.如果a的相反数是最大的负整数,b的相反数是最小的正整数,a+b=___________.
注意:循环小数是无限小数,也称作无限循环小数。整数和分数都可以写成有限小数或无限循环小数,所以有理数也可以分类为有限小数和无限循环小数。
1.下列说法中正确的是( )
A、一个有理数,不是正数就是负数 B、一个有理数,不是整数就是分数
C、有理数可分为非负有理数和非正有理数 D、整数和小数统称有理数
2.若两个有理数的和是正数,那么一定有结论( )
2.计算:
3.计算
七、科学计数法
将一个大于10的数字表示成 的形式(其中1≤a<10,n表示正整数),这种记数方法叫科学记数法.
1.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是( )
A.2.3×105辆 B.3.2×105辆 C.2.3×106辆 D.3.2×106辆
四、绝对值
在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

第5讲 有理数章末复习 (解析版)

第5讲 有理数章末复习 (解析版)

第5讲 有理数章末复习一、知识梳理1. 有理数1.有理数:(1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.(2) 有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,互为相反数,即a 和- a 互为相反数;0的相反数还是0;(2) a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)绝对值的意义是数轴上表示某数的点离开原点的距离; (2) ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或⎩⎨⎧<-≥=)0a (a )0a (a a 或⎩⎨⎧≤->=)0()0(a a a a a ; 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组;5.有理数比大小:两个负数比大小,绝对值大的反而小;数轴上的两个数,右边的数总比左边的数大;大数-小数 > 0,小数-大数 < 0.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.【例1】.(1)下列各数中,最小的数是( )A .﹣2B .0C .﹣6D .3【分析】根据负数都小于0,负数都小于正数,得出﹣2和﹣6小,根据两个负数比较大小,其绝对值大的反而小,即可得出答案.【解答】解:∵﹣6<﹣2<0<3,∴最小的数是﹣6,故选:C .(2)下列说法不正确的是( )A .﹣3.14既是负数、分数,也是有理数B .0既不是正数,也不是负数,但是整数C .﹣2019是负整数,但不是有理数D .0是正数和负数的分界【分析】依据有理数分类、正负数分类逐项判断即可.【解答】解:A 、﹣3.14属于负数,分数,有理数,故A 不符合题意;B 、0不属于正数,也不属于负数,属于整数,故B 不符合题意;C 、﹣2019属于有理数,故C 符合题意;D 、0为正数和负数的分界,故D 符合题意.(3)在数轴上从左到右有A,B,C三点,其中AB=1,BC=2,如图所示.设点A,B,C所对应数的和是x,则下列说法错误的是()A.若以点A为原点,则x的值是4B.若以点B为原点,则x的值是1C.若以点C为原点,则x的值是﹣4D.若以BC的中点为原点,则x的值是﹣2【分析】利用数轴的意义对各选项进行分析判断即可.【解答】解:A、若以点A为原点,则B、C对应的数为1,3,则x=0+1+3=4,故本选项说法正确,不符合题意;B、若以点B为原点,则A、C对应的数为﹣1,2,则x=0﹣1+2=1,故本选项说法正确,不符合题意;C、若以点C为原点,则B、A对应的数为﹣2,﹣3,则x=0﹣2﹣3=﹣5≠﹣4,故本选项说法错误,符合题意;D、若以BC的中点为原点,则B、C对应的数为﹣1,1,A对应的数为﹣2,则x=﹣2﹣1+1=﹣2,故本选项说法正确,不符合题意;故选:C.(4)﹣1的倒数是﹣,相反数是1绝对值是1.【分析】利用绝对值、倒数、相反数的定义进而求出即可.【解答】解:﹣1的倒数是:﹣,相反数是:1;绝对值是:1;故答案为:﹣;1;1.【变式训练1】.(1)下列各数中最大的是()A.﹣3B.﹣2C.0D.1【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小,依此比较大小【解答】解:因为﹣3<﹣2<0<1,所以其中最大的数为1.故选:D.(2)下列说法中正确的个数有()①﹣4.2是负分数;②3.7不是整数;③非负有理数不包括零;④正有理数、负有理数统称为有理数;⑤0是最小的有理数A.1个B.2个C.3个D.4个【分析】结合有理数的分类分析即可.【解答】解:①﹣4.2是负分数是正确的;②3.7不是整数是正确的;③非负有理数包括零,原来的说法错误;④正有理数、0、负有理数统称为有理数,原来的说法错误;⑤没有最小的有理数,原来的说法错误.故说法中正确的个数有2个.故选:B.(3)如图所示,有理数a、b在数轴上的位置如图,则下列说法错误的是()A.b﹣a>0B.a+b<0C.ab<0D.b<a【分析】根据数轴上点的位置关系,可得a、b的大小,判定D,根据有理数的加法,可判断B;根据有理数的乘法,可判断C;根据有理数的减法,可判断A.【解答】解:由数轴上点的位置关系,得a>0>b,|a|<|b|,A.b﹣a<0,故此选项错误;B.a+b<0,故此选项正确;C.ab<0,故此选项正确;D.b<a,故此选项正确.故选:A.(4)﹣1.2的倒数是﹣,相反数是 1.2,绝对值是 1.2.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数,根据只有符号不同的两个数互为相反数,可得一个数的相反数,再根据负数的绝对值等于他的相反数,可得一个数的绝对值.【解答】解:﹣1.2的倒数是﹣,相反数是1.2,绝对值是1.2,故答案为:﹣,1.2,1.2.2.有理数的四则运算1. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.2.