有理数运算易错题

合集下载

《有理数》的易错题难题集锦

《有理数》的易错题难题集锦

《有理数》的易错题和难题1、计算:(每小题6分,共36分)(1)12411()()()23523+-++-+-(2)21151 2.4533612⎡⎤⎛⎫--+⨯÷ ⎪⎢⎥⎝⎭⎣⎦(3)-72十2×(-3)2+(-6)÷(-31)2(4)215[4(10.2)(2)]5---+-⨯÷-2、(8分)计算:20111-2012141-5131-4121-31+⋅⋅⋅+++ 3、(8分)已知a 是最大的负整数,b 的相反数是它的本身,c 比最小的正整数大2,计算:c ab 223+的值。

4、(8分)已知:,032=-++y x 求:xy y x 43525+--的值5、(10分)已知:0)52(31212=++++-c b a ,求:c b a 532--的值. c8、(10分)已知:0>ab,求:abb a ++的值.9、(10分)若b a 、均为整数,且满足32=-a ,4)1(2=-b ,求b a +的值。

10、(10分)已知b a 、互为相反数,d c 、互为倒数,x 的平方是4. 11、(10分)某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、-3、-5、+4、-8、+6、-3、-6、-4、+10。

(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向? (2)若每千米的价格为2.4元,司机一个下午的营业额是多少? 12、(10分)某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价完全不相同,若以47元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:请问:该服装店售完这13、(10(1)(2)小王在上周五以每股30元的价格买进了该股票1000股,又在本周四全部卖出。

买进与卖出时各付出了1‰的手续费,卖出时还付出了0.5‰的税,问小王收益如何?。

有理数的易错题

有理数的易错题

有理数的易错题
有理数是整数和分数的统称,包括正整数、负整数、零和正分数、负分数。


学习有理数的过程中,有一些易错题是经常出现的,以下是一些常见的易错题及解析:
1. 问题:计算-5+3时的结果是多少?
解析:-5+3=-2,减法运算要注意符号的变化,减去一个正数相当于加上这个
数的相反数。

