高等数学习题详解-第8章 二重积分说课讲解

合集下载

高等数学(第三版)课件:二重积分的计算

高等数学(第三版)课件:二重积分的计算
D
式:0 x π ,0 y 2 所确定的长方形区域. 2
解 这题可以不必画积区域.分析被积函数可知,如先
对x积分,需用分部积分法. 如先对y积分则不必,
计算会简单些.因此,我们选择先对y积分,即
π
xy
cos(
xy
2
)dxdy
2
0
dx
2
0
xy
cos(
xy
2
)dy
D

2
2
0
sin( xy 2 )

x
π
D
所围成的三角形区域.
2
解法1 先对y积分. 作平行于y轴的直线与积分 区域D
相交,沿着y的正方向看,入口曲线为y=0,出口
曲线为y=x,D在x 轴上的投影区间为[0, π] . 2
sin
x
cos
ydxdy
π
2
0
dx
x
0
sin
x
cos
ydy
D
π
02
sin
x
sin
y
x 0
dy
π
02
sin
2
xdx
由 y x, x 2,
得x 2, y 2.
在y轴上的积分区间为12 ,2
当1 y 1时,平行于x轴的直线与区域D相交时,
2 沿x轴正方向看,入口曲线为
x,出1口曲线为x=2.
y
当1 y 2时,平行于x轴的直线与区域D相交时, 沿x轴正方向看,入口曲线为x=y,出口曲线为x=2.
依上述不等式组可作出区域D的图形,
再化为先对y积分后对x积分的二次积分.
01
dy
1y

8.2 二重积分的计算法

8.2  二重积分的计算法

闭区域D用不等式表示
0 ≤ r ≤ ϕ(θ ),α ≤ θ ≤ β
∫∫ f ( x, y)dσ
D
= ∫∫ f (r cosθ , r sinθ )rdrdθ
= ∫ [∫
α β
D β
箭头: 自内向外
ϕ(θ )
0
f (r cosθ , r sinθ )rdr]dθ 逆时针转动
= ∫ dθ ∫
α
ϕ (θ )
o a
b
x
∫∫ f ( x, y)dσ =∫
D
b
a
A( x)dx
2
[Y-型] -
D
ψ1( y) ≤ x ≤ψ2( y), c ≤ y ≤ d
d
∫∫ f ( x, y)dσ = ∫ [∫ψ ψ = ∫ dy∫ ψ
c d
c
ψ 2 ( y)
1 ( y)
f ( x, y)dx]dy
f (x, y)dx
2( y)
π
D

r ⋅ rdr
2
17
y (2) ∫∫ ( x + y )arctan dxdy, x D D :1 ≤ x2 + y2 ≤ 4 , y = x, y = 0
2 2
y
所围成的位于第Ⅰ象限的部分
积分区域D 图形为: 的
D: 1 ≤ r ≤ 2, 0 ≤ θ ≤
2 2
π
4
π
o
1
2
x
2 y ∴∫∫ ( x + y )arctan dxdy = ∫ 4 dθ ∫ r 2 ⋅ θ ⋅ rdr 0 1 x D
其中函数ϕ1 (θ ),ϕ2 (θ ) [ 在区间α, β ]上连续。