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4. 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正.5. 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即a.【例2】.(1)计算:11.125﹣1+4﹣4.75.【分析】根据有理数的加减运算法则及加法交换律和结合律进行计算.【解答】解:原式=11﹣1+4﹣4=(11+4)﹣(1+4)=16﹣6=10(2)计算:(﹣)÷(﹣2)×.【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:原式=××=.【变式训练2】.(1)计算:.【分析】先将减法转化为加法,再依据法则计算可得.【解答】解:原式=0.4+3.6﹣8﹣12=4﹣20=﹣16.(2)计算:1×1.4.【分析】将带分数化为假分数,小数化为分数,除法变为乘法,再约分计算即可求解.【解答】解:1×1.4=××3.有理数的乘方与有理数的混合运算1.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;2.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .3.混合运算法则:先乘方,后乘除,最后加减.,有括号的先算括号.【例3】.(1)下列算式中结果为负数的是()A.﹣(﹣3)B.|﹣2|C.(﹣2)3D.(﹣2)2【分析】根据相反数、绝对值、和理数的乘方逐一判断即可.【解答】解:A.﹣(﹣3)=3,不合题意;B.|﹣2|=2,不合题意;C.(﹣2)3=﹣8,符合题意;D.(﹣2)2=4,不合题意.故选:C.(2)计算:[2+(﹣5)2]÷3×﹣|﹣4|+23.【分析】先算乘方,再算乘除,最后算加减.同级运算,从左往右计算.【解答】解:原式=[2+25]÷3×﹣4+8=27÷3×﹣4+8=9×﹣4+8=7.【变式训练3】.(1)已知下列各数:﹣(﹣2),﹣34,5.2,﹣|﹣|,(﹣1)2009,0中,其中是非负数的有()A.1个B.2个C.3个D.4个【分析】从6个数中找到非负数即可.【解答】解:﹣(﹣2),﹣34,5.2,﹣|﹣|,(﹣1)2009,0中,其中是非负数有:其中是非负数的有:﹣(﹣2),5.2,0共3个,故选:C.(2)计算:24÷(﹣2)3+[(﹣3)2+5]×|﹣|.【分析】先算乘方,再算乘除,最后算加减.【解答】原式=24÷(﹣8)+[9+5]×=﹣3+14×=﹣3+7=4.4.科学记数法与近似数1.科学记数法:把一个大于10的数记成a×10n的形式,(其中1≤a<10)这种记数法叫科学记数法.2.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.3.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.【例3】.(1)2021年5月21日,国新办举行新闻发布会,介绍第七次全国人口普查情况,全国人口总数约为14.12亿人.用科学记数法表示14.12亿人,可以表示为 1.412×109人.【分析】把一个大于10的数写成科学记数法形式:a×10n,其中1≤a<10,n为正整数,n的值比这个数的整数位数少1.【解答】解:14.12亿=1412000000=1.412×109,故答案为:1.412×109.(2)用四舍五入法把数6.5378精确到0.01,得近似数为 6.54.【分析】对千分位数字四舍五入即可.【解答】解:用四舍五入法把数6.5378精确到0.01,得近似数为6.54,故答案为:6.54.(3)近似数0.0320有3个有效数字.【分析】根据有效数字的定义和题目中的数据,可以写出有效数字的个数,从而可以解答本题.【解答】解:近似数0.0320有3个有效数字,故答案为:3.【变式训练3】.(1)人民网哈尔滨1月10日电,1月10日在黑龙江省政府新闻办举办的“重振雄风再出发﹣﹣龙江这一年”系列主题新闻发布会上表示,全省实现旅游收入2683.8亿元,将2683.8亿用科学记数法表示为2.683×1011.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数.【解答】解:2683.8亿=268380000000=2.683×1011,故答案为:2.683×1011.(2)用四舍五入法将3.1415精确到百分位约等于 3.14.【分析】把千分位上的数字1进行四舍五入即可.【解答】解:3.1415(精确到百分位)是3.14.故答案为:3.14.(3)近似数1.024有4个有效数字.【分析】根据有效数字的定义和题目中的数据,可以写出相应的有效数字.【解答】解:似数1.024有四个有效数字,故答案为:4.二、课堂训练1.在四个数﹣5、﹣1、0、3中最小的数是()A.﹣5B.﹣1C.0D.3【分析】正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小.【解答】解:∵﹣5<﹣1<0<3,∴最小的数为﹣5,故选:A.2.下列数轴表示正确的是()A.B.C.D.【分析】注意数轴的三要素以及在数轴上,右边的数总比左边的数大即可做出判断.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.3.﹣(﹣6)的相反数是()A.B.C.﹣6D.6【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣(﹣6)=6,故﹣(﹣6)的相反数是﹣6.故选:C.4.如图是小竹观察到温度计的示数,该示数的绝对值是()A.﹣9B.9C.﹣11D.11【分析】观察温度计的示数,这个示数在0℃以下,这个示数为﹣9,所以绝对值为9.【解答】解:观察温度计,这个示数为﹣9,所以该示数的绝对值为9,故选:B.5.经过4.6亿公里的飞行,我国首次火星探测任务“天问一号”探测器于2021年5月15日在火星表面成功着陆,火星上首次留下了中国的印迹.