2. 问题:-6与6之间的数有几个?
解析:-6与6之间的数有11个,包括-5、-4、-3、-2、-1、0、1、2、3、4、5。

3. 问题:计算-3×(-4)的结果是多少?
解析:-3×(-4)=12,两个负数相乘得正数。

4. 问题:-3-(-5)的运算结果是多少?
解析:-3-(-5)=2,减法运算转化为加法运算,-3+5=2。

5. 问题:-2/3+1/2的结果是多少?
解析:-2/3+1/2=-1/3,先通分再进行加法运算,-4/6+3/6=-1/3。

6. 问题:-2的绝对值是多少?
解析:-2的绝对值是2,绝对值是数与0的距离,所以-2的绝对值是2。

7. 问题:-4与-1的和的相反数是多少?
解析:-4与-1的和是-5,-5的相反数是5,数的相反数是在数轴上对称的数。

以上是有理数的一些易错题及解析,希望能帮助你更好地理解有理数的相关知识。

在学习过程中,多做练习,加强对有理数的理解,提高解题能力。

如果有更多问题,欢迎继续提问,我会尽力帮助你解答。

有理数易错题

有理数易错题

第一章有理数易错题一.填空题(共10小题)1.在,0,﹣(﹣1.5),﹣|﹣5|,2,,﹣24中,是负数有,是整数有.2.﹣2.5的相反数是,倒数是.3.﹣(﹣4)的相反数是.4.﹣a的相反数是.﹣a的相反数是﹣5,则a=.5.一个数的绝对值是4,则这个数是.6.如果|m﹣1|=5,则m=.7.﹣52的底数是,指数是.8.计算:23×()2=.9.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为人次.10.用四舍五入法得到的近似值0.380精确到位,48.68万精确到位.二.解答题(共4小题)11.计算:(1)、﹣14﹣[2﹣(﹣3)2]÷()3.(2)、﹣14﹣(1﹣0.5)××[4﹣(﹣2)3].(3)、(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)](4)、.12.历城区交警大队一辆警车沿着一条南北方向的公路巡视,某天早晨从A地出发,约定向北为正方向,当天行驶记录如下(单位:千米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10问:(1)警车最后是否回到出发点?为什么?(2)若该警车每千米耗油3升,那么该天共耗油多少升?(3)若油箱中有150升油,中途是否需要加油?若需要,至少加多少升?参考答案与试题解析一.填空题(共10小题)1.(2016秋?唐河县期中)在,0,﹣(﹣1.5),﹣|﹣5|,2,,﹣24中,是负数有﹣5,﹣|﹣5|,﹣24,是整数有0,﹣|﹣5|,2,﹣24.【分析】首先把数进行化简,再根据负数,整数的意义区分是负数还是整数.【解答】解:∵﹣(﹣1.5)=1.5,﹣=﹣5,﹣24=﹣16.故答案为:负数有﹣5,﹣|﹣5|,﹣24,整数有0,﹣|﹣5|,2,﹣24.【点评】解此题的关键是利用学过的法则进行化简.难点是理解负数和整数的含义,并进行划分.题型较好,难度不大.2.(2016秋?扬中市期中)﹣2.5的相反数是 2.5,倒数是﹣.【分析】根据只有符号不同的两个数是相反数,可得﹣2.5的相反数,根据乘积是1的两个数互为倒数,可得﹣2.5的倒数.【解答】解:﹣2.5的相反数是2.5,﹣2.5的倒数是,故答案为:2.5,﹣.【点评】本题考查了有理数的倒数,理解乘积是1的两个数互为倒数是解题关键.3.(2013秋?广陵区校级期中)﹣(﹣4)的相反数是﹣4.【分析】根据只有符号不同的两个数是相反数,可得﹣(﹣4)的相反数.【解答】解:∵﹣(﹣4)=4,4的相反数是﹣4,∴﹣(﹣4)的相反数是﹣4,故答案为:﹣4.【点评】本题考查了相反数,对﹣(﹣4)的化简是解题关键.4.(2015秋?德州校级月考)﹣a的相反数是a.﹣a的相反数是﹣5,则a=﹣5.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣a的相反数是a,﹣a的相反数是﹣5,则﹣(﹣a)=﹣5,所以,a=﹣5.故答案为:a;﹣5.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.5.(2016秋?姜堰区期中)一个数的绝对值是4,则这个数是4,﹣4.【分析】题中已知一个数的绝对值,求这个数,根据绝对值的意义求解即可,注意结果有两个.【解答】解:一个数的绝对值是4,根据绝对值的意义,这个数是:4和﹣4故答案为:4和﹣4.【点评】此题主要考察绝对值的意义,在解题时注意结果有两个且互为相反数.6.(2015春?