高等数学习题详解-第8章 二重积分

高等数学习题详解-第8章 二重积分

习题8-11. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)Dm x y d μσ=⎰⎰.2. 试比较下列二重积分的大小:(1) 2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰,其中D 由x 轴、y 轴及直线x +y =1围成;(2)ln()Dx y d σ+⎰⎰与2ln()Dx y d σ+⎡⎤⎣⎦⎰⎰,其中D 是以A (1,0),B (1,1),C (2,0)为顶点的三角形闭区域.解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2ln()[ln()]DDx y d x y d σσ+≥+⎰⎰⎰⎰习题8-21. 画出积分区域,并计算下列二重积分:(1) ()Dx y d σ+⎰⎰,其中D 为矩形闭区域:1,1x y ≤≤;(2) (32)Dx y d σ+⎰⎰,其中D 是由两坐标轴及直线x +y =2所围成的闭区域;(3) 22()D xy x d σ+-⎰⎰,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区域;(4) 2Dx y d σ⎰⎰,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0;(5) ln Dx y d σ⎰⎰,其中D 为:0≤x ≤4,1≤y ≤e ;(6)22Dx d σy ⎰⎰其中D 是由曲线11,,2xy x y x ===所围成的闭区域. 解:(1) 111111()()20.Dx y d dx x y dy xdx σ---+=+==⎰⎰⎰⎰⎰ (2) 222200(32)(32)[3(2)(2)]x Dx y d dx x y dy x x x dx σ-+=+=-+-⎰⎰⎰⎰⎰223202220[224]4.330x x dx x x x =-++=-++=⎰(3) 32222222002193()()()248yy Dy x y x d dy x y x dx y dy σ+-=+-=-⎰⎰⎰⎰⎰43219113.96860y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称,所以20.Dx yd σ=⎰⎰(5) 44201041ln ln (ln ln )2(1)2110e De e e x yd dx x ydy x y y y dx x e σ-==-==-⎰⎰⎰⎰⎰.(6) 122224111311122222119()()124642x x Dx x x x x x d dx dy dx x x dx y y y x σ==-=-=-=⎰⎰⎰⎰⎰⎰.2. 将二重积分(,)Df x y d σ⎰⎰化为二次积分(两种次序)其中积分区域D 分别如下:(1) 以点(0,0),(2,0),(1,1)为顶点的三角形;(2) 由直线y =x 及抛物线y 2=4x 所围成的闭区域;(3) 由直线y =x ,x =2及双曲线1y x=所围成的闭区域;(4) 由曲线y =x 2及y =1所围成的闭区域. 解:(1) 1221201(,)(,)(,).xx y ydx f x y dy dx f x y dy dy f x y dx --+=⎰⎰⎰⎰⎰⎰(2) 2441004(,)(,).y x y dx f x y dy dy f x y dx =⎰⎰⎰⎰(3) 12222111112(,)(,)(,).xyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰(4) 21111(,)(,).xdx f x y dy dy f x y dx -=⎰⎰⎰3. 交换下列二次积分的积分次序:(1) 10(,)ydy f x y dx ⎰⎰; (2)2220(,)yydy f x y dx ⎰⎰;(3) ln 10(,)e xdx f x y dy ⎰⎰; (4) 123301(,)(,)y ydy f x y dx dy f x y dx -+⎰⎰⎰⎰.解:(1) 111(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰.(2) 222402(,)(,).y x ydy f x y dx dx f x y dy =⎰⎰⎰⎰(3) ln 11(,)(,)y e xeedx f x y dy dy f x y dx =⎰⎰⎰⎰(4) 123323012(,)(,)(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+=⎰⎰⎰⎰⎰⎰.4. 求由平面x =0,y =0,x =1,y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体体积.解:11100037(623)(62).22V dx x y dy x dx =--=--=⎰⎰⎰5. 求由平面x =0,y =0,x +y =1所围成的柱体被平面z =0及曲面x 2+y 2=6-z 截得的立体体积.解:3111222000(1)34(6)[6(1)(1)).312x x V dx x y dy x x x dx --=--=----=⎰⎰⎰习题8-31. 画出积分区域,把二重积分(,)Df x y d σ⎰⎰化为极坐标系下的二次积分,其中积分区域D是:(1) x 2+y 2≤a 2 (a >0); (2) x 2+y 2≤2x ;(3) 1≤x 2+y 2≤4; (4) 0≤y ≤1-x ,0≤x ≤1. 解:(1) 20(,)(cos ,sin ).aDf x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(2) 2cos 202(,)(cos ,sin ).Df x y d d f r r rdr πθπσθθθ-=⎰⎰⎰⎰(3) 221(,)(cos ,sin ).D f x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(4)12cos sin 0(,)(cos ,sin ).Df x y d d f r r rdr πθθσθθθ+=⎰⎰⎰⎰2. 把下列积分化为极坐标形式,并计算积分值:(1)22220()aa y dy x y dx -+⎰⎰;(2)21220;xxdx x y dx +⎰⎰解:(1)224422320()248aa y aa a dy x y dx d r dr πππθ-+==⋅=⎰⎰⎰⎰. (2) 22sin 3122244cos 600001sin 3cos x x dx x y dx d r dr d πθπθθθθθ+==⎰⎰⎰⎰⎰244466400011cos 111(cos )[(cos )(cos )]33cos cos cos d d d πππθθθθθθθ-=-=--⎰⎰⎰ 532(21)1cos cos 4().3530πθθ--+=--+= 3. 在极坐标系下计算下列二重积分:(1)22x y De d σ+⎰⎰,其中D 是圆形闭区域: x 2+y 2≤1;(2) 22ln(1)Dxy d σ++⎰⎰,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;(3)arctanDyd σx⎰⎰,其中D 是由圆周x 2+y 2=1,x 2+y 2=4及直线y =0,y =x 所围成的在第一象限内的闭区域;(4)222DR x y d σ--其中D 由圆周x 2+y 2=Rx (R >0)所围成.解:(1) 22222100112(1).20xy r r De d d e rdr e e πσθππ+==⋅=-⎰⎰⎰⎰(2)23112222221ln(1)ln(1)[ln(1)]221Dr r xy d d r rdr r dr rππσθ++=+=+-+⎰⎰⎰⎰⎰ 212(1)[ln 22](2ln 21)441r r r dr rππ+-=-=-+⎰. (3) 222244010133arctan arctan(tan ).32264Dy d d rdr d rdr x ππππσθθθθ=⋅==⋅=⎰⎰⎰⎰⎰⎰(4)222DR x y d σ--3cos 2222222022cos 12()230R R d R r rdr R r d ππθππθθθ--=-=--⎰⎰⎰3333221(sin )33R R R d πππθθ-=--=⎰.4. 求由曲面z =x 2+y 2与22z x y =+所围成的立体体积.解:两条曲线的交线为x 2+y 2=1,因此,所围成的立体体积为:21222220[()]().6DV x y x y d d r r rdr ππσθ=++=-=⎰⎰⎰⎰习题8-41. 计算反常二重积分()x y De dx dy -+⎰⎰,其中D :x ≥0,y ≥x .2. 计算反常二重积分222()Ddx dyx y +⎰⎰,其中D :x 2+y 2≥1. 