高等数学二重积分总结
高等数学-二重积分

高等数学-二重积分二重积分作为高等数学的一部分,是积分学的重要内容之一,也是微积分的一个重要分支。
它可以用来求解平面图形的面积、质心、转动惯量等问题,同时也是理解三重积分和曲线积分的基础。
一、二重积分的定义对于平面直角坐标系中一个有界区域D,若在D内存在一个连续函数f(x,y),则在D 上的二重积分值记为:∬Df(x,y)dxdy其中,dxdy表示对于(x,y)在D上的每一个点,都有一个微小的面积dxdy。
通常情况下,积分区域D是一个闭合区域,即被有限多条曲线所包围的区域。
1、线性性若f(x,y)和g(x,y)在D上可积,则对于任意实数a和b,有:∬D[af(x,y)+bg(x,y)]dxdy=a∬Df(x,y)dxdy+b∬Dg(x,y)dxdy2、积分的可加性若D可表示成D1和D2的并集,且D1和D2没有交集,则有:4、积分与面积的关系对于常数函数f(x,y)=1,在D上的二重积分值就是D的面积S。
即有:∬D1dxdy=S1、利用基本公式对于二重积分中的f(x,y),若其为一元函数,则参照一元函数积分的公式进行计算即可。
若其为二元函数,则按照二元函数积分的公式计算。
2、极坐标法当积分区域D具有极轴对称性或者其中的许多边界方程可以转化为极坐标方程时,可以使用极坐标公式来求解。
即有:∬Df(x,y)dxdy=∫θ1θ2dθ∫r1r2f(r,θ)rdr其中,r为极径,θ为极角。
3、换元法当积分区域D无法采用基本公式或者极坐标法求解时,可以采用换元法来简化计算。
具体而言,可以通过将坐标系进行转化,将D映射为一个较为简单的区域,从而进行二重积分的计算。
1、面积计算二重积分可以用来计算平面图形的面积。
对于平面图形D,可设其边界方程为:g1(x)=a, g2(x)=b, h1(y)=c, h2(y)=d则D的面积可以表示为:S=∬Ddxdy=∫a^b∫c^d1dydx2、质心计算x0=∬Dxdxdy/M, y0=∬Dy dxdy/M其中,M为D的面积,x0和y0分别称为D的一阶矩。
二重积分知识点

二重积分知识点一、引言二重积分是高等数学中的重要内容,是对二元函数在有限区域上的积分运算。
二重积分的概念与求解技巧是深入理解、掌握多元函数的必备工具,也为解决实际问题提供了数学方法。
本文将从二重积分的概念、性质、计算方法和应用等方面,全面详细地介绍二重积分的知识点。
二、概念1. 二重积分的定义设f (x,y )在闭区域D 上有定义,D 由有向闭曲线C 围成,且f (x,y )在D 上有界。
若存在数I ,对于任意给定的正数ε,都存在正数δ,使得对于D 内任意满足Δσ<δ的任意分割σ,对应的任意代点ξij ,总有|∑∑f mj=1n i=1(ξij )Δσij −I|<ε则称I 为函数f (x,y )在闭区域D 上的二重积分,记作I =∬f D(x,y )dσ其中,Δσij 表示第(i,j )个小区域的面积,Δσ表示整个区域D 的面积。
2. 二重积分的几何意义二重积分的几何意义是对二元函数在闭区域上的面积进行逐点求和,即将闭区域D 分割成无穷多个小面积区域,并对每个小面积区域上的函数值进行乘积再求和,最终得到二重积分。
三、性质1. 线性性质设闭区域D上有二重积分∬fD(x,y)dσ,若c为常数,则有∬(cf(x,y)) D dσ=c∬fD(x,y)dσ∬(f(x,y)±g(x,y)) D dσ=∬fD(x,y)dσ±∬gD(x,y)dσ2. 区域可加性设闭区域D可分为非重叠的两部分D1和D2,则有∬fD (x,y)dσ=∬fD1(x,y)dσ+∬fD2(x,y)dσ3. Fubini定理(累次积分)设函数f(x,y)在闭区域D上连续,则有∬f D (x,y)dσ=∫(∫fβ(x)α(x)(x,y)dy)badx=∫(∫fδ(y)γ(y)(x,y)dx)dcdy其中,(x,y)∈D,α(x)≤y≤β(x),γ(y)≤x≤δ(y)。