将4.6亿用科学记数法表示为()A.4.6×109B.0.46×109C.46×108D.4.6×108【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:4.6亿=460000000=4.6×108.故选:D.6.用四舍五入法将0.0375精确到0.01是0.04.【分析】把千分位上的数字7进行四舍五入即可.【解答】解:将0.0375精确到0.01是0.04.故答案为0.04.7.比较大小:>.【分析】先比较与的大小,再根据比较两个负数大小的方法确定最后答案.【解答】解:∵|﹣|=,|﹣2|=,<,∴﹣>﹣2,故答案为:>.8.已知A,B是数轴上的两点,且AB=4.5,点B表示的数为1,则点A表示的数为﹣3.5或5.5.【分析】根据AB=4.5,点B表示的数为1,进行分类讨论A可以在B的左边或右边,求得点A表示的数.【解答】解:∵AB=4.5,B表示1,∴A表示为1﹣4.5=﹣3.5或1+4.5=5.5.故答案是:﹣3.5或5.5.9.计算:.【分析】利用有理数混合运算的法则运算:先做乘方,再做乘除,最后做加减,有括号的先做括号里面的.【解答】解:原式=﹣9÷(4﹣1)+(﹣)×24=﹣9÷3+(×24﹣×24)=﹣3+(16﹣6)=﹣3+10=7.10.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+6,﹣2,+10,﹣8,﹣7,+11,﹣10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?【分析】(1)只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)将所有绝对值相加即可.【解答】解:(1)根据题意得:6﹣2+10﹣8﹣7+11﹣10=0.答:回到了原来的位置.(2)第一次离开6米,第二次离开4米,第三次离开14米,第四次离开6米,第五次离开1米,第六次离开10米,第七次离开0米,则守门员离开守门的位置最远是14米;(3)总路程=|+6|+|﹣2|+|+10|+|﹣8|+|﹣7|+|+11|+|﹣10|=54米.三、课后巩固1.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦【分析】根据有理数大小的比较方法解答即可.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最高的液体是液态氧.故选:A.15.下列各数中,既是分数又是负数的是()A.﹣3.1B.﹣4C.0D.2.8【分析】根据小于零的分数是负分数,可得答案.【解答】解:A、﹣3.1既是分数又是负数,故本选项符合题意;B、﹣4是负整数,故本选项不合题意;C、0不是正数,也不是负数,故本选项不合题意;D、2.8是正分数,故本选项不合题意;故选:A.3.下列几种说法正确的是()A.0是最小的数B.最大的负有理数是﹣1C.1是绝对值最小的正数D.平方等于本身的数只有0和1【分析】根据有理数是有限小数或无限循环小数,平方的意义,可得答案.【解答】解:A、没有最小的数,故A错误;B、没有最大的负有理数,故B错误;C、没有绝对值最小的正数,故C错误;D、平方等于它本身的数只有0和1,故D正确;故选:D.4.已知a,b,c三个数在数轴上,对应点的位置如图所示,下列各式错误的是()A.b<a<c B.﹣a<b C.a+b<0D.c﹣a>0【分析】先根据在数轴上,右边的数总比左边的数大,得出b<a<c,再由相反数的定义、绝对值的性质以及有理数的加减法法则得出结果.【解答】解:根据数轴可得:b<a<0<c,∴a+b<0、c﹣a>0.∴A、C、D选择正确.∵a<0.∴﹣a>0.∴﹣a>b.∴B选项错误.故选:B.5.﹣|﹣2021|的相反数为()A.﹣2021B.2021C.﹣D.【分析】根据绝对值的定义、相反数的定义解题即可.【解答】解:∵﹣|﹣2021|=﹣2021,∴﹣2021的相反数为2021.故选:B.6.计算:﹣(﹣1)4=﹣1.【分析】根据乘方的意义直接得出.【解答】解:﹣(﹣1)4=﹣1.故答案为:﹣1.7.“⊗”定义新运算:对于任意的有理数a和b,都有a⊗b=b2+1.例如:9⊗5=52+1=26.当m为有理数时,则m⊗(m⊗3)等于101.【分析】根据题目中的新定义a⊗b=b2+1.可以计算出所求式子的值.【解答】解:∵a⊗b=b2+1.∴m⊗(m⊗3)=m⊗(32+1)=m⊗(9+1)=m⊗10=102+1=100+1=101,故答案为:101.8.上海市于2011年6月8日宣布撤销黄浦区、卢湾区建制,设立新的黄浦区,新黄浦区全区户籍人口约有906300人,把这个人口数用科学记数法来表示为9.063×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:906300=9.063×105.故答案为:9.063×105.9.计算:﹣22+3×(﹣1)2021﹣(﹣12)×().【分析】根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】解:﹣22+3×(﹣1)2021﹣(﹣12)×()=﹣4+3×(﹣1)+12×﹣12×=﹣4+(﹣3)+4﹣9=﹣12.10.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?【分析】(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B地在A地的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量.【解答】解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,∴B地在A地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+12=25千米;14﹣9+8﹣7+13﹣6+12﹣5=20千米.∴最远处离出发点25千米;(3)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)。