营山县校级期末)如果|m﹣1|=5,则m=6或﹣4.【分析】根据绝对值的定义可知m﹣1=5或m﹣1=﹣5,然后可求得m的值.【解答】解:∵|m﹣1|=5,∴m﹣1=5或m﹣1=﹣5.解得:m=6或m=﹣4.故答案为:6或﹣4.【点评】本题主要考查的是绝对值的定义,明确5和﹣5的绝对值都等于5是解题的关键.7.(2013秋?揭西县校级期中)﹣52的底数是5,指数是2.【分析】根据有理数乘方的定义解答.【解答】解:根据乘方的定义,﹣52的底数是5,指数是2.故答案为:5,2.【点评】本题考查了有理数的乘方,是基础概念题,比较简单,要注意﹣52与(﹣5)2的区别.8.(2015?湖州)计算:23×()2=2.【分析】根据有理数的乘方,即可解答.【解答】解:23×()2=8×=2,故答案为:2.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数乘方的定义.9.(2016?昆山市一模)据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为8.03×106人次.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于803万有7位,所以可以确定n=7﹣1=6.【解答】解:803万=8030000=8.03×106.故答案为:8.03×106.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.10.(2016秋?如皋市校级月考)用四舍五入法得到的近似值0.380精确到千分位,48.68万精确到百位.【分析】一个数要确定精确到哪位,首先要把这个数还原成一般的数,然后看最后一个数字在还原的数中是什么位.【解答】解:0.380的0实际在千分位上,即精确到了千分位;3.56万的6实际在百位上,即精确到了百位.故答案为:千分;百.【点评】本题主要考查了近似数的精确.近似数的精确度理解要深刻,能熟练运用四舍五入法取近似数.二.解答题(共4小题)11.(2015秋?淮北期末)计算:﹣14﹣[2﹣(﹣3)2]÷()3.【分析】先算14=1,(﹣3)2=9,=,再算减法,最后算除法和加法即可.【解答】解:原式=﹣1﹣[2﹣9]÷,=﹣1﹣(﹣7)×8,=﹣1+56,=55.【点评】本题主要运用了有理数的加法法则,除法法则,乘方法则等知识点,注意运算顺序:先算乘方,再算乘除,最后算加减,有括号先算括号里面的.12.(2014秋?太仓市期末)计算(1)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)](2)﹣14﹣(1﹣0.5)××[4﹣(﹣2)3].【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(﹣1)×(﹣5)÷[9+(﹣10)]=5÷(﹣1)=﹣5;(2)原式=﹣1﹣()××[4﹣(﹣8)]=﹣1﹣×12=﹣1﹣2=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.13.(2013秋?历城区期中)历城区交警大队一辆警车沿着一条南北方向的公路巡视,某天早晨从A地出发,约定向北为正方向,当天行驶记录如下(单位:千米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10问:(1)警车最后是否回到出发点?为什么?(2)若该警车每千米耗油3升,那么该天共耗油多少升?(3)若油箱中有150升油,中途是否需要加油?若需要,至少加多少升?【分析】(1)把所有行驶记录相加,可判断最终位置;(2)根据行车就好有可算出耗油量;(3)耗油量与油箱中的油比较,可判断是否需要加油.【解答】解:(1)5﹣3+10﹣8﹣6+12﹣10=0(千米),因为结果为0,警车既不在出发点北,也不在出发点南,答:警车最后回到出发点;(2)|5|+|﹣3|+|10|+|﹣8|+|﹣6|+|12|+|﹣10|=54(千米),54×3=162(升),答:该天警车共耗油162升;(3)∵162升>150升,∴162﹣150=12(升),答:中途需要加油,至少加12升.【点评】本题考查了正数与负数,注意正负数的分界是0,即0既不是正数也不是负数,不论向那行驶都要耗油.14.(2012秋?岳池县校级月考).【分析】把括号内分数通分并计算,然后根据有理数的除法运算法则进行计算即可得解.【解答】解:﹣÷(+﹣),=﹣÷(+﹣),=﹣÷,=﹣×10,=﹣.【点评】本题考查了有理数的乘法,容易效仿乘法分配律计算而导致出错.。