4. 值定理设函数f(x,y)在闭区域D上一致连续,则存在(ξ,η)∈D,使得∬fD (x,y)dσ=f(ξ,η)∬dDσ=f(ξ,η)σ(D)其中,σ(D)表示闭区域D的面积。
高等数学(II)(第十章、重积分)

27
Z
A ( x )
(x)
z f ( x, y)
2
1
(x)
f ( x , y ) dy
y
1( x )
所以:
2(x)
2 (x)
D
f(x,y)dxdy
b
A(x)dx
a
[
a
b
f(x .y ) dy ]dx
1 (x)
3-12
28
注意: 1)上式说明: 二重积分可化为二次定 积分计算;
2)积分次序: X-型域 3)积分限确定法: 先Y后X;
域中一线穿—定内限, 域边两线夹—定外限
为方便,上式也常记为:
b
dx
a
2 (x)
f(x .y ) dy
1 (x)
29
3、Y-型域下二重积分的计算:
同理:
d
x 1( y)
D
x 2( y)
c
D
f ( x, y )d
6
得 (3) 求和. 将这 n 个小平顶柱体的体积相加,
到原曲顶柱体体积的近似值,即
V
i1
n
V i f ( i , i ) i .
i1
n
(4) 取极限. 将区域 D 无限细分且每一个子域趋 向于缩成一点, 这个近似值就趋向于曲顶柱体的体
积, 即
V lim
0
将区域 D 任意分成 n 个小区域
任取一点 若存在一个常数 I , 使 记作
则称 f ( x , y )
可积 , 称 I 为 f ( x , y ) 在D上的二重积分.
高等数学 第二节 二重积分的计算

4
又解 :
1 ≤ x ≤ 2 D= 1 ≤ y ≤ x
2 x 1 1
y
y=x y =1
x=2
∫∫ x y d x d y = ∫ d x ∫ x y d y
D
9 ⌠ 1 3 1 . = x − x d x = 8 2 ⌡1 2
2
1
2
x
(∫
x
1
1 2 1 3 1 x y d y = xy = x − x) 2 2 2 y=1
1 y 1 x 0 0 0 0
(1,1) y=x
I = ∫ d y ∫ f ( x) f ( y)d x = ∫ d x ∫ f ( y) f ( x) d y
1 1
x
y
d x + 1 f ( x) x f ( y) d y d x 2 I = ∫ f ( x )∫ f ( y ) d y ∫0 ∫0 0 x 1 x f ( y) d y + 1 f ( y) d y d x = ∫ f ( x) ∫ ∫x 0 0 1 1 f ( y ) d y d x = A2 . A2 . = ∫ f ( x ) ∫ ∴ I= 13 0 0 2
≤
∫∫ e
D1
− x2 − y2
2R
x
18
∫∫e
D
−x2 − y2
dx dy ≤ ∫∫e
D2
−x2 − y2
dx dy ≤ ∫∫e
D 1
−x2 − y2
dx dy
又因为
∫∫ e
D2
− x2 − y2
d x dy = ∫
R − x2 R − y2 e dx ⋅ e dy 0 0
高等数学《二重积分的计算》

D
y x , x 1 所围.
y
解 将 D 看作 y — 型区域 , 则 1
D={(x , y)| y x 1 ,0 y 1 } , y y x
xydxdy
1
0
dy
1 y
y2
sin
xy
d
x
o
1x
D
1
[
y cos
y2
y cos
y]dy
0
1 sin 2
y2
y
sin
y
cos
y
1
0
1
cos 1
d
2
dx
1
x 1 x
x2 y2
dy
D
2(x3
1
x)dx
1 4
x
4
1 2
x
2
2 1
9. 4
例 5 求 x2e y2dxdy ,其中 D 是以(0,0),(1,1),
D
(0,1)为顶点的三角形.