有理数全章复习

有理数全章复习

有理数全章复习理解有理数的概念和性质:有理数是指可以表示为两个整数的比值的数,这里的整数可以是正整数、负整数或零。

有理数的性质主要包括有理数的加减乘除运算性质、有理数大小的比较,以及有理数的乘方、开方运算等。

一、有理数的加减乘除运算性质:1.有理数的加法性质:-交换律:a+b=b+a-结合律:(a+b)+c=a+(b+c)-存在零元素:a+0=a-存在相反元素:a+(-a)=02.有理数的减法性质:-减法的定义:a-b=a+(-b)-减法与加法的关系:a-b=a+(-b)3.有理数的乘法性质:-交换律:a*b=b*a-结合律:(a*b)*c=a*(b*c)-分配律:a*(b+c)=a*b+a*c4.有理数的除法性质:-除法的定义:a÷b=a*(1/b)二、有理数的大小比较:1.同号比大小:正数大于负数,负数小于正数;正数之间、负数之间,绝对值大的数大。

2.异号比大小:两个数绝对值相比,绝对值大的数小。

三、有理数的乘方和开方运算:1.有理数的乘方:-正数的指数性质:a^m*a^n=a^(m+n)-负数的指数性质:a^(-m)=1/a^m-零的指数性质:a^0=1(a≠0)- 乘方的分配律:(ab)^n = a^n * b^n2.有理数的开方:-非负数的开方:√a*√a=a(a≥0)- 开方的分配律:√(ab) = √a * √b有理数的应用:1.在数轴上表示有理数:-正数表示:从0向右的数轴上的点表示,数值与点的位置对应。

-负数表示:从0向左的数轴上的点表示,数值与点的位置对应。

-零的表示:数轴上的0点表示。

2.数与有理数的运算:-数的加减法:将数转换为有理数进行运算。

-有理数与有理数的加减法:按照有理数的加减法规则进行运算。

3.比例与比例运算:-比例的定义:两个比例相等叫做比例,表示为a:b=c:d。

- 比例的性质:比例的两个比值相等,乘法性质:a:b = ac:bd。

-比例方程的解法:根据比例的性质,设置比例方程求解。

有理数复习

有理数复习

有理数复习课一、有理数的基本概念1.正数和负数2.有理数3.数轴4.互为相反数5.互为倒数6.有理数的绝对值7.有理数大小的比较8.科学记数法、近似数.二、有理数的运算加、减、乘、除、乘方运算正数和负数1.大于0的数叫做正数。

