高数下第6讲:二重积分

合集下载

二重积分的概念及性质

二重积分的概念及性质

积分对变量的可加性
定义
如果f(x,y)在平面上是可积的,那么对于任 意的a和b,有 ∫∫Df(x,y)dσ=∫a→bf(x,y)dσ+∫∫Df(x,y)dσ, 其中D是包含在区间[a,b]内的可积区域。
应用
该性质可以用于计算二重积分,特别是当被 积函数与某个变量的关系较为简单时。
04 二重积分的物理应用
个小弧段进行积分,然后将结果相加得到总长度。
平面曲线的曲率与挠率
曲率
曲率是描述曲线弯曲程度的量,可以 通过二重积分计算出曲线的曲率。
挠率
挠率是描述曲线在垂直方向上的弯曲 程度的量,也可以通过二重积分计算 出曲线的挠率。
THANKS FOR WATCHING
感谢您的观看
积分区域的可加性
定义
如果D1和D2是平面上互不相交的可积区域,则它们分别上的二重积分之和等于它们并集上的二重积分。 即,如果D=D1∪D2,则∫∫Df(x,y)dσ=∫∫D1f(x,y)dσ+∫∫D2f(x,y)dσ。
应用
该性质可以用于简化复杂的积分区域,将复杂区域分解为简单区域进行计算。
积分对区域的可加性
转换坐标
将被积函数从直角坐标转换为极坐标形式,即$x = rhocostheta$,$y = rhosintheta$。
分层积分
将极坐标下的二重积分拆分成两个累次积分,即先对角度积分再对极径积分。
逐个计算
对每个角度范围,计算其在极径上的积分值,并求和。
得出结果
将所有角度范围的积分结果相加,得到整个极坐标区域上的二重积分值。
二重积分的概念及性质
目录
• 二重积分的定义 • 二重积分的计算方法 • 二重积分的性质和定理 • 二重积分的物理应用 • 二重积分的数学应用

二重积分的计算方法

二重积分的计算方法

二重积分的计算方法在高等数学的学习中,二重积分是一个重要的概念和工具,它在解决许多实际问题和理论推导中都有着广泛的应用。

理解和掌握二重积分的计算方法对于我们深入学习数学以及解决相关的实际问题至关重要。

首先,让我们来明确一下二重积分的定义。

二重积分是在平面区域上对某个二元函数进行积分。

简单来说,就是把平面区域划分成许多小的区域,然后对每个小区域上的函数值乘以小区域的面积,再把这些乘积相加。

接下来,我们来介绍几种常见的二重积分计算方法。

一、直角坐标系下的计算方法在直角坐标系中,二重积分可以表示为两种形式:先对 x 积分再对y 积分,或者先对 y 积分再对 x 积分。

当我们选择先对 x 积分时,我们需要把积分区域投影到 x 轴上,确定 x 的积分限。

然后,对于每个固定的 x 值,在对应的垂直于 x 轴的线段上确定 y 的积分限。

例如,对于积分区域 D 是由直线 y = x ,y = 1 以及 x = 0 所围成的三角形,我们要计算二重积分∬D f(x,y)dxdy。

先对 x 积分,x 的积分限是从 0 到 y ,y 的积分限是从 0 到 1 。

则可以将二重积分化为累次积分:∫₀¹(∫₀ʸ f(x,y)dx)dy 。

同样,如果先对 y 积分,就把积分区域投影到 y 轴上,确定 y 的积分限,然后再确定每个固定 y 值对应的 x 的积分限。

二、极坐标系下的计算方法在某些情况下,使用极坐标系来计算二重积分会更加方便。

极坐标系中的坐标是(r,θ) ,其中 r 表示点到原点的距离,θ 表示极角。

在极坐标系下,二重积分的表达式为∬D f(r cosθ, r sinθ) r dr dθ 。

比如,对于圆形或者扇形的积分区域,使用极坐标系往往能简化计算。

例如,计算以原点为圆心,半径为 R 的圆上的二重积分,积分区域 D 为 x²+y² ≤ R² 。

在极坐标系中,r 的积分限是从 0 到 R ,θ 的积分限是从 0 到2π 。

高等数学-二重积分

高等数学-二重积分

高等数学-二重积分二重积分作为高等数学的一部分,是积分学的重要内容之一,也是微积分的一个重要分支。

它可以用来求解平面图形的面积、质心、转动惯量等问题,同时也是理解三重积分和曲线积分的基础。

一、二重积分的定义对于平面直角坐标系中一个有界区域D,若在D内存在一个连续函数f(x,y),则在D 上的二重积分值记为:∬Df(x,y)dxdy其中,dxdy表示对于(x,y)在D上的每一个点,都有一个微小的面积dxdy。