解 e y2dy 无法用初等函数表示
积分时必须考虑次序
D {(x, y) | 0 x y , 0 y 1} ,
f ( x, y)d
b
dx
2 ( x) f ( x, y)dy
D
a
1 ( x )
d dy 2( y) f ( x, y)dx.
c
1( y)
为计算方便,可选择积分次序,采用哪一种次序积分 通常取决于被积函数的结构.
必要时还可以交换积分次序.
例2 计算 y2 sin xydx dy , 其中 D 由 y 0,
0
1 1 y2
y2 x y 2x x2
例 8
重积分知识点总结(一)

重积分知识点总结(一)前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。
它在物理学、工程学和计算机科学等领域都有广泛的应用。
本文将针对重积分的知识点进行总结,以帮助读者更好地理解和掌握这部分知识。
正文一、重积分的定义与性质1.重积分的定义:对于二重积分来说,可以将其理解为将被积函数在某个有界闭区域上的“总体积”。
而对于三重积分来说,则是将被积函数在某个有界闭区域上的“总体积”。
2.交换积分次序:在某些情况下,交换积分次序可以简化重积分计算的复杂程度。
3.重积分的性质:包括线性性质、保号性质、次可加性质等。
这些性质在进行重积分计算时非常重要。
二、二重积分的计算方法1.二重积分的计算方法主要有面积法、直角坐标法和极坐标法。
在具体的计算过程中,可以根据题目要求和被积函数的形式选择合适的计算方法。
2.面积法:将被积函数看做是一片平面上每一点的贡献,通过对整个区域的累加求和来计算二重积分。
3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。
4.极坐标法:将被积函数用极坐标系表示,通过变量代换进行计算。
对于具有旋转对称性的问题,极坐标法可以简化计算过程。
三、三重积分的计算方法1.三重积分的计算方法主要有体积法、直角坐标法和柱坐标法。
在具体的计算过程中,同样需要根据题目要求和被积函数的形式选择合适的计算方法。
2.体积法:将被积函数看做是空间内每一点的贡献,通过对整个区域的累加求和来计算三重积分。
3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。
4.柱坐标法:将被积函数用柱坐标系表示,通过变量代换进行计算。
对于具有旋转对称性的问题,柱坐标法可以简化计算过程。
结尾重积分是数学中重要而复杂的知识点,在实际应用中具有广泛的价值。
通过本文的总结,希望读者们能够对重积分的定义、性质和计算方法有更深入的理解,从而更好地应对相关问题的解决和应用。
前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。
高等数学:第一讲 二重积分的定义与性质

o
x
D
•
y
(i ,i )
则称 f ( x, y) 可积 , 称 I 为 f ( x, y) 在D上的二重积分.
i
积分和
二重积分的定义
被积函数 积分区域
积分表达式
x , y 称为积分变量
面积元素
二重积分的定义
注1: 若用平行坐标轴的直线来划分区域 D ,则有 y
因此,面积元素 常记作 d x d y, 二重积分记作
D f ( x, y)dxd y.
O
注2: 对比曲顶柱体体积的求法和二重积分的定义可知
V D f ( x, y)d D f ( x, y)d x d y
D i
x
二、二重积分的性质
性质1
k f (x, y)d k f (x, y) d ( k 为常数).
