有理数的易错题和经典题

合集下载

(易错题精选)初中数学有理数的运算易错题汇编附答案解析

(易错题精选)初中数学有理数的运算易错题汇编附答案解析

(易错题精选)初中数学有理数的运算易错题汇编附答案解析一、选择题1.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.81 B.508 C.928 D.1324【答案】B【解析】【分析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【详解】解:孩子自出生后的天数是:1×73+3×72+2×7+4=508,故选:B.【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数字列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.电影《流浪地球》中有一个名词“洛希极限”,它是指两大星体之间可以保持平稳运行的最小距离,其中地球与木星之间的洛希极限约为10.9万公里,数据“10.9万”用科学记数法表示正确的是()A.10.9×104B.1.09×104C.10.9×105D.1.09×105【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将10.9万用科学记数法表示为:1.09×105.故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为()A.2.4×103B.2.4×105C.2.4×107D.2.4×109【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如果a是实数,下列说法正确的是()A.2a和a都是正数B.(-a+2可能在x轴上C.a的倒数是1aD.a的相反数的绝对值是它本身【答案】B【解析】【分析】A、根据平方和绝对值的意义即可作出判断;B、根据算术平方根的意义即可作出判断;C、根据倒数的定义即可作出判断;D、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.5.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒 A .81.2510⨯B .91.2510⨯C .101.2510⨯D .812.510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.根据如图的程序运算:当输入x =50时,输出的结果是101;当输入x =20时,输出的结果是167.如果当输入x 的值是正整数,输出的结果是127,那么满足条件的x 的值最多有( )A .3个B .4个C .5个D .6个【答案】D【解析】【分析】根据程序中的运算法则计算即可求出所求.【详解】根据题意得:2x +1=127,解得:x =63;2x +1=63,解得:x =31;2x +1=31,解得:x =15;2x +1=15,解得:x =7;2x +1=7,解得:x =3;2x +1=3,解得:x =1,则满足条件x 的值有6个,故选:D.【点睛】此题考查了代数式求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.7.清代·袁牧的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A.8.4×10-5B.8.4×10-6C.84×10-7D.8.4×106【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】8.现有若干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如图所示.如果要拼一个长为(a+2b),宽为(a+b)的大长方形,则需要C类卡片张数为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:(a+2b)(a+b)=22++,则C类卡片需要3张.a ab b32考点:整式的乘法公式.9.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.10【答案】B【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B.【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n还成成原数时, n>0时,小数点就向右移动n位得到原数;n<0时,小数点则向左移动|n|位得到原数.10.若(x +y ﹣1)2+|x ﹣y +5|=0,则x =( )A .﹣2B .2C .1D .﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 即可.【详解】解:∵(x +y ﹣1)2+|x ﹣y +5|=0, ∴1050x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, 故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.11.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误; ∵a c >,∴C 错误; ∵d c >,c>0, ∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.12.按如图所示的运算程序,能使输出结果为10的是( )A .x =7,y =2B .x =﹣4,y =﹣2C .x =﹣3,y =4D .x =12,y =3 【答案】D【解析】【分析】 根据运算程序,结合输出结果确定的值即可.【详解】解:A 、x =7、y =2时,输出结果为2×7+22=18,不符合题意;B 、x =﹣4、y =﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;C 、x =﹣3、y =4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;D 、x =12、y =3时,输出结果为2×12+32=10,符合题意; 故选:D .【点睛】 此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.13.2018年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为( )A .744.5810⨯B .84.45810⨯C .94.45810⨯D .100.445810⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.由此即可解答.【详解】445800000用科学记数法表示为: 445800000=84.45810⨯.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.15.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为( )A .63.0510⨯B .630.510⨯C .73.0510⨯D .83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】3050万=30500000=73.0510⨯,故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.据报道,2019年元旦小长假云南省红河州共接待游客约为7038000人,将7038000用科学记数法表示为( )A .570.3810⨯B .67.03810-⨯C .67.03810⨯D .60.703810⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将7038000用科学记数法表示为:7.038×106.故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.2018年4月10日,“2018博鳌亚洲论坛”在我国海南省博鳌小镇如期举行,据统计,在刚刚过去的一年,亚洲经济总量为29.6万亿美元,高居全球七大洲之首.数据“29.6万亿”用科学记数法可表示为( )A .2.96×108B .2.96×1013C .2.96×1012D .29.6×1012【答案】B【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】18.12010-的倒数是( ) A .2010-B .2010C .12010D .12010- 【答案】A【解析】【分析】 根据倒数的定义求解.【详解】解:根据互为倒数的两个数乘积为1可知:12010-的倒数为-2010. 故选A .【点睛】 本题考查倒数的定义,题目简单.19.桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为( ) A .0.278 09×105B .27.809×103C .2.780 9×103D .2.780 9×104【答案】D【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】27 809=2.780 9×410,故选D .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值20.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( )A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.。