通常情况下,积分区域D是一个闭合区域,即被有限多条曲线所包围的区域。

1、线性性若f(x,y)和g(x,y)在D上可积,则对于任意实数a和b,有:∬D[af(x,y)+bg(x,y)]dxdy=a∬Df(x,y)dxdy+b∬Dg(x,y)dxdy2、积分的可加性若D可表示成D1和D2的并集,且D1和D2没有交集,则有:4、积分与面积的关系对于常数函数f(x,y)=1,在D上的二重积分值就是D的面积S。

即有:∬D1dxdy=S1、利用基本公式对于二重积分中的f(x,y),若其为一元函数,则参照一元函数积分的公式进行计算即可。

若其为二元函数,则按照二元函数积分的公式计算。

2、极坐标法当积分区域D具有极轴对称性或者其中的许多边界方程可以转化为极坐标方程时,可以使用极坐标公式来求解。

即有:∬Df(x,y)dxdy=∫θ1θ2dθ∫r1r2f(r,θ)rdr其中,r为极径,θ为极角。

3、换元法当积分区域D无法采用基本公式或者极坐标法求解时,可以采用换元法来简化计算。

具体而言,可以通过将坐标系进行转化,将D映射为一个较为简单的区域,从而进行二重积分的计算。

1、面积计算二重积分可以用来计算平面图形的面积。

对于平面图形D,可设其边界方程为:g1(x)=a, g2(x)=b, h1(y)=c, h2(y)=d则D的面积可以表示为:S=∬Ddxdy=∫a^b∫c^d1dydx2、质心计算x0=∬Dxdxdy/M, y0=∬Dy dxdy/M其中,M为D的面积,x0和y0分别称为D的一阶矩。

二重积分的计算方法

二重积分的计算方法

二重积分的计算方法二重积分是微积分中的重要内容,它在数学、物理、工程等领域都有着广泛的应用。

在实际问题中,我们经常需要对二元函数在某个区域上的积分进行计算,而二重积分就是用来描述这样的问题的数学工具。

本文将介绍二重积分的计算方法,希望能够帮助读者更好地理解和掌握这一知识点。

首先,我们来了解一下二重积分的定义。

对于平面上的有界闭区域D和在D 上有定义的连续函数f(x, y),我们可以将D分成许多小的面积ΔS,然后在每个小面积ΔS上取点(xi, yi),计算函数值f(xi, yi)与ΔS的乘积,然后将所有这些乘积相加,得到的极限值就是二重积分的值,即:∬D f(x, y) dxdy = lim Σ f(xi, yi)ΔS。

其中,ΔS是小面积ΔS的面积,Σ表示对所有小面积求和,极限值即为二重积分的值。

接下来,我们将介绍二重积分的计算方法。

在实际应用中,我们通常会遇到以下几种情况:1. 矩形区域上的二重积分计算。

当积分区域为矩形区域时,我们可以利用定积分的性质,将二重积分转化为两次定积分的形式进行计算。

具体而言,对于矩形区域D=[a, b]×[c, d]上的函数f(x, y),其二重积分可以表示为:∬D f(x, y) dxdy = ∫c^d ∫a^b f(x, y) dxdy。