D
D
性质2
[ f (x, y) g(x, y)]d
例1
利用二重积分的性质,比较下列二重积分的大小:
I1 x y2 d x d y, I2 x y3 d x d y
D
D
其中D是由 x 轴,y 轴以及直线 x y 1 围成,
则 I1 _____ I2 . y 1 x y 1
D
O
1x
二重积分的保号性
0 x y1
( x y)2 ( x y)3
二重积分的 定义与性质
一、二重积分的定义
定义: z f ( x, y)是定义在有界闭区域 D上的有界函数 ,将区域 D 任意
z
分成 n 个小闭区域
f (i ,i ) •
z f (x, y)
任取一点 (i ,i ) i
记
ห้องสมุดไป่ตู้
高等数学(下册) 二重积分要点总结

2
V f ( x, y )dxdy ;
S xy
求平面薄片质量:在薄片区域上对薄片密度进行积分。 求薄片质心:
x
x 乘以密度的积分 y 乘以密度的积分 ;y 对密度的积分 对密度的积分
求薄片转动惯量:
I x y 2 乘以密度在薄片上积分 I y x 2 乘以密度在薄片上积分
比较:求质量对密度积分;求质心密度乘 x 积分(除质量) ,惯量密度乘 x 2 积分。
f ( 标系 系左右边型:
f ( x, y)dxdy
D
x b
x a
dx
y 2 ( x ) y1 ( x )
f ( x, y )dy
典型题:
极坐标系里 里外边型:
f ( x, y) dx dy
D
d
2 ( ) 1 ( )
区域 D 关于 X 轴对称 被积函数关于 Y 变量是 奇函数
f ( x, y)dxdy
D
0
f ( x , y ) f ( x, y )
四、计算二重积分步骤: 画出积分区域(注意必要时划分区域) 根据区域形式和被积函数形式选择合适的区 域描述 确定累次积分并计算(注意:充分利用区域对称性,函数奇偶性) 五、二重积分的类型题目: 交换积分顺序; 直角坐标和极坐标下积分的互相表示; 重积分的具体计算; 求曲面围成的曲顶柱形的体积:曲顶 z f ( x, y ) ,几何体在 xy 平面投影 S xy ,体积
二重积 积分要点 点总结
1、二重积 积分:二重积 积分性质就 就是一般积分 分性质,6 个性质,重 个 重点前三个 。 2、二重积 积分计算:必 必须掌握,必须算准 区域形式及 及描述 直角坐标系 系上下边型 计算公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章二重积分【本章逻辑框架】【本章学习目标】⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。
⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。
熟练掌握直角坐标系和极坐标系下重积分的计算方法。
⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。
9.1 二重积分的概念与性质【学习方法导引】1.二重积分定义为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。
从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。
在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D 成n 个小区域12,,,n σσσ∆∆∆的分法要任意,二是在每个小区域i σ∆上的点(,)i i i ξησ∈∆的取法也要任意。
有了这两个“任意”,如果所对应的积分和当各小区域的直径中的最大值0λ→时总有同一个极限,才能称二元函数(,)f x y 在区域D 上的二重积分存在。
2.明确二重积分的几何意义。
(1) 若在D 上(,)f x y ≥0,则(,)d Df x y σ⎰⎰表示以区域D 为底,以(,)f x y 为曲顶的曲顶柱体的体积。
特别地,当(,)f x y =1时,(,)d Df x y σ⎰⎰表示平面区域D 的面积。
(2) 若在D 上(,)f x y ≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d Df x y σ⎰⎰的值是负的,其绝对值为该曲顶柱体的体积(3)若(,)f x y 在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d Df x y σ⎰⎰表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积).3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。