初中数学有理数易错题汇编含解析

初中数学有理数易错题汇编含解析

初中数学有理数易错题汇编含解析一、选择题1.下列说法中不正确的是()A.-3 表示的点到原点的距离是|-3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,故B选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C选项正确,不符合题意;D、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D选项正确,不符合题意,故选B.【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.2.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】2019-=2019,2019的倒数为1 2019故选C【点睛】本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.3.已知235280x y x y +-+-+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】解:∵235280x y x y +-+-+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.4.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .5.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.6.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0【答案】C【解析】【分析】根据已知和根与系数的关系12c x x a=得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】 解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =,∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.7.如果x 取任意实数,那么以下式子中一定表示正实数的是( )A .xB .C .D .|3x +2| 【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x 可以取全体实数,不符合题意;B.≥0, 不符合题意; C.>0, 符合题意; D. |3x +2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.8.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A错误;0是整数,B错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C正确;0无倒数,D错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在9.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的11.已知a 、b 、c 都是不等于0的数,求abcabca b c abc +++的所有可能的值有()个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0, ∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.13.7-的绝对值是 ( )A .17-B .17C .7D .7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.14.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.17.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数,则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3. 故选:A . 【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.18.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误;∵a c >,∴C 错误;∵d c >,c>0,∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.。

(完整版)有理数易错题汇总答案

(完整版)有理数易错题汇总答案

有理数·易错题练习一.多种情况的问题(考虑问题要全面)(1)已知一个数的绝对值是3,这个数为_______;3±此题用符号表示:已知,3=x 则x=_______;3±,5=-x 则x=_______;5± (2)绝对值不大于4的负整数是________;-1,-2,-3 (3)绝对值小于4.5而大于3的整数是________.4±(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;5±(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________; 4,-2(6) 平方得412的数是____;23±此题用符号表示:已知,4122=x 则x=_______;23± (7)若|a|=|b|,则a,b 的关系是________;a=b,或a=-b (8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值. a=4,b=-2时a-b=6,a=4,b=2时为2二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择(1)若a 是负数,则a_____<___-a ;a --是一个____负____数;(2)已知,x x -=则x 满足__0≤x ______;若,x x =则x 满足___0≥x _____;若x=-x, x 满足______x=0__;若=-<2,2a a 化简____ ;2-a正数0 负数(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( A )-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0(4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。

有理数概念十大易错题-解析

有理数概念十大易错题-解析

1、绝对值等于本身的数是,绝对值是相反数的数是。

答案:非负数;非正数解析:绝对值等于本身的数是非负数,绝对值是相反数的数是非正数。

2、下列说法中正确的是()A.平方是它本身的数是正数 B.绝对值是它本身的数是零C.立方是它本身的数是±1D.倒数是它本身的数是±1答案:选 D解析:∵平方是它本身的数是 1 和 0;绝对值是它本身的数是零和正数;立方是它本身的数是±1 和 0;倒数是它本身的数是±1,∴正确的答案为 D.3、下列说法中正确的是①正整数、负整数、零统称为整数;②正分数,负分数统称为分数;③整数、分数和零统称为有理数;④ 0 是偶数,也是自然数。