这样,我们就可以将二重积分的计算转化为两次定积分的计算,从而简化了计算的过程。

2. 极坐标系下的二重积分计算。

在极坐标系下,二重积分的计算通常更加简便。

对于极坐标系下的二元函数f(r, θ),其二重积分可以表示为:∬D f(r, θ) drdθ。

在极坐标系下,积分区域D的描述通常更加简单,而且在计算过程中也更加方便,因此在一些问题中,我们可以通过将坐标系转化为极坐标系来简化计算过程。

3. 用换元法进行二重积分计算。

在一些复杂的情况下,我们可以利用换元法来简化二重积分的计算。

通过适当的变量替换,我们可以将原来的积分区域转化为一个更加简单的积分区域,从而简化计算过程。

二重积分知识点

二重积分知识点

二重积分知识点一、引言二重积分是高等数学中的重要内容,是对二元函数在有限区域上的积分运算。

二重积分的概念与求解技巧是深入理解、掌握多元函数的必备工具,也为解决实际问题提供了数学方法。

本文将从二重积分的概念、性质、计算方法和应用等方面,全面详细地介绍二重积分的知识点。

二、概念1. 二重积分的定义设f (x,y )在闭区域D 上有定义,D 由有向闭曲线C 围成,且f (x,y )在D 上有界。

若存在数I ,对于任意给定的正数ε,都存在正数δ,使得对于D 内任意满足Δσ<δ的任意分割σ,对应的任意代点ξij ,总有|∑∑f mj=1n i=1(ξij )Δσij −I|<ε则称I 为函数f (x,y )在闭区域D 上的二重积分,记作I =∬f D(x,y )dσ其中,Δσij 表示第(i,j )个小区域的面积,Δσ表示整个区域D 的面积。

2. 二重积分的几何意义二重积分的几何意义是对二元函数在闭区域上的面积进行逐点求和,即将闭区域D 分割成无穷多个小面积区域,并对每个小面积区域上的函数值进行乘积再求和,最终得到二重积分。

三、性质1. 线性性质设闭区域D上有二重积分∬fD(x,y)dσ,若c为常数,则有∬(cf(x,y)) D dσ=c∬fD(x,y)dσ∬(f(x,y)±g(x,y)) D dσ=∬fD(x,y)dσ±∬gD(x,y)dσ2. 区域可加性设闭区域D可分为非重叠的两部分D1和D2,则有∬fD (x,y)dσ=∬fD1(x,y)dσ+∬fD2(x,y)dσ3. Fubini定理(累次积分)设函数f(x,y)在闭区域D上连续,则有∬f D (x,y)dσ=∫(∫fβ(x)α(x)(x,y)dy)badx=∫(∫fδ(y)γ(y)(x,y)dx)dcdy其中,(x,y)∈D,α(x)≤y≤β(x),γ(y)≤x≤δ(y)。

4. 值定理设函数f(x,y)在闭区域D上一致连续,则存在(ξ,η)∈D,使得∬fD (x,y)dσ=f(ξ,η)∬dDσ=f(ξ,η)σ(D)其中,σ(D)表示闭区域D的面积。

二重积分的概念与计算

二重积分的概念与计算

二重积分的概念与计算二重积分是微积分中的重要概念,在数学和物理学等领域有广泛应用。

本文将介绍二重积分的基本概念和计算方法,帮助读者更好地理解和应用该概念。

一、二重积分的基本概念二重积分是对二元函数在给定区域上的积分运算。

通常表示为∬_Df(x,y)dxdy,其中D为积分区域。

二重积分的结果是一个实数。

二、二重积分的计算方法1. 通过迭代积分计算如果积分区域D可以表示为两个范围有限的连续函数g(x)和h(x)之间的交集,即D={(x,y)|a≤x≤b,g(x)≤y≤h(x)},则二重积分可以通过先计算内层积分再计算外层积分的方式进行计算。

具体计算步骤如下:步骤1:计算内层积分将变量y看作常数,将二元函数f(x,y)带入到内层积分中,进行y 的积分运算。

得到一个关于x的函数。

步骤2:计算外层积分将步骤1得到的关于x的函数带入到外层积分中,进行x的积分运算。

得到最终的结果。

2. 通过坐标变换计算在某些情况下,二重积分的计算可以通过坐标变换来简化。

常见的坐标变换包括极坐标变换和直角坐标变换。

以极坐标变换为例,如果积分区域D可以用极坐标表示,则可以通过将二元函数f(x,y)转化为二元函数g(r,θ)来计算二重积分。

具体计算步骤如下:步骤1:进行坐标变换将二元函数f(x,y)用极坐标变换的公式来表示,并计算坐标变换的Jacobi行列式。

步骤2:计算新函数的二重积分将坐标变换后得到的二元函数g(r,θ)进行二重积分计算,得到最终结果。

三、二重积分的应用二重积分在数学和物理学中有广泛的应用。

以下是一些常见的应用场景:1. 几何体的面积二重积分可以用来计算平面上有界区域的面积。

对于给定区域D和一个常数函数f(x,y)=1,在D上进行二重积分即可得到该区域的面积。

2. 质量和质心的计算已知二元函数f(x,y)表示平面上的质量密度分布,二重积分∬_Df(x,y)dxdy可以用来计算平面上有界区域D的质量。

质心的坐标可以通过以下公式计算:x_0=1/m∬_Dxf(x,y)dxdyy_0=1/m∬_Dyf(x,y)dxdy其中m为区域D的总质量。

高数 第六章-重积分-二重积分(第1-2节)