有理数易错题练习(含答案)

有理数易错题练习(含答案)

有理数·易错题练习1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.解 (1)a为任何有理数;(2)+5;(3)+3;(4)-6.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.解有,有,没有.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.解 (1)都不是;(2)都是;(3)都是;(4)都是;(5)不都是;(6)都是.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;解 (1)一定;(2)一定;(3)一定不;(4)一定;(5)一定;(6)不一定.5.把下列各数从小到大,用“<”号连接:并用“>”连接起来.8.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.解 (1)11;(2)-1,-2,-3;(3)4.9.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.10.代数式-|x|的意义是什么?解代数式-|x|的意义是:x的相反数的绝对值.11.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________ b.解 (1)>;(2)<;(3)<.12.写出绝对值不大于2的整数.解绝对值不大2的整数有-1,1.13.由|x|=a能推出x=±a吗?解由|x|=a能推出x=±a.如由|x|=3得到x=±3,由|x|=5得到x=±5.14.由|a|=|b|一定能得出a=b吗?解一定能得出a=b.如由|6|=|6|得出6=6,由|-4|=|-4|得-4=-4.15.绝对值小于5的偶数是几?答绝对值小于5的偶数是2,4.16.用代数式表示:比a的相反数大11的数.解-a-11.17.用语言叙述代数式:-a-3.解代数式-a-3用语言叙述为:a与3的差的相反数.18.算式-3+5-7+2-9如何读?解算式-3+5-7+2-9读作:负三、正五、减七、正二、减九.19.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.解(1)(-7)-(-4)-(+9)+(+2)-(-5)=-7-4+9+2-5=-5;(2)(-5)-(+7)-(-6)+4=5-7+6-4=8.20.计算下列各题:(2)5-|-5|=10;21.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.解 (1)>;(2)≥;(3)≥.22.若a为有理数,求a的相反数与a的绝对值的和.解-a+|a|=-a+a=0.23.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.解由|a|=4,得a=±4;由|b|=2,得b=±2.当a=4,b=2时,a-b=2;当a=4,b=-2时,a-b=6;当a=-4,b=2时,a-b=-6;当a=-4,b=-2时,a-b=-2.24.列式并计算:-7与-15的绝对值的和.解 |-7|+|-15|=7+15=22.25.用简便方法计算:26.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.解 (1)不都;(2)不都;(3)都;(4)不都.27.填空:(3)a,b为有理数,则-ab是_________;(4)a,b互为相反数,则(a+b)a是________.解 (1)负数;(2)正数;(3)负数;(4)正数.28.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;解 (1)3;(2)b>0.29.用简便方法计算:解30.比较4a和-4a的大小:解因为4a是正数,-4a是负数.而正数大于负数,所以4a>-4a.31.计算下列各题:(5)-15×12÷6×5.解=-48÷(-4)=12;(5)-15×12÷6×5解因为|a|=|b|,所以a=b.=1+1+1=3.34.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;解 (1)正确;(2)正确;(3)正确.35.计算下列各题;(1)-0.752;(2)2×32.解36.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.解 (1)一定不;(2)不一定;(3)一定不.37.下列各题中的横线处所填写的内容是否正确?若不正确,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.38.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.解 (1)一定;(2)一定;(3)一定;(4)一定不.39.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)4;(3)-2÷(-4)2;解(1)(-3×2)3+3×23=-3×23+3×23=0;(2)-24-(-2)4=0;40.用科学记数法记出下列各数:(1)314000000;(2)0.000034.解 (1)314000000=3.14×106;(2)0.000034=3.4×10-4.41.判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字.(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63.(3)由四舍五入得到的近似数3.70和3.7是一样的.(4)由四舍五入得到的近似数4.7万,它精确到十分位.42.改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;(2)已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;(3)已知3.412=11.63,那么(34.1)2=116300;(4)近似数2.40×104精确到百分位,它的有效数字是2,4;(5)已知5.4953=165.9,x3=0.0001659,则x=0.5495.有理数·错解诊断练习答案1.(1)不等于0的有理数;(2)+5,-5;(3)-2,+4;(4)6.2.(1)没有;(2)没有;(3)有.3.(1)不都是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是.原解错在没有注意“0”这个特殊数(除(1)、(5)两小题外).4.(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定.上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较.8.(1)-11;(2)-1,-2,-3,-4;(3)4,-4.10.x绝对值的相反数.11.(1)<;(2)>;(3)>.12.-2,-1,0,1,2.13.不一定能推出x=±a,例如,若|x|=-2.则x值不存在.14.不一定能得出a=b,如|4|=|-4|,但4≠-4.15.-2,-4,0,2,4.16.-a+11.17.a的相反数与3的差.18.读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九.19.(1)原式=-7+4-9+2+5=-5;(2)原式=-5-7+6+4=-2.21.<;>;>.22.当a≥0时,-a+|a|=0,当a<0时,-a+|a|=-2a.23.由|a+b|=a+b知a+b≥0,根据这一条件,得a=4,b=2,所以a-b=2;a=4,b=-2,所以a-b=6.24.-7+|-15|=-7+15=8.26.(1)都不;(2)都;(3)不都;(4)都.27.(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)0.28.(1)3或1;(2)b≠0.30.当a>0时,4a>-4a;当a=0时,4a=-4a;当a<0时,4a<-4a.(5)-150.32.当b≠0时,由|a|=|b|得a=b或a=-b,33.由ab>0得a>0且b>0,或a<0且b<0,求得原式值为3或-1.34.(1)平方等于16的数是±4;(2)(-2)3的相反数是23;(3)(-5)100.36.(1)不一定;(2)一定;(3)一定.37.(1)负数或正数;(2)a=-1,0,1;(3)a=0,1;(4)a3=±27;(5)x3=-27.38.(1)不一定;(2)不一定;(3)不一定;(4)不一定.40.(1)3.14×108;(2)3.4×10-5.41.(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位.42.(1)2536,0.002536;(2)409700,0.0004097;(3)341;(4)百位,有效数字2,4,0;(5)0.05495.。