答案:①②④解析:第③项错误,整数和分数统称为有理数。

4、下列判断中,错误的是().①.一个有理数的相反数一定是负数;②.一个非正数的绝对值一定是正数;③.任何有理数的绝对值都是正数;④. 任何有理数的绝对值都不是负数。

答案:①②③解析:①:0 的相反数是0,故本选项错误;②:一个非正数的绝对值还可能为0,故本选项错误;③:有理数的绝对值还可能为0,故本选项错误;④:任何有理数的绝对值都不是负数,故本选项正确.5、下列说法正确的有①.整数包括正整数、负整数;②.0 是整数,也是自然数;③.分数包括正分数、负分数和 0;④.有理数中,不是负数就是正数答案:②解析:整数包括正、负整数和 0;分数包括正分数和负分数;有理数中,除了负数和正数还有 0.6、下列各组量中,具有相反意义的量是①节约汽油 10 升和浪费粮食 10 千克;② 向东走 10 公里和向北走 8 公里;③盈利 100 元和支出 200 元;④增加 10%与减少 20%。

答案:④7、在−22,3.1415926,0,−1.234 ⋯,˙,π,有理数的个数是().7 0. 3 2A . 2B . 3C . 4D . 5答案: C解析:−22,3.1415926,0,˙是有理数.7 0. 38、下列说法正确的是① 带有正号的数是正数,带有负号的数是负数;② 有理数是正数和小数的统称;③ 有最小的正整数,但没有最小的正有理数;④非负数一定是正数。

有理数的易错题

有理数的易错题

有理数的易错题
有理数是整数和分数的统称,包括正整数、负整数、零和正分数、负分数。


学习有理数的过程中,有一些易错题是经常出现的,以下是一些常见的易错题及解析:
1. 问题:计算-5+3时的结果是多少?
解析:-5+3=-2,减法运算要注意符号的变化,减去一个正数相当于加上这个
数的相反数。