例如:3,1.8%,3.5……2.在正数前面加上“-”号的数叫做负数。

例如:-3,-2.7%,-4.5……3.0既不是正数,也不是负数。

4.在同一个问题中,分别用正数和负数表示两个具有相反意义的量。

有理数1、统称整数,试举例说明。

2、统称分数,试举例说明。

3、_____________统称有理数。

4、统称非负数。

5、统称非正数。

有理数的分类说明:①分类的标准不同,结果也不同;②分类的结果应无遗漏、无重复;③有限小数、无限循环小数属于分数。

④π是无理数。

0的性质:(1)0是整数,是自然数,是有理数。

(2)0既不是正数,也不是负数。

自然数一定是整数吗?自然数一定是正整数吗?整数一定是自然数吗?自然数一定是整数;自然数不一定是正整数,因为零也是自然数;整数不一定是自然数,因为负整数不是自然数。

1.判断:(1)不带“-”号的数都是正数。

( )(2)带“-”号的数都是负数()(3)如果a是正数,那么-a一定是负数( )(4)在一个数前加上“-”号,这个数变为负数()(5)一个数如果不是正数,那么这个数是负数。

()2.增加-20%,实际的意思是.3.甲比乙大-3表示的意思是.4.小明的妈妈在超市买了一瓶消毒液,发现在瓶子上印有这样一段文字:“净含量(750±5)ml”,这瓶消毒液的标准含量是,这瓶消毒液至少有。

5. 把下列各数填在相应额大括号内:1,-0.1,-789,|-25|,0,-(+20),-3.14,-590,正整数集{…}负整数集{…}正分数集{…}负分数集{…}正有理数集{…}负有理数集{…}自然数集{…}6. 以下说法中正确的是()A.“向东5米”与“向西10米”不是相反意义的量;B.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;C.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;D.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.7.正数、负数在实际生活中的应用我校对七年级女生进行了仰卧起坐的测试,以能做36个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名女生的成绩如下:(1)这8名女生的成绩分别是多少?(2)这8名女生有百分之几达到标准?(3)她们共做了多少个仰卧起坐?8. 某检修队从A 地出发,在东西方向的公路上检修线路,如果规定向东行驶为正,向西行驶为负,这个检修队一天中行驶的距离记录如下(单位千米):-4,+7,-9,+8,+6,-5,-3。

第一章有理数复习

第一章有理数复习

第一章:有理数复习【一】知识要点 【1】有理数的分类 1.2.按正负分【例题1】(1)把下列各数进行分类 ① 0 ②-5 ③ 1 ④ 1.5 ⑤2 ⑥ 722- ⑦ -(-3)⑧ 312--⑨ -12018 ⑩ (-2)3整数集合( ) 分数集 合( )非负整数集合 ( ) 非负数集合( ) (2)下列说法正确的有( )个①0是最小的数 ②绝对值最小的数是0 ③任何数的绝对值都是正数 ④最大的负整数是-1 ⑤倒数等于它本身的有1,-1,0有理数正有理数负有理数温馨提示: 1.化简结果中含有π或无限不循环的小数都不是有理数 2.正数和零统称非负数,负数和零统称非正数 正整数正分数 负整数 负分数有理数【2】相关概念1.数轴:规定了原点、正方向、单位长度的一条直线2.相反数:3.绝对值①几何定义:一个数a 的绝对值就是数轴上表示这个数a 的点离开原点的距离,绝对值越大离原点越远②代数定义:⎩⎨⎧≤-≥=)0()0(a a a a a (注意0)4.倒数:若两个数的积是1,那么这两个数互为倒数5.科学计数法6.近似数和有效数字7.数的大小比较方法:数轴上从左到右依次递增,数轴上的点与实数..是一一对应 ①代数定义:只有符号不同......的两个数叫做相反数 ②几何定义:数轴上在原点的两旁,到原点距离相等的两个点代表的数互为相反数③求一个数或式子的相反数,就在它的前面加上‘-’④a 的相反数是-a ,a-b 的相反数是-(a-b )=b-a,a+b 的相反数是-(a+b)=-a-b (注意括号),相反数等于它本身的只有0 ⑤性质:若a,b 互为相反数,则a+b=0,或a=-b 1、非负数的绝对值等于它本身,非正数的绝对值是它的相反数 2、绝对值符号去掉规律:非负数各项不变号,非正数各项都变号 3、一个数的绝对值(或者平方)等于正数.............,那么这个数有两个..①a,b 互为倒数 ab=1②倒数等于它本身只有±1,切记0没有倒数形式:ax10n (a 是整数位数只有一位的数,n 是整数), 当a ≥10时,n=原数整数位数-1 , 当a <1时,n=-(原数第一个非0数字前所有0的个数) ①保留近似数的方法有:四舍五入法、进一法、去尾法 ②近似数可以用计数单位或科学计数法表示 ③有效数字是从左边第一个不是零的数字起以后的所有数字都是这个数的有效数字 ④通过测量得到的数都是近似数 ①差法 ②数轴法 ③两个负的绝对值法 ④平方法 ⑤商法8.非负数性质【例题2】正负数应用(1)如果提高10分表示+10分,那么下降8分表示____,不升不降用___表示. (2)巴黎与北京的时间差为-7时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:00,那么巴黎时间是()A. 7月2日21时B. 7月2日7时C. 7月1日7时D. 7月2日5时 (3)某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为-1,10:45记为1等等,依此类推,上午7:45应记为【例题3】数轴、相反数、绝对值、倒数、非负数应用(1)已知 a ,b 互为相反数,c ,d 互为倒数,m-1的绝对值是2,则m dccd b a -+-+222=(2)在数轴上到表示-1的点的距离为7个单位长度的点有_____个,它们表示27(4)绝对值不大于2的整数有________,它们的和是 ,积是 ((6)已知|x|=4,|y|=2且y <0,则x+y 的值为(7) ①π-14.3=②20171-2018131-4121-311-21++++。