解:1.22201()2a aaax yx x aaa xe dx edy eedx e e ---------=-=-+-⎰⎰⎰所以2()211lim ().22a x y a a a De edxdy e e --+--→+∞-=-+-=⎰⎰2. 由232011112()22R d dr r R πθπ=-⎰⎰,得222211lim 2().2()2R Ddxdy x y R ππ→+∞=-=+⎰⎰复习题8(A )1. 将二重积分d d (,)Df x y x y ⎰⎰化为二次积分(两种次序都要),其中积分区域D 是:(1) ︱x ︱≤1,︱y ︱≤2;(2) 由直线y =x 及抛物线y 2=4x 所围成. 解:(1) 12211221(,)(,).dx f x y dy dy f x y dx ----=⎰⎰⎰⎰(2) 2424004(,)(,).xyy xdx f x y dy dy f x y dx =⎰⎰⎰⎰2. 交换下列两次积分的次序: (1)d d 10(,)yyy f x y x ⎰⎰;(2)d d 2220(,)a ax x x f x y y -⎰⎰;(3)d d +d d 12201(,)(,)xxx f x y y x f x y y -⎰⎰⎰⎰.解:(1) 211d (,)d d (,)d y x yxy f x y x x f x y y =⎰⎰⎰⎰.(2) 222222200d (,)d d (,)d aax x aa a y a a y x f x y y y f x y x -+---=⎰⎰⎰⎰.(3)1221201d (,)d +d (,)d d (,)d xxy yx f x y y x f x y y y f x y x --=⎰⎰⎰⎰⎰⎰.3. 计算下列二重积分:(1) e d x y Dσ+⎰⎰, D : ︱x ︱≤1,︱y ︱≤1;(2) d d 2D xy x y ⎰⎰,D 由直线y =1,x =2及y =x 围成;(3) d d (1)Dx x y -⎰⎰,D 由y =x 和y =x3围成;(4) d d 22()Dx y x y +⎰⎰,D :︱x ︱+︱y ︱≤1; (5) d 1sin Dy σy ⎰⎰,D 由22y x π=与y =x 围成; (6)d (4)Dx y σ--⎰⎰,D 是圆域x 2+y 2≤R 2;解: (1) 1111111211111e d ()()()1x y x y x x x x Ddx e dy e e dx e e e e σ+++-+----==-=-=--⎰⎰⎰⎰⎰.(2)5322224211121129d d ()()2253151xDx x xy x y dx x ydy x x dx ==-=-=⎰⎰⎰⎰⎰.(3) 3112430011117(1)d d (1)()325460x x Dx x y dx x dy x x x x dx -=-=--+=--+=-⎰⎰⎰⎰⎰.(4)1122220()d d 4()xDx y x y dx x y dy -+=+⎰⎰⎰⎰33241201412124(2)4()33323330x x x x x x dx x =--+=--+=⎰. (5) 222200sin 12sin d (sin sin )y y Dy y dy dx y y y dy y y πππσπ==-⎰⎰⎰⎰⎰222222sin (cos )1(cos sin )10ydy yd y y y y ππππππ=+=+-=-⎰⎰. (6)322200(4)d (4cos sin )[2(cos sin )]3RDR x y d r r rdr R d ππσθθθθθθ--=--=-+⎰⎰⎰⎰⎰3222[2(sin cos )]430R R R πθθθπ=--=.4. 已知反常二重积分e d 2y Dx σ-⎰⎰收敛,求其值.其中D 是由曲线y =4x 2与y =9x 2在第一象限所围成的区域.解:设2249(0)a D y x y x y a a ===>是由曲线、和在第一象限所围成.则22222200015555ed ()236144144144aaa a y y y y a D x dy dx ye dy e d y e σ-----==⋅=--=-⎰⎰⎰⎰⎰. 所以225e d lime d 144ay ya DD x x σσ--→+∞==⎰⎰⎰⎰. 5. 计算e d 2x x +∞--∞⎰.解:由第四节例2以及2y =e x -是偶函数,可知2e d x x +∞--∞=⎰.6. 求由曲面z =0及z =4-x 2-y 2所围空间立体的体积.解:曲面z =0和z =4-x 2-y 2的交线为x 2+y 2 =4.因此,所围空间立体的体积为:222220016(4)d d (4)2(8)84D x y x y d r rdr πθππ--=-=-=⎰⎰⎰⎰.7. 已知曲线y =ln x 及过此曲线上点(e ,1)的切线ey x 1=.(1) 求由曲线y =ln x ,直线ey x 1=和y =0所围成的平面图形D 的面积;(2) 求以平面图形D 为底,以曲面z =e y 为顶的曲顶柱体的体积.解:(1) 1ln (ln )12221e e e ee S xdx x x x =-=--=-⎰.(2) 221120013()()2220y y e yyyy y ye e V dy e dx e ye dy ye e ==-=-+=-⎰⎰⎰.(B )1. 交换积分次序:(1) 311(,)xxdx f x y dy -⎰⎰; (2)0112(,)y dy f x y dx --⎰⎰;(3) 224(,)x x f x y dy -⎰;(4) 110(,)dx f x y dy ⎰.解:(1) 3111(,)(,)x xydx f x y dy dy f x y dx -=⎰⎰⎰.(2) 01101221(,)(,)yxdy f x y dx dx f x y dy ---=⎰⎰⎰⎰.(3) 2242402(,)(,)(,)x x f x y dy dy f x y dx dy f x y dx -=+⎰⎰⎰.(4) 211121(,)(,)(,)y dx f x y dy dy f x y dx dy f x y dx =+⎰⎰⎰⎰.2. 计算积分2122x xxdx dy x y +⎰⎰.解:222sin sin 144cos cos 2220000cos cos xxx r dx dy d rdr d dr x y r πθπθθθθθθθ==+⎰⎰⎰⎰⎰⎰ 40sin ln 24(ln cos )cos 2d ππθθθθ==-=⎰. 3. 计算积分112201yy dy dx x y ++⎰⎰.解:111114cos 4cos cos 2222000sin sin [sin ]111yy r dy dx d rdr d dr dr x y r r ππθθθθθθθθ==-++++⎰⎰⎰⎰⎰⎰⎰ 44001ln 21(tan sin arctan )arctan (cos )cos 2cos d d ππθθθθθθ=-⋅=+⎰⎰令cos t θ=,则原式211ln 21ln 21ln 211(arctan ln(12222dt dt t t t t t =+=+=+++ln 213ln 213ln ln 22242224ππ=+--=-. 4. 设函数f (x )在区间0,1⎡⎤⎣⎦上连续,且1()f x dx A =⎰,求11()()xdx f x f y dy ⎰⎰. 解:设1'()()()(1)(0)F x f x f x dx F F A ==-=⎰,则.11111()()()[(1)()](1)()()(())xdx f x f y dy f x F F x dx F f x dx F x d F x =-=-⎰⎰⎰⎰⎰21()111(1)(1)[(1)(0)][(1)(0)](1)(1)(0)22220F x F A F A F F F F F A AF AF =-=--+=--21[(1)(0)]22A A F F =-=. 5. 计算2Dx y d σ⎰⎰,其中D 是由直线y =0,y =1及双曲线x 2-y 2=1所围成的闭区域.解:11222022(13Dx yd dy ydx y y σ==+⎰⎰⎰⎰35122222011122(1)(1)(1)1)335150y d y y =++=⋅+=⎰. 6. 计算222y xdx e dy ⎰⎰.解:2222222240000211(1)220y y y y y x dx e dy dy e dx ye dy e e ====-⎰⎰⎰⎰⎰.7. 证明211()()d ()()d 1b x bn n a a adx x y f y y b y f y y n ---=--⎰⎰⎰,其中n 为大于1的正整数. 证:22()()d ()()b x b bn n aaaydx x y f y y dy x y f y dx ---=-⎰⎰⎰⎰11()()1bn b yax y f y dy n -=--⎰11()()d 1bn ab y f y y n -=--⎰。