2. 问题:-6与6之间的数有几个?
解析:-6与6之间的数有11个,包括-5、-4、-3、-2、-1、0、1、2、3、4、5。

3. 问题:计算-3×(-4)的结果是多少?
解析:-3×(-4)=12,两个负数相乘得正数。

4. 问题:-3-(-5)的运算结果是多少?
解析:-3-(-5)=2,减法运算转化为加法运算,-3+5=2。

5. 问题:-2/3+1/2的结果是多少?
解析:-2/3+1/2=-1/3,先通分再进行加法运算,-4/6+3/6=-1/3。

6. 问题:-2的绝对值是多少?
解析:-2的绝对值是2,绝对值是数与0的距离,所以-2的绝对值是2。

7. 问题:-4与-1的和的相反数是多少?
解析:-4与-1的和是-5,-5的相反数是5,数的相反数是在数轴上对称的数。

以上是有理数的一些易错题及解析,希望能帮助你更好地理解有理数的相关知识。

在学习过程中,多做练习,加强对有理数的理解,提高解题能力。

如果有更多问题,欢迎继续提问,我会尽力帮助你解答。

(易错题精选)初中数学有理数经典测试题含答案解析

(易错题精选)初中数学有理数经典测试题含答案解析

(易错题精选)初中数学有理数经典测试题含答案解析一、选择题1.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C .绝对值最小的数是0;D .任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A 错误;0是整数,B 错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C 正确;0无倒数,D 错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在2.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.3.下列说法中,正确的是( )A .在数轴上表示-a 的点一定在原点的左边B .有理数a 的倒数是1aC .一个数的相反数一定小于或等于这个数D .如果a a =-,那么a 是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A 、如果a<0,那么在数轴上表示-a 的点在原点的右边,故选项错误;B 、只有当a≠0时,有理数a 才有倒数,故选项错误;C 、负数的相反数大于这个数,故选项错误;D 、如果a a =-,那么a 是负数或零是正确.故选D.【点睛】 本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.下列四个数中,是正整数的是( ) A .﹣2B .﹣1C .1D .12【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A 、﹣2是负整数,故选项错误;B 、﹣1是负整数,故选项错误;C 、1是正整数,故选项正确;D 、12不是正整数,故选项错误. 故选:C .【点睛】 考查正整数概念,解题主要把握既是正数还是整数两个特点.5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.6.和数轴上的点一一对应的是( )A .整数B .实数C .有理数D .无理数【答案】B【解析】∵实数与数轴上的点是一一对应的,∴和数轴上的点一一对应的是实数.故选B.7.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A 【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.8.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C.﹣a>﹣b,故本选项错误;D.|b+c|=b+c,故本选项正确.故选D.【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a<b<0<c,|b|<|a|,|b|<|c|,用了数形结合思想.9.如图,a、b在数轴上的位置如图,则下列各式正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.﹣b<a【答案】B【解析】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.10.如图数轴所示,下列结论正确的是()A.a>0 B.b>0 C.b>a D.a>b【答案】A【解析】【分析】根据数轴,可判断出a为正,b为负,且a距0点的位置较近,根据这些特点,判定求解【详解】∵a在原点右侧,∴a>0,A正确;∵b在原点左侧,∴b<0,B错误;∵a在b的右侧,∴a>b,C错误;∵b距离0点的位置远,∴a<b,D错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大11.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q【答案】C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.12.下列各组数中,互为相反数的组是( )A .2-()22-B .2-38-C .12-与2D .2-2 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2()22-=2,符合相反数的定义,故选项正确;B 、-238-不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.13.下列语句正确的是( )A .近似数0.010精确到百分位B .|x-y |=|y-x |C .如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的14.2019的倒数的相反数是()A.-2019 B.12019-C.12019D.2019【答案】B【解析】【分析】先求2019的倒数,再求倒数的相反数即可.【详解】2019的倒数是1 2019,1 2019的相反数为12019-,所以2019的倒数的相反数是1 2019 -,故选B.【点睛】本题考查了倒数和相反数,熟练掌握倒数和相反数的求法是解题的关键.15.7-的绝对值是()A.17-B.17C.7D.7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.16.- 14的绝对值是( ) A .-4B .14C .4D .0.4【答案】B【解析】【分析】 直接用绝对值的意义求解. 【详解】 −14的绝对值是14. 故选B .【点睛】 此题是绝对值题,掌握绝对值的意义是解本题的关键.17.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.18.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b+-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数, 则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A .【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.19.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010-【答案】D【解析】【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =, 101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a=-+=--+=-,656363a a=-+=--+=-,767374a a=-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a=-,故选:D.【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.20.在数轴上,与原点的距离是2个单位长度的点所表示的数是()A.2 B.2-C.2±D.1 2±【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.。