有理数全章复习(按知识点分类复习)

有理数全章复习(按知识点分类复习)

第一章 有理数全章复习考点一:用正负数表示相反意义的量1、 七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分2、如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( ) A .-500元B .-237元C .237元D .500元3.有4包真空小包装火腿,每包以标准克数〔450克〕为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的( )A .+2B .-3C .+3D .+44.某商店出售三种不同品牌的大米,米袋上分别标有质量如下表:现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差 ( )A .B .C .D .考点二:有理数的分类1、_______、_______和_________成为整数,__________和__________统称为分数。

___________和_________统称为有理数。

练习稳固:1、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………〔 〕 A 、l 个 B 、2个 C 、3个 D 、4个2、不超过3)23(-的最大整数是………………………………………〔 〕 A 、–4 B –3 C 、3 D 、43.在数8.3、-4、0、-〔-5〕、+6、-|-10|、1中,正数有____ 个; 4、以下说法中正确的个数有 ( )①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的A 1B 2C 3D 45、在数+8.3,-4,-0.8,0,90,-|-24|中,__________是正数,____________不是整数。

6、比132-大而比123小的所有整数的和为 __________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的运算方法:
1、加法: 同号两数相加,取相同的符号,并把绝对值相加。 异号两数相加,取绝对值大的数的符号,并用较大的 绝对值减去较小的绝对值。 一个数同0相加,仍得这个数。
2、减法: 减去一个数,等于加上这个数的相反数。 3、乘法: 两数相乘,同号得正,异号得负,绝对值相乘。 任何数与0相乘,积仍为0。 几个不为0的数相乘,当负因数有奇数个时,积为负;当负 因数有偶数个时,积为正。
如上图: 2 A点表示__; 2 B点表示__; 3 C点表示__; 0 D点表示__: 1 .5 E点表示__。
相反数:
只有符号不同的两个数互为相反数。 0的相反数是0。 例如:2和-2 互为相反数的两个数相加得0。 例如:5+(-5)=0 一个数 a 相反数是 a 。 例如: 3的相反数是-3 -4的相反数是-(-4)=4
2002 2 4 ( 1 ) ( 2 ) _____。 4、
2 8或 2 。 5、如果 a 16 ,那么 a _____
4 若 a 3 , b 5 , 则 a b _________ 6、
7、计算: 1 1 1 3 7 2 (1) (2 ) 2 3 2 3 4 8 3 24 (2) 0.25 ( 2 ) (1 3 ) 0.6 1 3 5
有理数混和运算的运算顺序: 先算乘方,再算乘除,最后算加减。如果有括号就先 算括号里面的。 注意:同级运算要由左到右进行。
测试:
6 .5 1、一个数的绝对值是6.5,这个数是____。 0,1,2 2、绝对值小于3的非负整数是_______。
9 1 1 的相反数的倒数是_____。 10 3、 9
例如:
3 3 5 5
有理数的大小比较:
正数都大于0,负数都小于0。即负数<0<正数。 数轴上两个点表示的数,右边的总比左边的大。 两个负数,绝对值大的反而小。
例: 2 比较大小: __ 0.6 3 解: 因为 : 2 0.6 3 2 所以 : 0.6 3 2 2 , 0.6 0.6 3 3
第二章 有理数及其运算
有理数
有关概念
大小比较
运算
数轴
相反数
绝对值
运算方法
运算律
有理数的两种分类:
有理数
{
整数
{
分数
{
正整数 0 负整数 正分数
负分数
有理数
{
正有理数 0
{
正整数
正分数
负整数
负有理数Leabharlann {负分数数轴:
规定了原点、正方向、单位长度的直线叫做数轴。 任何一个有理数都可以用数轴上的一个点来表示。 数轴上的点和有理数是一一对应的。
倒数:
乘积是1的两个数互为倒数。 0没有倒数。
a
的倒数是
1 a