《有理数》易错题

《有理数》易错题

初学有理数的常见错误剖析 对于初学有理数者,在解题中出现错误是难免的,也是正常的,但必须弄清产生错误的原因,掌握正确的解答方法,只有这样才能逐步形成数学基本技能和能力,本文就有理数这一部分中的解题易犯错误归纳剖析如下.一、答案不完整例1.若一个有理数的:①倒数②绝对值③平方④立方,等于它本身,则这个数分别是⑴ ;(2) ;(3) ;(4) .错误答案:⑴ 1 ⑵ 正数 ⑶ 1 ⑷±1 .分析:给出的答案不完整,漏掉了一些符合条件的数,产生错误的原因主要是把数的认识局限在正数范围之内,忽视0和才引进的负数,对数的范围的拓宽不适应,另外由于对负数、倒数、绝对值等概念没有完全正确理解而造成的错误. 正确答案是:⑴ ±1 ⑵ 正数和0 ⑶ 1和0 ⑷ ±1和0.二、分类不明确例2.有理数中,⑴最小的正整数是 ;⑵最小的整数是 ;⑶绝对值最小的数是 ;⑷最小的正数是 .错误答案:⑴ 0 ⑵ 1 ⑶ 1 ⑷ 1 .分析:产生错误的原因,一是对有理数的分类没有弄清楚,二是“任意两个有理数之间总至少存在一个有理数”的性质不理解,当然也有一部分同学因“正数”和“整数”的概念混淆而导致错误.正确答案:⑴ 1 ⑵ 不存在 ⑶ 0 ⑷ 不存在 .三、概念不清晰例3.判断正误:(1)任何一个有理数的相反数和它的绝对值都不可能相等( )(2)任何一个有理数的相反数都不会等于它的倒数( ) 错误答案:⑴ ∨ ⑵ × .分析:第(1)小题失误原因,一是误认为一个有理数a 的相反数-a 总是负数; 二是误认为a 能够等于a ,而得到a ≠-a ,究其根源是对“相反数”和“绝对值”的概念还没弄明白.第(2)小题失误原因是对一个有理数和它的倒数,以及相反数的符号之间的关系不清晰所致.正确答案:⑴ × ⑵∨.四、运算不准确1.运算符号错误例4.计算)15(120)4()25.6(-÷--⨯-错解:原式=25-8=17.剖析:此解将120前面的“-”号既视为运算符号,又视为性质符号,以致出错.应当注意“-”号在运算中只能当作二者中的一种.正解:原式=25-(-8)=33.例5.计算5)6(42-----错解:原式=16+6-5=17.剖析:此解忽略了24-与2)4(-的区别,24-表示4的平方的相反数,其结果为-16,2)4(-表示两个-4相乘,其结果为16。

有理数计算易错题

有理数计算易错题

有理数计算易错题以下是一些容易出错的有理数计算题:1. 计算:$\frac{4}{9} - \frac{7}{12}$。

此题容易出错的地方在于求最小公倍数。

首先,求出两个分数的最小公倍数为36,然后将分子和分母分别乘以相应的倍数得到:$\frac{4 \times 4}{9 \times 4} - \frac{7 \times 3}{12 \times 3} = \frac{16}{36} - \frac{21}{36} = \frac{-5}{36}$。

2. 计算:$(-\frac{3}{4}) \times \frac{5}{6}$。

在乘法运算中,两个有理数的符号相乘,再对绝对值进行乘法操作。

所以结果是:$(-\frac{3}{4}) \times \frac{5}{6} = -\frac{3 \times 5}{4 \times 6} = -\frac{15}{24} = -\frac{5}{8}$。

3. 计算:$\frac{\frac{2}{5}}{\frac{3}{4}}$。

在除法运算中,可以将除法转化为乘法,即求被除数和除数的倒数相乘。

所以结果是:$\frac{\frac{2}{5}}{\frac{3}{4}} =\frac{2}{5} \times \frac{4}{3} = \frac{2 \times 4}{5 \times 3} = \frac{8}{15}$。

4. 计算:$5 \div (\frac{3}{8})$。

在除法运算中,可以将除法转化为乘法,即求被除数和除数的倒数相乘。

所以结果是:$5 \div (\frac{3}{8}) = 5 \times\frac{8}{3} = \frac{5 \times 8}{3} = \frac{40}{3}$。