七年级有理数易错题和易错点

七年级有理数易错题和易错点

七年级有理数易错题和易错点一、易错题1. 求两数之和Tom在试卷上遇到了这样一个问题:计算-5和-3的和。

他心算后填写了答案-8,然而,他的答案是错误的。

究竟是哪里出了问题?答案解析:对于两个负数相加,我们可以使用以下规则:两个相同符号的负数相加,绝对值越大,和越小。

所以,在这个例子中,-5和-3的和应该是-5+(-3)=-8。

2. 求整数的绝对值Lisa在计算|-9|时,填写了答案9。

然而,她的答案是错误的。

你知道正确答案是什么吗?答案解析:绝对值是表示一个数与0的距离,所以无论这个数是正数还是负数,它的绝对值都是正数。

在这个例子中,|-9|的绝对值应该是9。

3. 比较数的大小Mike被要求比较-2和-5的大小,他认为-2比-5大。

然而,他的答案是错误的。

你知道正确答案是什么吗?答案解析:要比较两个负数的大小,可以转化为比较它们的绝对值的大小。

在这个例子中,-2的绝对值是2,-5的绝对值是5,所以-5比-2要大。

二、易错点1. 符号的运算规则有理数的符号运算规则是很容易混淆的一个点。

当两个数的符号相同时,可以直接将它们的绝对值相加,再加上相同的符号。

当两个数的符号不同时,可以转化为相同符号的运算,再进行计算。

2. 绝对值的概念有些学生对绝对值的概念理解不深刻,误以为绝对值只是取一个数的正值。

实际上,绝对值是表示一个数与0的距离,所以它的值总是正数。

3. 负数的大小比较对于负数的大小比较,学生常常会误以为绝对值较大的数就是较小的数。

要纠正这个错误,需要强调负数的绝对值越大,它的值越小。

由于有理数在七年级是一个相对新概念,学生们可能会因为对这些概念的理解不深刻而犯错误。

希望同学们在学习有理数的过程中,注意理解并掌握这些易错点,确保能正确应用有理数的相关知识。

(易错题精选)初中数学有理数经典测试题附答案解析(1)

(易错题精选)初中数学有理数经典测试题附答案解析(1)

(易错题精选)初中数学有理数经典测试题附答案解析(1)一、选择题1.如图数轴所示,下列结论正确的是( )A .a >0B .b >0C .b >aD .a >b【答案】A【解析】【分析】根据数轴,可判断出a 为正,b 为负,且a 距0点的位置较近,根据这些特点,判定求解【详解】∵a 在原点右侧,∴a >0,A 正确;∵b 在原点左侧,∴b <0,B 错误;∵a 在b 的右侧,∴a >b ,C 错误;∵b 距离0点的位置远,∴a <b ,D 错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大2.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.3.下列说法中,正确的是( )A .在数轴上表示-a 的点一定在原点的左边B .有理数a 的倒数是1aC .一个数的相反数一定小于或等于这个数D .如果a a =-,那么a 是负数或零【答案】D【解析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】2019-=2019,2019的倒数为1 2019故选C【点睛】本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键. 5.-6的绝对值是()A.-6 B.6 C.- 16D.16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B考点:绝对值.6.在有理数2,-1,0,-5中,最大的数是()A.2 B.C.0 D.【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.7.下列各数中,最大的数是()A.12-B.14C.0 D.-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<,则最大的数是14,故选B.【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.8.如图所示,数轴上点P所表示的数可能是()A30B15C10D8【解析】【分析】点P在3与4之间,满足条件的为B、C两项,点P与4比较靠近,进而选出正确答案.【详解】∵点P在3与4之间,∴3<P<4,即9<P<16∴满足条件的为B、C图中,点P比较靠近4,∴P应选B、C中较大的一个故选:B.【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.9.实数a、b在数轴上的位置如图所示用下列结论正确的是( )A.a+b>a>b>a−b B.a>a+b>b>a−bC.a−b>a>b>a+b D.a−b>a>a+b>b【答案】D【解析】【分析】首先根据实数a,b在数轴上的位置可以确定a、b的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又∵-2<4<6<8,∴a-b>a>a+b>b.故选:D.【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上a,b的位置估算其大小,再取特殊值进行计算即可比较数的大小.10.若(x +y ﹣1)2+|x ﹣y +5|=0,则x =( )A .﹣2B .2C .1D .﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 即可.【详解】解:∵(x +y ﹣1)2+|x ﹣y +5|=0, ∴1050x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, 故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .,5或13【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥0,2(2)1y --≥0,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形,则斜边的长为:222222+=;②当2,3均为直角边时,斜边为222313+=;③当2为一直角边,3为斜边时,则第三边是直角,长是22325-=.故选D .考点:1.非负数的性质;2.勾股定理.13.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a .14.方程|2x+1|=7的解是( )A .x=3B .x=3或x=﹣3C .x=3或x=﹣4D .x=﹣4【答案】C【解析】【分析】根据绝对值的意义,将原方程转化为两个一元一次方程后求解.【详解】 解:由绝对值的意义,把方程217x +=变形为: 2x +1=7或2x +1=-7,解得x =3或x =-4故选C .【点睛】本题考查了绝对值的意义和一元一次方程的解法,对含绝对值的方程,一般是根据绝对值的意义,去除绝对值后再解方程.15.下列结论中:①若a=b ;②在同一平面内,若a ⊥b ,b//c ,则a ⊥c ;③直线外一点到直线的垂线段叫点到直线的距离;( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①若a=b 0≥②在同一平面内,若a ⊥b,b//c ,则a ⊥c ,正确③直线外一点到直线的垂线段的长度叫点到直线的距离正确的个数有②④两个故选B16.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.17.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c >【答案】D【解析】【分析】根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|;所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.18.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .19.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1; ③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;20.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单选题1.如图,数轴上、两点分别对应有理数、,则下列结论正确的是()。