高数 第六章-重积分-二重积分(第1-2节)
1 ≤ x2 + y2 ≤1 2
∫∫ 3.积分 3 1 − x 2 − y 2 dxdy 有怎样的符号, 其中 D : x 2 + y 2 ≤ 4. D
4.利用二重积分的性质估计下列积分的值:
∫∫ (1) I = (x2 + 4 y2 + 9) dσ , 其中=D {(x, y) x2 + y2 ≤ 4} ; D
闭区域;
(4)
∫∫
D
sin x
x
dxdy
,
其中 D 是由 y =
x,
y= x, 2
x = 2 所围成的闭区域;
(2) ∫∫| y − x2 | dxdy, 其中 D 为 −1 ≤ x ≤ 1, 0 ≤ y ≤ 1; D
3
(5) ∫∫ (x2 + y2 − x)dxdy , 其中 D 是由 y = 2 , y = x , y = 2x 所围成 D
π
dx
0
sin x −sin x
f (x, y)dy ;
2
4
ቤተ መጻሕፍቲ ባይዱ
∫ ∫ (4)
1
dy
y f (x, y)dx ;
0
y
2
2y
∫ ∫ (5) dy f (x, y)dx ;
0
y2
3. 将下列积分表示为极坐标形式下的二次积分:
{ } ∫∫ (1) f (x, y)dσ , 其= 中 D (x, y) | x2 + y2 ≤ 4x ; D
x − 3y = 0, y − 3x = 0 所围成的平面闭区域.
(3)
∫∫D
1+
1 x2 +
y2
dxdy
,

二重积分的计算公式

二重积分的计算公式

二重积分的计算公式二重积分是微积分中的基本内容之一,它用于计算平面上一些区域内的一些函数的面积或者平面质量分布等问题。

在进行二重积分计算时,首先需要确定被积函数、积分区域以及坐标系,然后通过适当的积分方法进行计算。

本文将介绍二重积分的计算公式及其应用。

一、二重积分计算公式1.矩形区域上的二重积分考虑一个定义在矩形区域D上的函数f(x,y),该区域上的二重积分可以通过将该区域分为许多小的矩形区域,并对每个小区域内的函数值进行求和,再取极限的方法进行计算。

设矩形区域D的边界为a≤x≤b,c≤y≤d,将其进行分割,得到对应的小矩形区域ΔxΔy,将f(x,y)在该矩形区域上的积分记为ΔI。

则整个矩形区域上的二重积分可以表示为:∬Df(x,y)dA = lim Δx,Δy→0 Σf(x,y)ΔxΔy其中Σ表示对所有小矩形区域进行求和,lim表示小矩形区域的数量趋于无穷小。

2.二重积分的换元法在计算二重积分时,有时可以通过变量替换将原来的积分变为更加简化的形式,这种方法称为换元法。

换元法的基本思想是将原坐标系中的二重积分转化为新坐标系下的二重积分,并通过求导和求逆变换的方法进行计算。

设原坐标系为(x,y),新坐标系为(u,v),变换公式为x=x(u,v),y=y(u,v),则原坐标系中的二重积分可以表示为:∬Df(x,y)dA = ∬D′f[x(u,v),y(u,v)],J(u,v),dudv其中D′为新坐标系下的区域,J(u,v)为变换矩阵的行列式,J(u,v),为其绝对值。