这些题目涉及到有理数的四则运算,常见的错误点包括求最小公倍数时计算错误、乘法运算时忽略符号、分子和分母计算错误等。

在解答这类题目时,仔细计算每一步,并注意符号的处理,可避免常见的错误。

有理数的运算易错题汇编含答案解析

有理数的运算易错题汇编含答案解析
【答案】C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
389亿用科学记数法表示为89×1010.
故选:C.
【答案】B
【解析】
【分析】
【详解】
A. 正确,故此选项不合题意;
B. ,故此选项符合题意;
C. 正确,故此选项不合题意;
D. 61200 = 6.12×104正确,故此选项不合题意;
故选B.
18.若 则 的值是()
A.2 B、1 C、0 D、
【答案】B
【解析】
试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B.
【详解】
科学记数法表示384 000=3.84×105km
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为()
A.2× B.2× C.20× D.0.2×
【答案】B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
故选:C.

有理数易错题汇编及答案

有理数易错题汇编及答案

有理数易错题汇编及答案一、选择题1.下列各数中,最大的数是()A.12-B.14C.0 D.-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<,则最大的数是14,故选B.【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.2.如图,下列判断正确的是()A.a的绝对值大于b的绝对值B.a的绝对值小于b的绝对值C.a的相反数大于b的相反数D.a的相反数小于b的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a|,|b|,有可能|a|>|b|,|a|=|b|,|a|<|b|.由数轴上的点表示的数右边的总比左边的大,得a<b,由不等式的性质,得﹣a>﹣b,故C符合题意;故选:C.【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.3.2019-的倒数是( ) A .2019B .-2019C .12019D .12019- 【答案】C【解析】【分析】 先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】 2019-=2019,2019的倒数为12019故选C【点睛】 本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.4.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.5.在实数-3、0、5、3中,最小的实数是( )A .-3B .0C .5D .3【答案】A【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A .考点:有理数的大小比较.6.下列四个数中,是正整数的是( )A .﹣2B .﹣1C .1D .12【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A 、﹣2是负整数,故选项错误;B 、﹣1是负整数,故选项错误;C 、1是正整数,故选项正确;D 、12不是正整数,故选项错误. 故选:C .【点睛】 考查正整数概念,解题主要把握既是正数还是整数两个特点.7.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132【答案】D【解析】【分析】根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,2=±e ,f=64, ∴2222e =±=(),33644f ==,∴23125c d ab e f ++++ =11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.8.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.9.实数a 、b 在数轴上的位置如图所示用下列结论正确的是( )A .a+b>a>b>a−bB .a>a+b>b>a−bC .a−b>a>b>a+bD .a−b>a>a+b>b【答案】D【解析】【分析】首先根据实数a ,b 在数轴上的位置可以确定a 、b 的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又∵-2<4<6<8,∴a-b>a>a+b>b.故选:D.【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上a,b的位置估算其大小,再取特殊值进行计算即可比较数的大小.10.在有理数2,-1,0,-5中,最大的数是()A.2 B.C.0 D.【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.11.已知a、b、c都是不等于0的数,求a b c abca b c abc+++的所有可能的值有()个.A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据a b c、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.如图所示,数轴上点P 所表示的数可能是( )A 30B 15C 10D 8【答案】B【解析】【分析】点P 在3与4之间,满足条件的为B 、C 两项,点P 与4比较靠近,进而选出正确答案.【详解】∵点P 在3与4之间,∴3<P <49P 16 ∴满足条件的为B 、C图中,点P 比较靠近4,∴P 应选B 、C 中较大的一个故选:B .【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.13.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.14.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4 【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a15.实数a ,b 在数轴上对应点的位置如图所示,化简|a |+2(a b )-的结果是( )A .2a+bB .-2a+bC .bD .2a-b 【答案】B【解析】【分析】根据数轴得出0a <,0a b -<,然后利用绝对值的性质和二次根式的性质化简.【详解】解:由数轴可知:0a <,0b >,∴0a b -<, ∴22a a b a b a a b ,故选:B .【点睛】本题考查了数轴、绝对值的性质和二次根式的性质,根据数轴得出0a <,0a b -<是解题的关键.16.下列语句正确的是( )A .近似数0.010精确到百分位B .|x-y |=|y-x |C .如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的17.下列各组数中互为相反数的是( )A .5和2(5)-B .2--和(2)--C .38-和38-D .﹣5和15 【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5和()25-=5,两数相等,故此选项错误;B 、-|-2|=-2和-(-2)=2互为相反数,故此选项正确;C 、-38=-2和38-=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.18.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c > 【答案】D【解析】【分析】 根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|;所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.19.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.20.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a<b<0<c,|b|<|a|,|b|<|c|,再逐个判断即可.【详解】从数轴可知:a<b<0<c,|b|<|a|,|b|<|c|.A.a<b,故本选项错误;B.|a﹣c|=c﹣a,故本选项错误;C.﹣a>﹣b,故本选项错误;D.|b+c|=b+c,故本选项正确.故选D.【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a<b<0<c,|b|<|a|,|b|<|c|,用了数形结合思想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“有理数运算”常见错误剖析
济宁附中李涛
一、概念不清
例1 a 和-a 各是什么数?
错解:a 是正数,-a 是负数
评析:带正号的数不一定是正数,带负号的数不一定是负数,上述解法错在没弄清正、负数的概念。