A.B.C.D.2.有理数,在数轴上表示的点如图所示,则,的大小关系是()。

A.B.C.D.3.有理数,在数轴的位置如图,则下面关系:①;②;③;④。

其中正确的个数为()个。

A.B.C.D.4 5. 如图,有理数在数轴上的位置如图所示,则下列结论正确的是()。

A.B.C.D.. 如图,数轴上点表示数,点表示数,则下列结论正确的是()。

A.B.C.D.6.有理数,在数轴上的位置如图所示,且,下列各式中:①;②;③;④;⑤,正确的个数是()。

A. 个B. 个C. 个D. 个7 8. 若有理数、满足,且,则下列说法正确的是()。

A. ,可能一正一负B. ,都是正数C. ,中可能有一个为D. ,都是负数. 下列说法:①一定是负数;②一定是正数;③倒数等于它本身的数是;④绝对值等于它本身的数是。

其中正确的个数是()。

A. 个B. 个C. 个D. 个9.下列叙述中:①正数与它的绝对值互为相反数;②非负数与它的绝对值的差为;③的立方与它的平方互为相反数;④的倒数与它的平方相等。

其中正确的个数有()。

A. 1B. 2C. 3D. 410. 两个不为的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数()。

A. 一定相等B. 一定互为倒数C. 一定互为相反数D. 相等或互为相反数判断题1 11. 互为相反数的两数相乘,积为负数。

()单选题2. 两个非零有理数的和为零,则它们的积是()。

B. 负数C. 整数D. 不能确定D. 是非负数A.1 13. 若,则的值()。

B. 是非正数A. 是正数 C. 是负数4. 设为最小的正整数,是最大的负整数,是绝对值最小的整数,是倒数等于自身的有理数,则的值为()。

A. B. C. 或 D. 或15. 下列说法:①若两数的差是正数,则这两个数都是正数;②任何数的绝对值一定是正数;③零减去任何一个有理数,其差是该数的相反数;④在数轴上与原点距离越远的点表示的数越大;⑤正数的倒数是正数,负数的倒数是负数,任何数都有倒数。