高等数学课后答案 第八章 习题详细解答

高等数学课后答案 第八章 习题详细解答

习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆= .任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设12231()d D I x y σ=+⎰⎰其中1{(,)11,22}D x y x y =-≤≤-≤≤;又22232()d D I x y σ=+⎰⎰其中2{(,)01,02}D x y x y =≤≤≤≤.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面223()z x y =+的曲顶柱体1Ω的体积;2I 表示底为2D 、顶为曲面223()z x y =+的曲顶柱体2Ω的体积.由于位于1D 上方的曲面223()z x y =+关于yOz 面和zOx 面均对称,故yOz 面和zOx 面将1Ω分成四个等积的部分,其中位于第一卦限的部分即为2Ω.由此可知124I I =.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D D D= ,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。

大学高数下--二重积分的计算课件

大学高数下--二重积分的计算课件
D x
解 :原式 2 4 3 3 tad n1 2co d s
A(1, 3) 22
0 法二: 积分区域关于 x 轴对称,
B(1, 3) 22
y关于y为奇函,数 x 原 式 0
33
例4写 出 积 分 f(x,y)dxdy的 极 坐 标 二 次 积 分 形
D
式 , 其 中 积 分 区 域
D{(x,y)| 1xy 1x2,0x1}.
x-型区域的特点: 穿过区域且平行于y轴的
直线与区域边界相交不多于两个交点.
y-型区域的特点:穿过区域且平行于x轴的
直线与区域边界相交不多于两个交点.
3、其他情形
1) 如果积分区域 D 可表示为 x-型 区域又可表
示为 y-型 区域 ,且 f(x,y)在D 上连续,则有:
D f(x ,y )da b d x 1 2 (( x x ))f(x ,y )d y
2、极点O在D的边界上 区域特征如图
()
,
D
0().
o
A
f(co , ssin )dd
D
d 0 ()f(c o ,ss i) n d .
29
二重积分化为二次积分的公式(3)
3、极点O在D的内部 区域特征如图
()
D
02, 0(). o
A
f(co , ssin )dd
D
0 2 d 0 ()f(c o ,ss i) n d .
S { x , y ) ( | 0 x R , 0 y R } R 2R
{x0,y0} 显 然 有 D 1 S D 2
ex2y2 0,
ex2y2dxdy ex2y2dxdy ex2y2dxd.y
25
三、利用极坐标系计算二重积分

【课件】高等数学下册同济大学出版社经管类第2版第八章第三节二重积分的应用

【课件】高等数学下册同济大学出版社经管类第2版第八章第三节二重积分的应用

a sind
d
a
d A a2 sin d d
ad

A a2
2
d

sin d
0
0
o

x
y
4 a2
三、物体的质心
设空间有n个质点, 分别位于 (xk , yk , zk ) , 其质量分别
为 mk ( k 1, 2, , n ) ,由力学知, 该质点系的质心坐标
一、立体体积
• 曲顶柱体的顶为连续曲面 则其体积为
V D f (x, y)dxdy
例1. 求曲面
任一点的切平面与曲面
所围立体的体积 V .
解: 曲面 S1在点
的切平面方程为
z 2x0 x 2 y0 y 1 x02 y02
它与曲面
的交线在 xoy 面上的投影为
(x x0 )2 ( y y0 )2 1 (记所围域为D )
切平面 : 2x 2 y z 1 0
2x 2 y z 1 0
z

x2

y2
Dxy : ( x 1)2 ( y 1)2 1
则v (2 x 2 y 1 x2 y2 )dxdy
D
[1 ( x 1)2 ( y 1)2 ]dxdy ( x1)2 ( y1)2 1

A D
1 (z)2 (z)2 d xd y x y
若光滑曲面方程为 x g( y, z) , ( y, z) Dy z ,则有
Dy z
若光滑曲面方程为 y h (z, x) , (z, x) Dz x ,则有
A
1 (y )2 (y )2 d zd x

高等数学习题详解-第8章 二重积分[优质文档]