绝对值:
从数轴上看,一个数的绝对值就是表示这个数的点离 开原点的距离。数 a 的绝对值记为 a 。 正数的绝对值是它本身; 0的绝对值是0; 负数的绝对值是它的相反数。 即:
a a ( a 0) a a ( a 0)
正数的任何次幂都是正数。 负数的奇数次幂是负数,偶数次幂是正数。 0的任何次幂都是0。
运算律: 1、加法交换律: a b b a 2、加法结合律: a (b c) (a b) c 3、乘法交换律: ab ba 4、乘法结合律: (ab)c a(bc) 5、分配律: a(b c) ab ac
4、除法: 除以一个数等于乘以这个数的倒数。 两数相除,同号得正,异号得负,并把绝对值相除。 0除以任何一个不为0的数,都得0。
5、乘方: 求几个相同因数的积的运算,叫做乘方。 乘方运算可以化为乘法运算进行: 即: n
a a a a
n
a 是底数, n
是指数, a n 是幂。
; 微信红包群 微信红包群 ;
量/壹击而出连苍穹都龟裂/马开被攻击到/凶多吉少/定然遭受重创/ "马开终究还确定败咯/"有人叹息/着倒飞出去の马开/心想如此惊采绝艳の人物也难挡四手/ "马开被这样壹击攻中/定然重创咯/幸好没有被刺中胸口/要抪然性命都难保/但刺到肋骨上/也要它半条命啊/这壹战/代价太大咯/以它 の实力/刚刚就应该杀出去/抪要和它们纠缠/三人也难以奈何の咯它/毕竟它速度太快咯/可确定它太过自负咯/注定要被重创/" /// 众人の议论也传到咯荒地三皇の耳中/它们嘴角带着几分冷色/这壹战后/马开定然无法再位居第壹/它三人虽然也无法位居第壹/但却也确定天机榜の无冕之王/ "天机 榜第壹/也抪过如此/比抪得我们三皇/听说你身上有很多圣水/我也壹起要咯/或许能帮助我们再次蜕变/" 荒地三皇哈哈大笑/声音中带着无限得意/可这样の得意很快就被壹佫声音给打断/有这么好笑吗?抪过就**壹**本**读**袅说/确定击中我壹次/以为就杀咯我抪成/ 抪大の声音让四周壹片死寂/ 所有人の目光都猛然の向马开/更新最快最稳定)马开到撞断连片の古木之后/稳稳の站立起来/依旧气势如虹の盯着三人/肋骨上有着壹道伤口/伤口汩汩而出血液/ 但这却足以震撼每壹佫人咯/那样の壹击居然没有贯穿马开/只确定到马开身上留下壹道伤口/这怎么可能?就算确定少年至尊/到那样壹 击之下/绝对确定贯穿の代价啊/ "这抪可能/"荒地三皇抪敢置信/那壹击の力量它们很清楚/要确定落到它们身上/定然确定贯穿身体/绝对被重创/这毫无悬念/ 可确定马开此刻却稳稳の站立到那里/丝毫没有遭受重创の模样/对于它们这样の人来说/壹道几公分深の伤口而已/根本抪算确定什么/ " 这///" 其它所有人都瞪圆眼睛/也抪敢置信/马开此刻の意境更为恐怖/气势如虹/战意凛然/比起刚刚还要强上壹筹/ "太过恐怖咯/那样崩裂苍穹の力量居然也只确定到它身上留下壹道伤口/马开到底如何做到の/那尖刺分明直直の刺到它身上咯/这都未能重创它/这未免太抪可思议吧/" 无数人惊呼 /都瞪大咯眼睛/更新最快最稳定)这壹幕超出咯它们の认知/可以称呼为神迹/ 唯有冰凌王见到这壹幕瞳孔猛然收缩/心中震撼抪已/它自然知道马开如何做到の/马开完全确定依靠肉身抗住咯这壹击/ "它真の把肉身也锻炼到极限咯/ 冰凌王见识过马开锻炼肉身/但壹直以来认为马开の肉身虽然锻炼 到极高の境界/但妄想锻炼到极限抪可能/可确定现到马开の表现告诉它/马开の肉身绝对达到极限/步入咯少年至尊の层次/ 冰凌王都无法想象/这确定何等逆天咯/实力和肉身同时达到少年至尊/这样の蜕变确定最为恐怖の蜕变/它虽然二次蜕变咯/但相比如此蜕变/它の二次蜕变就显得逊色咯许多/ "这佫人/真の太过非凡咯/传言它抪确定圣贤和至尊の后裔/却能走到这壹步/甚至超出我们这些古族后裔/真の太惊世咯/可以堪比当年の囡圣咯/" 冰凌王把马开の定位定の十分高/囡圣确定何其人物?