其中正确的有()。

A. 0个B. 1个C. 2个D. 3个1 16. 现有四种说法:①几个有理数相乘,当负因数有奇数个时,积为负;②几个有理数相乘,积为负时,负因数有奇数个;③当时,B.;④当时,。

其中正确的说法有()。

A. C. D.确的有()。

A. ①②⑤B. ①②④C. ①②③D. ①②1 18. 计算,最简便的方法是()。

A. B. C. D.9. 式子中用的运算律是()。

A. 乘法交换律及乘法结合律C. 加法结合律及分配律B. 乘法交换律及分配律D. 乘法结合律及分配律2 20.的倒数与绝对值等于的数的积为()。

B. C. D.A.1. 下列说法:①一个数的相反数一定是负数;②几个有理数相乘,若有奇数个负数,那么他们的积为负数;一个数的绝对值一定不是负数;④两个有理数的和一定不小于其中任一个加数,其中正确的有()。

A. 0个B. 1个C. 2个D. 3个③22. 下列说法:①如果两个数的和为,则这两个数互为倒数;②如果两个数积为,则至少有一个数为;③绝对值是本身的有理数只有;④倒数是本身的数是,,。

其中错误的个数是()。

A. 0个B. 1个C. 2个D. 3个23. 下列说法错误的是()。

A. 两个数互为倒数,则这两个数的积是B. 有理数的倒数是D. 乘以任何数都等于C. 两个数互为负倒数,则这两个数的积是4. 已知、、、是互不相等的整数,且22,则的值等于()。

D. 不能求出A.或B.或C.或5. 下列说法正确的是()。

B. 绝对值相等的两个数相等A. 零除以任何数都得C. 几个有理数相乘,积的符号由负因数的个数决定D. 两个数互为倒数,则它们的相同次幂仍互为倒数2 26. 一个数加上,和为,那么这个数是()。

C.A. B. D.计算题7.单选题28. 已知是的相反数,比的相反数小,则的值()。

A. B. C. D.29. 下列说法正确的是()。

A. 减去一个有理数,仍得这个数B. 互为相反数的两个数之差一定不等于C. 两个有理数的差一定小于它们的和D. 较小的有理数减去较大的有理数,所得差必是负数其他3 30. 不大于3的所有非负数整数的和是_____ 。

1. 已知,,且,,则_____ 。

单选题3 3 32. 两个数的差是负数,则这两个数一定是()。

A. 被减数是正数,减数是负数C. 被减数是负数,减数也是负数B. 被减数是负数,减数是正数D. 被减数比减数小3. 下列说法错误的是()。

A. 零减去一个有理数,等于这个有理数的相反数C. 互为相反数的两个数之差为零B. 两个有理数之差不一定小于它们的和D. 较大的数减去较小的数所得的差必定为正数4. 两数相加,其和小于每一个加数,那么()。

B. 这两个加数必是两个负数D. 这两个加数的符号不能确定A. 这两个加数必有一个数是C. 这两个加数一正一负,且负数绝对值较大3 35. 如果减数为正数,那么差与被减数的大小关系是()。

A. 差比被减数大B. 差比被减数小C. 差可能等于被减数D. 无法比较6. 若三个不等的有理数的代数和为,则下面结论正确的是()。

A. 个加数全为B. 最少有个加数是负数C. 至少有个加数是负数D. 最少有个加数是正数3 3 37. 下列说法中正确的是()。

A. 两个有理数的差一定小于被减数C. 数轴上的点不都表示有理数B. 一对相反数的平方也互为相反数D. 倒数等于本身的数是、、8. 下列说法正确的是()。

A. 两个数之差一定小于被减数B. 减去一个负数,差一定大于被减数D. 减去任何数,差都是负数C. 减去一个正数,差不一定小于被减数9. 设是有理数,则的值()。

. . . . 10月14日作业A. 可以是负数C. 必是正数B. 不可能是负数D. 可以是正数也可以是负数4 40. 已知:,那么括号里应该填的是()。

C.A. B. D.D.1. 对于任何有理数,下列各式中一定为负数的是()。

A. B. C.2. 有理数,在数轴上的位置如图所示,则下列关系式中:4;;;;,正确的个数为()。

A. 个B. 个C. 个D. 个计算题4 43. 计算:单选题4. 下列各说法中,错误的是()。

A. 最小的正整数是B. 最大的负整数是D. 两个数比较,绝对值大的反而小C. 绝对值最小的有理数是45. 一个数的相反数是非负数,这个数是()。

A. 负数B. 非负数C. 正数D. 非正数4 46. 在,A. 2个,,,,,,,中,正整数的个数是()。

C. 4个D. 5个B. 3个7. 如图,数轴上的、、三点所表示的数分别是、、,其中,如果,那么该数轴的原点的位置应该在()。

A. 点的左边B. 点与点之间C. 点与点之间D. 点与点之间或点的右边8. 下列说法中正确的是()。

4A.一定表示负数B. 两数比较,绝对值大的反而小C. 互为相反数的两个数对应的点一定在原点两侧D. 如果一个数的绝对值等于这个数的相反数,那么这个数是负数或零49. 下列说法:①最大的负整数是;②数轴上表示数和的点到原点的距离相等;③当时,成立;④一定比大;⑤B. 个和相等。