二、二重积分的应用1.几何应用二重积分常常用于计算平面几何中的面积和质心等问题。

例如,可以通过对平面上一个区域内的特定函数进行二重积分来计算该区域的面积,并可以通过对函数的乘积进行二重积分来计算该区域的质心位置。

2.物理应用二重积分在物理学中具有广泛的应用,特别是在计算质量分布、重心位置和力矩等问题上。

例如,可以通过对平面上一些区域的质量分布函数进行二重积分来计算该区域的总质量,并可以通过对质量分布函数与各点与一些轴线的距离的乘积进行二重积分来计算该区域对该轴线的力矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数下第6讲:二重积分
围成;是由圆周其中积分区域与围成;轴与直线轴,是由其中积分区域与的大小:
根据性质比较下列积分2)1()2(,)()()2(1,)()()1(.1223232=-+-++=+++⎰⎰⎰⎰⎰⎰⎰⎰y x D d y x d y x y x y x D d y x d y x D
D D
D σσσσ
;
4,)10()3(;
4,)43()2(;
20,10,)1()1(.2222222≤+++=≤+++=≤≤≤≤++=⎰⎰⎰⎰⎰⎰y x D d y x I y x D d y x I y x D d y x I D
D D
是圆域其中积分区域是圆域其中积分区域是矩形域其中积分区域的值:
根据性质估计下列积分σσσ
使,求证必存在一点且上连续在有界闭区域与设),,(0),(,),(),(.3ηξ≥y x g D y x g y x f
⎰⎰⎰⎰=D
D dxdy y x g f dxdy y x g y x f ),(),(),(),(ηξ
⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-----+-++103130204024411100sin 0012
2102
2
01
0110
),(),()7(),()6(),()5(),()4(),(),()3(),()2(;),()1(.422y
y y y x x x
x x x
y y dx
y x f dy dx y x f dy dx
y x f dy dy
y x f dx dy
y x f dx dy y x f dx dy y x f dx dy y x f dx dx y x f dy π;交换积分次序:
所围成的区域。

及是由其中为圆域其中分根据对称性计算二重积12,,)()2(;
,)1(:
.522222===+=≤+-⎰⎰⎰⎰y x y x y D d y x I R y x D d y R x D D
σσ
围成的平面区域
是由直线其中所围成的区域
及是由直线其中计算下列二重积分0,1,,)3(01,,4)2(;cos )1(:
.62226
60===-===-⎰⎰⎰⎰⎰⎰x y x y D dxdy xy y y x x y D d y x dx x x dy D
D y σππ
⎰⎰⎰⎰⎰⎰≤≤≤≤=≤≤≤≤---D y x
D
y D
D dxdy e D dxdy e y x D d x y 1}
y 1,0x 0y)(x,{,)3()1,0()1,1(),0,0(,)2(10,11,)1(.7},max{2222
其中区域;为顶点的三角形围成的和是其中所确定的区域;
是由其中计算下列二重积分:
σ
所围成的公共部分
与是由其中区域;坐标系中的二重积分:
将下列二重积分化为极)0(,),()3(),()2(;)()1(.82222210
022202>≤+≤++⎰⎰⎰⎰⎰⎰-a ay y x ax y x D d y x f dy y x f dx dy y x f dx D x x x x
σ
16
,4)3(,0,41arctan )2(4,sin )1(.9222222222222≤+-+==≤+≤≤+≤+⎰⎰⎰⎰⎰⎰D
D
D
y x D dxdy y x x y y y x D dxdy x y y x D d y x 为其中域象限内的区域
所围成的第一直线为圆环,其中;
为环域其中积分:
用极坐标计算下列二重ππσ
部分
所围成的位于第一象限由和圆周双纽线的面积
域求下列曲线所围平面区x y x y xy xy a ax y x x y x y x y x D 2,,2,1)3();
0(2))(2(;
2)(2)()1(.1032222222222====>=+=+-=+
立体的体积
内部围成的面的上面及圆柱面的下面,求位于抛物面所围立体的体积,求两圆柱面所围立体的体积;
与求由x y x xoy y x z R z x R y x h z y x z 2)3(;
)2()1.(11222222222222=++==+=+=+=
连续,求证:
在区间设]1,0[)(.12x f
⎰⎰≥-1
0)(10)(1dy e dx e y f x f
⎰⎰⎰-=b
a x a
b a x f dx x b x f dy y f dx 连续其中求证)(,))(()(:.13
1,1,)2(1,11)1(.142222222222≥+≤+++=+++--⎰⎰⎰⎰y x y x D d y x y x y x D d y
x y x D
D :其中象限内的区域及坐标轴所围成的第一是由圆周其中重积分:
利用极坐标计算下列二σσ。

相关文档
最新文档