习题8-11. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)Dm x y d μσ=⎰⎰.2. 试比较下列二重积分的大小:(1) 2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰,其中D 由x 轴、y 轴及直线x +y =1围成;(2)ln()Dx y d σ+⎰⎰与2ln()Dx y d σ+⎡⎤⎣⎦⎰⎰,其中D 是以A (1,0),B (1,1),C (2,0)为顶点的三角形闭区域.解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2ln()[ln()]DDx y d x y d σσ+≥+⎰⎰⎰⎰习题8-21. 画出积分区域,并计算下列二重积分:(1) ()Dx y d σ+⎰⎰,其中D 为矩形闭区域:1,1x y ≤≤;(2) (32)Dx y d σ+⎰⎰,其中D 是由两坐标轴及直线x +y =2所围成的闭区域;(3) 22()D xy x d σ+-⎰⎰,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区域;(4) 2Dx y d σ⎰⎰,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0; (5) ln Dx y d σ⎰⎰,其中D 为:0≤x ≤4,1≤y ≤e ;(6)22Dx d σy ⎰⎰其中D 是由曲线11,,2xy x y x ===所围成的闭区域. 解:(1) 111111()()20.Dx y d dx x y dy xdx σ---+=+==⎰⎰⎰⎰⎰ (2) 222200(32)(32)[3(2)(2)]x Dx y d dx x y dy x x x dx σ-+=+=-+-⎰⎰⎰⎰⎰223202220[224]4.330x x dx x x x =-++=-++=⎰(3) 32222222002193()()()248yy Dy x y x d dy x y x dx y dy σ+-=+-=-⎰⎰⎰⎰⎰43219113.96860y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称,所以20.Dx yd σ=⎰⎰(5) 44201041ln ln (ln ln )2(1)2110e De e e x yd dx x ydy x y y y dx x e σ-==-==-⎰⎰⎰⎰⎰.(6) 122224111311122222119()()124642x x Dx x x x x x d dx dy dx x x dx y y y x σ==-=-=-=⎰⎰⎰⎰⎰⎰.2. 将二重积分(,)Df x y d σ⎰⎰化为二次积分(两种次序)其中积分区域D 分别如下:(1) 以点(0,0),(2,0),(1,1)为顶点的三角形;(2) 由直线y =x 及抛物线y 2=4x 所围成的闭区域;(3) 由直线y =x ,x =2及双曲线1y x=所围成的闭区域;(4) 由曲线y =x 2及y =1所围成的闭区域. 解:(1) 1221201(,)(,)(,).xx y ydx f x y dy dx f x y dy dy f x y dx --+=⎰⎰⎰⎰⎰⎰(2) 2441004(,)(,).y x y dx f x y dy dy f x y dx =⎰⎰⎰⎰(3) 12222111112(,)(,)(,).xyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰(4) 21111(,)(,).xdx f x y dy dy f x y dx -=⎰⎰⎰3. 交换下列二次积分的积分次序:(1) 10(,)ydy f x y dx ⎰⎰; (2)2220(,)yydy f x y dx ⎰⎰;(3) ln 10(,)e xdx f x y dy ⎰⎰; (4) 123301(,)(,)y ydy f x y dx dy f x y dx -+⎰⎰⎰⎰.解:(1) 111(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰.(2) 222402(,)(,).y x ydy f x y dx dx f x y dy =⎰⎰⎰⎰(3) ln 11(,)(,)y e xeedx f x y dy dy f x y dx =⎰⎰⎰⎰(4) 123323012(,)(,)(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+=⎰⎰⎰⎰⎰⎰.4. 求由平面x =0,y =0,x =1,y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体体积.解:11100037(623)(62).22V dx x y dy x dx =--=--=⎰⎰⎰5. 求由平面x =0,y =0,x +y =1所围成的柱体被平面z =0及曲面x 2+y 2=6-z 截得的立体体积.解:3111222000(1)34(6)[6(1)(1)).312x x V dx x y dy x x x dx --=--=----=⎰⎰⎰习题8-31. 画出积分区域,把二重积分(,)Df x y d σ⎰⎰化为极坐标系下的二次积分,其中积分区域D是:(1) x 2+y 2≤a 2 (a >0); (2) x 2+y 2≤2x ;(3) 1≤x 2+y 2≤4; (4) 0≤y ≤1-x ,0≤x ≤1. 解:(1) 20(,)(cos ,sin ).aDf x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(2) 2cos 202(,)(cos ,sin ).Df x y d d f r r rdr πθπσθθθ-=⎰⎰⎰⎰(3) 221(,)(cos ,sin ).D f x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(4)12cos sin 0(,)(cos ,sin ).Df x y d d f r r rdr πθθσθθθ+=⎰⎰⎰⎰2. 把下列积分化为极坐标形式,并计算积分值:(1)220)ady x y dx +⎰;(2)21;xxdx ⎰⎰解:(1)4422320)248aaa a dy x y dx d r dr πππθ+==⋅=⎰⎰⎰.(2) 2sin 31244cos 600001sin 3cos x x dx d r dr d πθπθθθθθ==⎰⎰⎰⎰⎰244466400011c o s 111(c o s )[(c o s )(c o s )]33cos cos cos d d d πππθθθθθθθ-=-=--⎰⎰⎰531cos cos 4()3530πθθ--=--+= 3. 在极坐标系下计算下列二重积分:(1)22x y De d σ+⎰⎰,其中D 是圆形闭区域: x 2+y 2≤1;(2) 22ln(1)Dxy d σ++⎰⎰,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;(3)arctanDyd σx⎰⎰,其中D 是由圆周x 2+y 2=1,x 2+y 2=4及直线y =0,y =x 所围成的在第一象限内的闭区域;(4)Dσ其中D 由圆周x 2+y 2=Rx (R >0)所围成.