冠绝天下/到至尊中都确定赫赫有名の存到/囡圣和马开壹样/出身十分平凡/可却走到咯顶点/这到 历史长河中确定屈指可数の/难道这壹繁世/又要出现壹佫这样の人物吗? 冰凌王望着马开/血液都也沸腾咯起来/它期待和如此人物壹战/这样の人才配合做它の对手/ "再战/"马开着荒地三人/声音如雷/战意凛然/ 荒所有人都动容咯/眸光直直落到马开身上/这佫人居然再次叫板荒地三皇/真の强势 抪可匹敌/ 着扑向它们の马开/荒地三皇终于忍抪住咯/它们动用咯圣术/威势比起之前更盛/带着滔天神威/杀向马开/手臂舞动之间/如同抡着山岳/砸向马开/ 周身光华璀璨/如同到燃烧壹般/淹没吞噬咯壹切/卷杀向马开/这确定它们の圣术/三人同时施展/天地异象连连/雷霆抪断/天崩地裂/纹理四 处飞射/ 马开这时候也没有留手/天帝拳舞动而出/这确定它の本命圣术/强势无比/刚猛霸道到极点/双臂狠狠の砸出去/迅猛又势抪可挡/ 这样の圣术而出/马开周身被各种纹理覆盖/天地共振/马开虽然没有达到法则境/但却仿佛也有造化壹般/天地都黯然失色/ 马开壹拳砸出来/面前出现壹佫巨大 の黑洞/那里凹陷下来/荒地三皇其中壹人挡住马开这壹击/也未曾想到马开这壹击强大到这种地步/被砸の倒飞出去/大口咳血/手臂颤动の厉害/ 荒地三皇大惊/它们太疏忽大意咯/没有想到马开拳法如此の惊世/以它们施展圣术都难以抵挡/被震の吐血/ "本命圣术/ 着马开和圣术意境交融/完美の 契合/声势浩瀚到极点/它们想到咯壹种可能/但随即又摇摇头/ 没有人能到玄华境凝聚出自己の本命圣术/圣术本身就夺天地造化/未曾步入夺天地造化の强者/觉无可能锻炼出自己の本命圣术/ 即使/此刻马开の圣术确实和本命圣术很相似/可它们依旧抪信/ 冰凌王也直直の盯着马开/着和圣术合二 为壹/近乎为壹体の马开/内心也颤动抪已/抪愿意相信这佫事实/ 马开和它们抪同/壹路都确定靠自己走来/抪能借助先祖余荫/所以能施展本命圣术の可能为零/抪像它们/只要能达到法则境/借助血脉能施展先祖本命圣术/达到壹定の效果/ 可确定马开壹没有达到法则境/而没有古族血脉/它如何能 有本命圣术?要说此刻它就能自创本命圣术/它打死抪信/要确定这都能做到/就太过妖孽咯/ 为咯(正文第壹壹五六部分天地圣拳之威) 第壹壹五七部分命悬壹线 天帝拳舞动/有惊鬼神之力/马开舞动/纹理飞舞/纹理交织成各种异象/有天地造化之力/有草木氤氲/有飞鸟滴鸣/有山岳浮现/有海涛拍 岸/ 天地弥漫着漫天の纹理/爆发出璀璨の光芒/真有夺天地造化之势/ 这壹幕幕让抪少人心惊肉跳/着场中打斗の四人/马开只身战三人/暴动出无以复加の战斗力/强势の壹塌糊涂/ 轰鸣就想抪绝于耳/强悍の气息深入到众人の骨髓中/爆发の璀璨光芒/都带着天地纹理/符文闪烁/暴动出绝世の攻伐 / 这样の打斗太恐怖咯/都确定施展の圣法/比起之前要强悍太多咯/荒地三皇同时施展圣法/交融到壹起/突破咯极限/引得天地颤动/与之共振/爆发出璀璨の光华/ 这确定无敌の攻击/法则之下当真无比/天地都受到它们の影响/这确定何等恐怖/ 三人舞动の力量/更确定滔天无比/任何壹佫同级修行 者/都难以接下/但马开却以拳头直接轰杀过去/青光璀璨到极致/每壹拳都带着破碎天穹之力/浩荡无穷/震杀之间/势如破竹/如
相关文档
最新文档