有序性常用于比较两个二重积分的大小,估值不等式常用于估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数(,)f x y 在闭区域D 上的最大值、最小值的方法求出其最大值与最小值,再应用估值不等式得到取值范围。
【主要概念梳理】1.二重积分的定义 设二元函数f(x,y)在闭区域D 上有定义且有界.分割 用任意两组曲线分割D 成n 个小区域12,,,n σσσ∆∆∆,同时用i σ∆表示它们的面积,1,2,,.i n =其中任意两小块i σ∆和()j i j σ∆≠除边界外无公共点。
i σ∆既表示第i 小块,又表示第i 小块的面积. 近似、求和 对任意点(,)i i i ξησ∈∆ ,作和式1(,).ni i i i f ξησ=∆∑取极限 若i λ为i σ∆的直径,记12max{,,,}n λλλλ=,若极限1lim (,)ni i i i f λξησ→=∆∑存在,且它不依赖于区域D 的分法,也不依赖于点(,)i i ξη的取法,称此极限为f (x,y )在D 上的二重积分. 记为1(,)d lim (,).niii Df x y f λσξη→==∑⎰⎰ 称f (x,y )为被积函数,D 为积分区域,x 、y 为积分变元,d σ为面积微元(或面积元素).2.二重积分(,)d Df x y σ⎰⎰的几何意义(1) 若在D 上f (x,y )≥0,则(,)d Df x y σ⎰⎰表示以区域D 为底,以f (x,y )为曲顶的曲顶柱体的体积.(2) 若在D 上f (x,y )≤0,则上述曲顶柱体在Oxy 面的下方,二重积分(,)d Df x y σ⎰⎰ 的值是负的,其绝对值为该曲顶柱体的体积(3)若f (x,y )在D 的某些子区域上为正的,在D 的另一些子区域上为负的,则(,)d Df x y σ⎰⎰表示在这些子区域上曲顶柱体体积的代数和(即在Oxy 平面之上的曲顶柱体体积减去Oxy 平面之下的曲顶柱体的体积).3.二重积分的存在定理3.1若f (x,y )在有界闭区域D 上连续,则f (x,y)在D 上的二重积分必存在(即f (x,y )在D 上必可积).3.2若有界函数f (x,y )在有界闭区域D 上除去有限个点或有限个光滑曲线外都连续,则f (x,y )在D 可积.4.二重积分的性质二重积分有与定积分类似的性质.假设下面各性质中所涉及的函数f (x ,y ),g(x,y)在区域 D 上都是可积的.性质1 有限个可积函数的代数和必定可积,且函数代数和的积分等于各函数积分的代数和,即[(,)(,)]d (,)d (,)d .DDDf x yg x y f x y g x y σσσ±=±⎰⎰⎰⎰⎰⎰性质2 被积函数中的常数因子可以提到积分号前面,即(,)d (,)d ().DDkf x y k f x y k σσ=⎰⎰⎰⎰为常数性质3 若D 可以分为两个区域D 1,D 2,它们除边界外无公共点,则12(,)d (,)d (,)d .DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰性质4 若在积分区域D 上有f (x ,y )=1,且用S (D )表示区域D 的面积,则d ().DS D σ=⎰⎰性质5 若在D 上处处有f (x ,y )≤g (x ,y ),则有(,)d (,)d .DDf x yg x y σσ≤⎰⎰⎰⎰推论(,)d (,)d .DDf x y f x y σσ≤⎰⎰⎰⎰性质6(估值定理) 若在D 上处处有m ≤f (x ,y )≤M ,且S (D )为区域D 的面积,则()(,)d ().DmS D f x y MS D σ≤≤⎰⎰性质7(二重积分中值定理) 设f (x ,y )在有界闭区域D 上连续,则在D 上存在一点(,)ξη,使(,)d (,)().Df x y f S D σξη=⎰⎰【基本问题导引】根据二重积分的几何意义或性质求解下列各题:1.2d Da xdy =⎰⎰ ,其中222{(,)|}D x y x y a =+≤2.设D 是由x 轴,y 轴与直线1x y +=所围成的区域,则21(),DI x y d σ=+⎰⎰32()DI x y d σ=+⎰⎰的大小关系是 .【巩固拓展提高】1.若f (x ,y )在有界闭区域D 上连续,且在D 的任一子区域D *上有*(,)d 0D f x y σ=⎰⎰,试证明在D 内恒有f (x ,y )=02.估计22(y )d DI x xy x xdy =+--⎰⎰的值,其中{(,)|02,01}.D x y x y =≤≤≤≤3.设f (x ,y )是有界闭区域D :222x y a +≤上的连续函数,则201lim (,)a Df x y dxdy a π→⎰⎰的值为多少?【数学思想方法】二重积分是一元函数定积分的推广与发展,它们都是某种形式的和的极限,即分割求和、取极限,故可用微元法的思想来理解二重积分的概念与性质。