解:(1) 22222100112(1).20xy r r De d d e rdr e e πσθππ+==⋅=-⎰⎰⎰⎰(2)23112222221ln(1)ln(1)[ln(1)]221Dr r xy d d r rdr r dr rππσθ++=+=+-+⎰⎰⎰⎰⎰ 212(1)[ln 22](2ln 21)441r r r dr rππ+-=-=-+⎰. (3) 222244010133arctan arctan(tan ).32264Dy d d rdr d rdr x ππππσθθθθ=⋅==⋅=⎰⎰⎰⎰⎰⎰(4)Dσ3cos 22222022cos 12()230R R d R r d ππθππθθθ--==--⎰⎰⎰ 3333221(s i n )33R R R d πππθθ-=--=⎰. 4. 求由曲面z =x 2+y 2与z =所围成的立体体积.解:两条曲线的交线为x 2+y 2=1,因此,所围成的立体体积为:212220()]().6DV x y d d r r rdr ππσθ=+=-=⎰⎰⎰⎰习题8-41. 计算反常二重积分()x y De dx dy -+⎰⎰,其中D :x ≥0,y ≥x .2. 计算反常二重积分222()Ddx dyx y +⎰⎰,其中D :x 2+y 2≥1. 解:1.22201()2a aaax yx x aaa xe dx edy eedx e e ---------=-=-+-⎰⎰⎰所以2()211lim ().22a x y a a a De edxdy e e --+--→+∞-=-+-=⎰⎰2. 由232011112()22R d dr r R πθπ=-⎰⎰,得222211lim 2().2()2R Ddxdy x y R ππ→+∞=-=+⎰⎰复习题8(A )1. 将二重积分d d (,)Df x y x y ⎰⎰化为二次积分(两种次序都要),其中积分区域D 是:(1) ︱x ︱≤1,︱y ︱≤2;(2) 由直线y =x 及抛物线y 2=4x 所围成. 解:(1) 12211221(,)(,).dx f x y dy dy f x y dx ----=⎰⎰⎰⎰(2) 244004(,)(,).yy xdx f x y dy dy f x y dx =⎰⎰⎰⎰2. 交换下列两次积分的次序:(1)d d 10(,)yy f x y x ⎰;(2)d d 20(,)a x x y y ⎰;(3)d d +d d 12201(,)(,)xxx f x y y x f x y y -⎰⎰⎰⎰.解:(1)211d (,)d d (,)d x yxy f x y x x f x y y =⎰⎰⎰.(2) 200d (,)d d (,)d aaa a x f x y y y f x y x =⎰⎰⎰.(3)1221201d (,)d +d (,)d d (,)d xxy yx f x y y x f x y y y f x y x --=⎰⎰⎰⎰⎰⎰.3. 计算下列二重积分:(1) e d x y Dσ+⎰⎰, D : ︱x ︱≤1,︱y ︱≤1;(2) d d 2D xy x y ⎰⎰,D 由直线y =1,x =2及y =x 围成;(3) d d (1)Dx x y -⎰⎰,D 由y =x 和y =x3围成;(4) d d 22()Dx y x y +⎰⎰,D :︱x ︱+︱y ︱≤1; (5) d 1sin Dy σy ⎰⎰,D 由22y x π=与y =x 围成; (6)d (4)Dx y σ--⎰⎰,D 是圆域x 2+y 2≤R 2;解: (1) 1111111211111e d ()()()1x y x y x x x x Ddx e dy e e dx e e e e σ+++-+----==-=-=--⎰⎰⎰⎰⎰.(2)5322224211121129d d ()()2253151xDx x xy x y dx x ydy x x dx ==-=-=⎰⎰⎰⎰⎰.(3) 3112430011117(1)d d (1)()325460x x Dx x y dx x dy x x x x dx -=-=--+=--+=-⎰⎰⎰⎰⎰.(4)1122220()d d 4()xDx y x y dx x y dy -+=+⎰⎰⎰⎰33241201412124(2)4()33323330x x x x x x dx x =--+=--+=⎰. (5) 222200sin 12sin d (sin sin )y y Dy y dy dx y y y dy y y πππσπ==-⎰⎰⎰⎰⎰222222sin (cos )1(cos sin )10ydy yd y y y y ππππππ=+=+-=-⎰⎰. (6)322200(4)d (4cos sin )[2(cos sin )]3RDR x y d r r rdr R d ππσθθθθθθ--=--=-+⎰⎰⎰⎰⎰3222[2(sin cos )]430R R R πθθθπ=--=.4. 已知反常二重积分e d 2y Dx σ-⎰⎰收敛,求其值.其中D 是由曲线y =4x 2与y =9x 2在第一象限所围成的区域.解:设2249(0)a D y x y x y a a ===>是由曲线、和在第一象限所围成.则22222200015555ed ()236144144144aaa a y y y y a D x dy dx ye dy e d y e σ-----==⋅=--=-⎰⎰⎰⎰⎰. 所以225e d lime d 144ay ya DD x x σσ--→+∞==⎰⎰⎰⎰. 5. 计算e d 2x x +∞--∞⎰.解:由第四节例2以及2y =e x -是偶函数,可知2e d x x +∞--∞=⎰.6. 求由曲面z =0及z =4-x 2-y 2所围空间立体的体积.解:曲面z =0和z =4-x 2-y 2的交线为x 2+y 2 =4.因此,所围空间立体的体积为:222220016(4)d d (4)2(8)84D x y x y d r rdr πθππ--=-=-=⎰⎰⎰⎰.7. 已知曲线y =ln x 及过此曲线上点(e ,1)的切线ey x 1=.(1) 求由曲线y =ln x ,直线ey x 1=和y =0所围成的平面图形D 的面积;(2) 求以平面图形D 为底,以曲面z =e y 为顶的曲顶柱体的体积.解:(1) 1ln (ln )12221e e e ee S xdx x x x =-=--=-⎰.(2) 221120013()()2220y y e yyyy y ye e V dy e dx e ye dy ye e ==-=-+=-⎰⎰⎰.(B )1. 交换积分次序:(1) 311(,)xxdx f x y dy -⎰⎰; (2)0112(,)y dy f x y dx --⎰⎰;(3) 224(,)x x f x y dy -⎰;(4) 110(,)dx f x y dy ⎰.解:(1) 3111(,)(,)x xydx f x y dy dy f x y dx -=⎰⎰⎰.(2) 01101221(,)(,)yxdy f x y dx dx f x y dy ---=⎰⎰⎰⎰.。