正确的有()。

A. 个 C. 个 D. 个判断题50. 数轴上右边的点表示的数比左边的点表示的数大。

()其他5 51. 在、、、这四个数中,最大的数是_____ ,最小的数是_____ 。

单选题2. ,是有理数,它们在数轴上的对应点的位置如图所示,把,,,按照从小到大的顺序排列()。

A.B.C.D.53. 下列说法正确的是()。

A. 一个整数不是正整数就是负整数C. 一个正整数不是奇数就是偶数B. 一个正整数不是素数就是合数D. 一个正整数的最大因数不是它的最小倍数5 54. 水位下降,记为,如果水位再上升,则当前的水位记为()。

B. C.A. D.5. 下列表述正确的是()。

A. 若一个数是分数,则它一定是有理数B. 不是正数的数一定是负数D. 不是整数C. 有理数可分为正有理数、负有理数两大类56. 下列各组数据中:①前进米和后退米;②节约吨和浪费吨;③身高增加厘米和体重减少千克;④收入增加元和收入增加元。

其中具有相反意义的量有()。

A. 1组B. 2组C. 3组D. 4组57. 下列对负数的理解错误的是()。

B. 含有负号的数是负数A. 小于的数是负数C. 在正数前面加上负号的数是负数D. 在原点左侧的数是负数58. 若两个有理数的和是正数,那么一定有结论()。

A. 两个加数都是正数B. 两个加数有一个是正数D. 两个加数不能同为负数C. 一个加数正数,另一个加数为零59. 下列说法错误的是()。

A. 负整数和负分数统称负有理数C. 正有理数与负有理数组成全体有理数B. 正整数,,负整数统称为整数D.是小数,也是分数6 60. 下列说法正确的是()。

A. 有最小的正数B. 有最小的自然数C. 有最大的有理数D. 无最大的负整数1. 下列说法中,(1)一个数,如果不是正数,必定就是负数;(2)是负数;(3)若两个数的积为,则这两个数互为倒数;(4)一个数的相反数是本身,则这个数一定是;(5)若两个数的绝对值相等,则这两个数也相等。

错误的个数是()。

A. 5个B. 4个C. 3个D. 2个6 62. 下列说法:(1)整数就是正整数和负整数;(2)零是整数,但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数,它不是整数就是分数。

正确的有()。

A. 1个B. 2个C. 3个D. 4个3. 下列说法正确的是()。

B. 一个有理数不是整数就是分数A. 不是有理数C. 正整数、负整数、正分数、负分数统称为有理数D. 负数都是有理数64. 下面说法:(1)正整数和负整数统称整数;(2)既不是正数,又不是负数;(3)一个有理数不是整数就是分数;(4)正数和负数统称有理数。

正确的有()。

A. 4个B. 3个C. 2个D. 1个其他6 65. 纽约与北京的时差为-13小时,北京时间是中国教师节那天的8:00,纽约时间是_____。

单选题6. 若不是正数,那么一定是()。

A. 负数B. 正数C. 正数或零C. 上升了D. 负数或零D. 下降了6 67. 某天的温度下降了A. 上升了的意义是()。

B. 没有变化8. 下列具有相反意义的量是()。

A. 向西走米与向南走米B. 胜局与负局C. 气温升高与气温为D. 盈利万元与支出万元A. 没有最大的正数,但有最大的负数C. 有理数包括正有理数和负有理数B. 有绝对值最小的数,没有绝对值最大的数D. 相反数是本身的数是正数70. 用表示的数一定是()。

相关文档
最新文档