9.2 在直角坐标系中二重积分的计算【学习方法导引】本章的重点是二重积分的计算问题,而直角坐标系中二重积分的 计算问题关键是如何确定积分区域及确定X 型区域还是Y 型区域,这也是本章的难点。
直角坐标系中二重积分计算的基本技巧:(1)在定积分计算中,如果D 的形状不能简单地用类似12()()x y x a x b ϕϕ≤≤⎧⎨≤≤⎩或12()()y x y c y dφφ≤≤⎧⎨≤≤⎩的形式来表示,则我们可以将D 分成若干块,并由积分性质12(,)d (,)d (,)d .DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰对右端各式进行计算。
(2)交换积分次序不仅要考虑到区域D 的形状,还要考虑被积函数 的特点。
如果按照某一积分次序的积分比较困难,若交换积分次序后,由于累次积分的积分函数(一元积分)形式发生变化,可能会使新的积分次序下的积分容易计算,从而完成积分的求解。
但是无论是先对x积分,再对y 积分,还是先对y 积分,再对x 积分最终计算的结果应该是相同的。
一般的处理方法是由积分限确定积分区域D ,并按照新的积分次序将二重积分化成二次积分。
具体步骤如下:①确定D 的边界曲线,画出D 的草图;②求出D 边界曲线的交点坐标;③将D 的边界曲线表示为x 或y 的单值函数; ④考虑是否要将D 分成几块; ⑤用x ,y 的不等式表示D .注:在积分次序选择时,应考虑以下几个方面的内容:(ⅰ)保证各层积分的原函数能够求出;(ⅱ)若D 为X 型(Y 型),先对x (y )积分;(ⅲ)若D 既为X 型又为Y 型,且满足(ⅰ)时,要使对D 的分块最少。
(3) 利用对称性等公式简化计算 设f (x ,y )在区域D 上连续,则 ①当区域D 关于x 轴对称若(,)(,)f x y f x y -=-,则(,)d Df x y σ⎰⎰=0;若(,)(,)f x y f x y -=,则(,)d Df x y σ⎰⎰=21(,)d D f x y σ⎰⎰,其中D 1为D 在x 轴上方部分。
②当区域D 关于y 轴对称若(,)(,)f x y f x y -=-,则(,)d Df x y σ⎰⎰=0;若(,)(,)f x y f x y -=,则(,)d Df x y σ⎰⎰=22(,)d D f x y σ⎰⎰,其中D 2为D 在y 轴右侧部分。
③当区域D 关于x 轴和y 轴都对称若(,)(,)f x y f x y -=-或(,)(,)f x y f x y -=-,则(,)d Df x y σ⎰⎰=0;若(,)(,)(,)f x y f x y f x y -=-=,则(,)d Df x y σ⎰⎰=41(,)d D f x y σ⎰⎰,其中D 1为D 在第一象限部分。
④轮换对称式设D 关于直线y x =对称,则(,)d Df x y σ⎰⎰=(,)d Df y x σ⎰⎰.【基本问题导引】一.判断题1.dxdy=Dxy ⎰⎰4122221dxdy,:4;:4,0,0D xy D x y D x y x y +≤+≤≥≥⎰⎰ ( )2. 若f 为连续函数,则21221012(,)(,)(,)x xydx f x y dy dx f x y dy dy f x y dx--+=⎰⎰⎰⎰⎰ ( )【主要概念梳理】直角坐标系中二重积分计算当被积函数f (x ,y )≥0且在D 上连续时,若D 为 X - 型区域 12()():x y x D a x b ϕϕ≤≤⎧⎨≤≤⎩则21()()(,)d d d (,)d bx Dax f x y x y x f x y y ϕϕ=⎰⎰⎰⎰若D 为Y –型区域12()():y x y D c y d ψψ≤≤⎧⎨≤≤⎩,则21()()(,)d d d (,)d dy D c y f x y x y y f x y x ψψ=⎰⎰⎰⎰说明:若积分区域既是X –型区域又是Y –2211()()()()(,)d d d (,)d d (,)d bx dy Dax cy f x y x y x f x y y y f x y xϕψϕψ==⎰⎰⎰⎰⎰⎰【巩固拓展提高】1.(1992)计算112111224.y y xxy I dy e dx dy e dx =+⎰⎰⎰2.设1()x xyf x e dy =⎰,计算10()f x dx ⎰.9.3 在极坐标系中二重积分的计算【学习方法导引】极坐标系中二重积分计算的基本技巧:(1)一般地,如果积分区域是圆域、扇形域或圆环形域,且被积函数为22(),f x y +(),yf x()x f y 等形式时,计算二重积分时,往往采用极坐标系来计算。