第八章重积分


第八章 二重积分
第12页
5、二重积分的几何应用
(1)计算平面图形的面积
A d dxdy rdrd
D
D
D
(2)计算曲顶柱体的体积或可分解为两个或多个 曲顶柱体的体积的之差或之和的空间体的体积
V f x, ydxdy
D
嘉兴学院
7 November 2019
第八章 二重积分
D
f 2 xg2 y f 2 yg2 xdxdy
D
2 f x f ygxg ydxdy ab f xgxdx 2 .
D
嘉兴学院
7 November 2019
第八章 二重积分
第26页
例 . 计算二重积分
其中D 为圆周

1]d
a3 ( 22 ).
92
嘉兴学院
7 November 2019
第八章 二重积分
第18页
例5 求由曲线y x 1 ,x 2,y 2所围成图形面积A.
x

法一
A


D
dxdy

2
1
dx
x 2

1 x
dy

ln
2

1 .
2
法二
A

2
1

x

1 x

D
D1
D2
性质4 若 为D的面积 1 d d .
D
D
性质5 若在D上, f ( x, y) g( x, y)
f ( x, y)d g( x, y)d .
D
D
特殊地 f ( x, y)d f ( x, y)d .

二重积分说课

《高等数学》〔下〕——说课稿说课教师:方政蕊〔经济与数学系〕各位评委、老师:大家好!我是经济与数学系的数学教师方政蕊,很荣幸能够参加此次的说课活动,希望各位评委、老师对我的说课内容提出宝贵意见.下面我将就本学期我所担任的《高等数学》这门课程所使用的教材、该课程的地位作用、教学方法的选择、学生学法的指导和教学过程的设计等几个方面来向大家做一简要介绍.一、教材介绍这门课所使用的教材是同济大学出版的面向21世纪普通高等教育规划教材《高等数学》的下册,该教材内容符合教学大纲的要求,知识系统、体系结构清晰、例题丰富、语言通俗易懂,讲解透彻难度适中,在上册一元函数微积分的基础上进一步较系统地介绍多元函数微分学,多元函数积分学,无穷级数和微分方程等高等数学的知识.二、课程介绍1、地位和作用高等数学在当今社会的各个领域都有广泛的应用,因而"高等数学"是理工类本科教学重要基础课之一,通过本课程的教学,旨在使学生掌握该课程的基本概念、基本理论和方法,提高学生应用数学知识解决实际问题的意识和能力,为学生继续学习后续相关专业课奠定必要的数学基础.2、教学目标〔1〕、理解多元函数的概念、会求二元函数的偏导数和全微分〔2〕、能将多元函数应用到几何上,会求极值〔3〕、理解多元函数的概念、性质,掌握二重积分的计算方法〔4〕、掌握三重积分、曲线积分和曲面积分的计算方法〔5〕、理解无穷级数的概念、性质,掌握判别级数收敛性的方法〔6〕、会将函数展开成幂级数或傅里叶级数〔7〕、理解微分方程的概念,掌握求微分方程的解的方法3、教学重点和难点〔1〕、求二元函数的偏导数、极值〔2〕、求二重积分、三重积分、曲线积分和曲面积分〔3〕、无穷级数的收敛性判别、将函数展开成幂级数或傅里叶级数〔4〕、解微分方程二、教学方法科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一.数学是本科教学中的重要基础课,是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生"知其然"而且要使学生"知其所以然".根据教学内容、教学目标和学生的认知水平,我主要采取教师启发讲授、适当点拨和学生探究学习的教学方法.教学过程中,教师可以系统的传授知识,充分发挥教师的主导作用,根据教材提供的线索,安排适当的教学情境,让学生展示相应的数学思维过程,使学生有机会经历数学概念抽象的各个阶段,引导学生独立自主地开展思维活动,深入探究,在思考中体会数学图象变换过程中所蕴涵的数学方法,使之获得内心感受,特别是通过多媒体课件的演示,直观展示函数图象的变化过程,激发学生的兴趣,从而创造性地解决问题,最终形成概念,获得方法,培养能力,突出学生的主体地位.除使用常规的教学手段外,还将使用多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.三、学生学法指导我们常说:"授人以鱼不如授人以渔",因而在教学中要特别重视学法的指导.转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变.我以教学大纲和课程标准为指导,辅以多媒体手段,结合师生共同讨论、归纳,着重引导学生学会探索研究的学习方法.探究式学习法的好处是学生主动参与知识的发生、发展过程,在探究的过程中激发学生的好奇心和创新意识,在探究过程中学习科学研究的方法,在探究过程中培养坚韧不拔的精神.学生掌握了这种学习方法后,对学生终生学习都有积极意义.四、教学过程的设计为完成本门课的教学目标,突出重点,突破难点,我把教学过程设计为六个阶段:创设情境,引入课题;归纳探索,形成概念;掌握求法,适当延展;适当练习,巩固新课;归纳小结,提高认识;作业布置,巩固提高.具体过程如下:1、创设情境,引入课题在学生原有的知识体系上,通过类比逐步引导学生从一元函数的极限、连续、求导和积分到多元函数的的极限、连续、求导和积分过渡,发现两者之间的内在联系,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中.2、归纳探索,形成概念由引例得出新课的知识点,如在讲多元函数积分的概念上,由两个引例求曲顶柱体的体积和平面薄片的质量的讲解,归纳总结出多元函数积分的概念.3、掌握求法,适当延展通过例题的讲解,让学生掌握多元函数微积分的计算方法.在讲解例题时,不仅在于怎样解,更在于为什么这样解,而与时对解题方法和规律进行概括,有利于发展学生的思维能力.在课本例题的基础上,适当将题目引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果.4、适当练习,巩固新课针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和"减负"的目的,具体做法是课堂提问和让学生到黑板上解题.5、归纳小结,提高认识知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标.6、作业布置,巩固提高:根据学生的不同层次分为必做和选做,由学生自主选择"二重积分"的教学方案的设计经济与数学系方政蕊二重积分是《高等数学》下册第六章第一节的内容.在此之前,学生已学习了定积分,这为过渡到本节的学习起着铺垫作用.本节内容在高等数学中,占据着重要地位,以与为其他学科和今后专业课程的学习打下基础.本着课程标准,在吃透教材的基础上,我确立了如下的教学目标、教学重点和教学难点:一、教学目标:1、理解二重积分的概念与性质2、掌握利用直角坐标系和极坐标计算二重积分二、教学重点与难点:二重积分的计算三、教学准备:1、教师:查看参考书、编写教案或课件制作2、学生:课前预习四、教学时间:2课时五、教学方案设计为达到本节课的教学目标,突出重点,突破难点,我把教学环节设计为四个阶段:创设情境,引入课题;归纳探索,形成概念;掌握求法,适当延展;归纳小结,提高认识,具体过程如下:1、创设情境,引入课题长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了.事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学.概念的形成主要依靠对感性材料的抽象概括,只有学生对学习对象有了丰富具体经验以后,才能使学生对学习对象进行主动的、充分的理解,因此在本节的教学中,我从具体的两个实例引出概念:〔1〕、曲顶柱体的体积先用两分钟时间,让学生回忆学习定积分时求曲边梯形面积的方法,再利用类比的方法讲解求曲顶柱体的体积.〔2〕、平面薄片的质量用同样的方法求出平面薄片的质量2、归纳探索,形成概念把实际问题抽象成数学模型是学生形成和掌握概念的前提,也是培养学生观察分析能力的重要一步,以上两个实例可以抽象地给出二重积分的定义,从而引出二重积分的概念.〔1〕、对概念作进一步解释,并与定积分的概念作比较,加深学生的印象,最后强调几个要点.〔2〕、给出二重积分的性质,使学生能更深刻地理解二重积分.3、掌握求法,适当延展〔1〕、直角坐标系下二重积分的求法在讲二重积分的计算前,先让学生回顾定积分的基本公式和计算方法,提问两位学生,得出结论.