正解:当a 大于零时,a 是正数,-a 是负数;当a 小于零时,a 是负数,-a 是正数;当a 等于零时,a 和-a 都是零。

例2 若,m m -=则m 是( )A. 正数 B. 负数 C. 非正数 D. 非负数 错解:选B 评析:由于“0的相反数是0”,因此“0的绝对值是0”也可以说成是“0的绝对值是它的相反数”,上述解法错在对绝对值概念的理解不透彻。

正解:选C
二、符号问题
例3 计算:)2
1(65)53(8-⨯⨯
-⨯- 错解:原式=22165538=⨯⨯⨯ 评析:由积的符号法则可知,几个不等于0的数相乘,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正,上述解法错在符号上。

正解:原式=22
165538-=⨯⨯⨯- 例4 计算:)23
(15)4()3(-÷--⨯-
错解:原式=12―10=2
评析:错解将15前面的“―”号既视为运算符号,又视为性质符号,重复使用,以致出错,应二选其一。

(按照顺序,不要跨步; 先定符号,再定大小)
正解:原式=12+10=22
三、对乘方的意义理解不透彻
例5 计算:364)2()1(32---⨯+-
错解:原式=―8+3×(―6)―(―6)=―8+(―18)+6=―20
评析:此解有三处错,都是把乘方运算当作底数与指数相乘,这是由不理解乘方的意义造成的。

正解:原式=―16+3×1―(―8)=―16+3+8=―5
例6 计算:4)2(2322⨯--+-
错解:原式=9+4―(―8)=9+4+8=21
评析:错解忽略了24-与2)4(-的区别:2
4-表示4的平方的相反数,其结果为16;而2)4(-表示两个(―4)相乘,其结果为16。

正解:原式=―9+4―(―8)=―9+4+8=3
四、违背运算顺序
例7 计算:6―(―10)÷(―4)
错解:原式=16÷(―4)=―4
评析:有理数混合运算的顺序是:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的;对同一级运算,应从左至右进行。

正解:原式=27256=- 例8 计算:)4(4
18-⨯÷ 错解:原式=8÷=―8
评析:乘除法为同一级运算,应从左至右进行。

正解:原式=8×4×(―4)=―128
例9.(新疆中考题)在数轴上,离原点距离等于3的数是_______.
分析:本题可绝对值的意义直接求解,在数轴上,离原点距离等于3的数有两个,分别是3和-3,它们到原点的距离相等.
例10.分类讨论
(山东泰安中考题)若||1||4a b ==,,且0ab <,则a b +=____________. 解析:∵ ||1||4a b ==,,∴14a b =±=±,.
又∵0ab <,
∴a b ,异号,即1,414a b a b ==-=-=或,.
所以3a b +=±.
例11(四川眉山中考题)计算:31(1)0450.1(2)÷-+÷-⨯⨯-.
答案:3.
分析:对于有理数的混合运算,应严格按照运算顺序进行,并根据题目的特点,灵活选用运算律,以提高运算速度.。

相关文档
最新文档