再重点介绍二重积分的计算方法,对于不同的区域要用不同的积分次序进行积分,详细讲解两种区域的特点,推导出计算二重积分的公式. 〔2〕、讲解例题选择典型而具有代表性的例题3个,一个的积分区域是X-型,一个既是X-型又是Y-型,一个既不是X-型也不是Y-型,使学生掌握不同积分区域的二重积分的计算,并与时对解题方法和规律进行概括,有利于发展学生的思维能力. 〔3〕、极坐标下二重积分的求法很多学生没有学过极坐标,所以先对极坐标作简单的介绍,再讲解用极坐标求二重积分,通过直角坐标与极坐标的变换得出公式,并强调在什么情况下选择用极坐标求二重积分.〔4〕、讲解例题选择例题2个,一个是既可以用直角坐标计算又可以用极坐标计算,另一个是只能用极坐标计算的例子,经过对比,使学生了解有时用极坐标计算二重积分会减少很多计算量.〔5〕、能力训练为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,并且把课本的例题熔入即时训练题中,随机抽两位学生到黑板上做课堂练习,再作评讲,使学生能巩固所学知识与解题思想方法.〔6〕、变式延伸,进行重构重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果.4、归纳小结,提高认识提出问题:这节课你们学到了什么?鼓励学生积极回答,答不完整的没有关系,其它同学补充.以此培养学生的口头表达能力,归纳概括能力.5、布置作业根据学生的不同层次分为必做和选做,由学生自主选择.六、板书设计好的板书就像一份微型教案,此板书力图全面而简明的将授课内容传递给学生,清晰直观,便于学生理解和记忆,理清文章脉络.我在上这节课时较注重板书的设计,将定义、性质和计算方法写在黑板的左边,例题和讲解写在黑板的右边,特别是有的例题没有马上擦去,保留到下一个例子讲完,这样就可以进行对比.下面附上板书设计与详细教案:第一节 二重积分教学目标:1、理解二重积分的概念与性质2、掌握利用直角坐标系和极坐标计算二重积分 教学重点与难点:二重积分的计算 一、二重积分的概念 1. 引例1:曲顶柱体的体积设有一空间立体Ω,它的底是xoy 面上的有界区域D ,它的侧面是以D 的边界曲线为准线,而母线平行于z 轴的柱面,它的顶是曲面),(y x f z =<0),(≥y x f >,称这种立体为曲顶柱体.曲顶柱体的体积V 可以这样来计算:<1>用任意一组曲线网将区域D 分成n 个小区域1σ∆,2σ∆, ,n σ∆,以这些小区域的边界曲线为准线,作母线平行于z 轴的柱面,这些柱面将原来的曲顶柱体Ω分划成n 个小曲顶柱体1∆Ω,2∆Ω, ,n ∆Ω. 〔假设i σ∆所对应的小曲顶柱体为i ∆Ω,这里i σ∆既代表第i 个小区域,又表示它的面积值,i ∆Ω既代表第i 个小曲顶柱体,又代表它的体积值〕.从而∑=∆Ω=ni iV 1图9-1-1<2> 由于),(y x f 连续,对于同一个小区域来说,函数值的变化不大.因此,可以将第i 个小曲顶柱体近似地看作小平顶柱体,于是i i i i f σηξ∆≈∆Ω),(,)),(i i i σηξ∆∈整个曲顶柱体的体积近似值为<3> 为得到V 的精确值,只需让这n 个小区域越来越小,即让每个小区域向某点收缩.为此,我们引入区域直径的概念:一个闭区域的直径是指区域上任意两点距离的最大者. 所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零. 设n 个小区域直径中的最大者为λ,定义 2.引例2:平面薄片的质量设有一平面薄片占有xoy 面上的区域D , 它在),(y x 处的面密度为),(y x ρ〔0),(>y x ρ〕,现计算该平面薄片的质量M .<1>将D 分成n 个小区域1σ∆,2σ∆, ,n σ∆,i σ∆既代表第i 个小区域又代表它的面积.<2>第i 小平面薄片的质量可近似为 图9-1-2 i i i i M σηξρ∆≈∆),(,)),(i i i σηξ∆∈整个平面薄片的质量的近似值为<3>记i λ为i σ∆的直径,},,,max {21n λλλλ =,整个平面薄片的质量定义为 综上,两种实际意义完全不同的问题, 都归结同一形式的极限.因此,有必要撇开这类极限问题的实际背景, 给出一个更广泛、更抽象的数学概念,即二重积分.3. 二重积分的定义定义 设),(y x f 是闭区域D 上的有界函数. <1> 将区域D 任意分成n 个小区域1σ∆,2σ∆, ,n σ∆其中, i σ∆既表示第i 个小区域,也表示它的面积.<2> 在第i 个小区域i σ∆上任取一点),(i i ηξ,作乘积i i i f σηξ∆),(,),,2,1(n i =,作和<3> 记i λ为i σ∆的直径,},,,max {21n λλλλ =,若极限存在,则称此极限值为函数),(y x f 在区域D 上的二重积分,记作⎰⎰Dd y x f σ),(,即其中: ),(y x f 称为被积函数,σd y x f ),(称为被积表达式,σd 称为面积元素,y x ,称为积分变量,D 称为积分区域,∑=∆ni i i i f 1),(σηξ称为积分和式.4. 几点说明:<1> 极限 ∑=→∆ni i i i f 10),(lim σηξλ的存在性不依赖区域D 的分割,也不依赖),(i i ηξ的取法.<2> 二重积分的存在性定理:若),(y x f 在闭区域D 上连续, 则),(y x f 在D 上的二重积分存在.<3>⎰⎰Dd y x f σ),(中的面积元素σd 象征着积分和式中的i σ∆.由于二重积分的定义中对区域D 的划分是任意的,若用一组平行于坐标轴的直线来划分区域D ,因此,可以将σd 记作dxdy <dxdy 为直角坐标系下的面积元素 > 二重积分也可表示成为⎰⎰Dd y x f σ),(. 图9-1-3<4> 若(),0f x y ≥,二重积分表示以),(y x f z =为曲顶,以D 为底的曲顶柱体的体积,即二、二重积分的性质 1. 线性性质其中:βα,是常数. 2. 对区域的可加性若区域D 分为两个部分区域1D ,2D 则 3. 若在D 上,1),(≡y x f ,σ表示区域D 的面积,则 4. 若在D 上,),(),(y x y x f ϕ≤,则有不等式 特别地,由于|),(|),(|),(|y x f y x f y x f ≤≤-,有 5. 估值不等式设M 与m 分别是),(y x f 在闭区域D 上最大值和最小值,σ是区域D 的面积,则6. 二重积分的中值定理设函数),(y x f 在闭区域D 上连续,σ是D 的面积,则在D 上至少存在一点),(ηξ,使得证明:由于),(y x f 在闭区域D 上连续,故),(y x f 在闭区域D 上取得其最大值M 和最小值m .由性质5,得显然0≠σ,因此有M d y x f m D ≤≤⎰⎰σσ),(1再由二元函数的介值性质知道,至少存在一点D ∈),(ηξ,使得),(),(1ηξσσf d y x f D=⎰⎰即σηξσ),(),(f d y x f D=⎰⎰例1 比较积分⎰⎰+Dd y x σ)ln(与⎰⎰+Dd y x σ2)][ln(,其中D 是三顶点为)0,1(,)1,1(和)0,2(的三角形.例2 估计积分值其中}20,10|),({≤≤≤≤=y x y x D三、二重积分的计算法 1、利用直角坐标计算二重积分根据二重积分的几何意义可知, 当0),(≥y x f 时,⎰⎰Dd y x f σ),(的值等于以D为底,以曲面),(y x f z =为顶的曲顶柱体的体积. 在区间],[b a 上任意取定一个点0x , 作平行于yoz 面的平面0x ,这平面截曲顶柱体所得截面是一个以区间)](,)([0201x x ϕϕ为底, ),(0y x f z =为曲边的曲边梯形,其面 积为一般地,过区间],[b a 上任一点x 且平行于yoz 面的平面截曲顶柱体所得截面的面积为利用计算平行截面面积为已知的立体的体积的方法,该曲顶柱体的体积为 从而有这也称为先对y , 后对x 的二次积分,也常记作其中:积分区域D 为})()(,|),({21x y x b x a y x ϕϕ≤≤≤≤.如果积分区域D 为})()(,|),({21y x y d y c y x ψψ≤≤≤≤, 则二重积分也可化为例1 计算σd x I D)1(2⎰⎰-=,其中解:由二重积分的计算方法,得例2 σd y x y I D221-+=⎰⎰,其中D 是由直线x y =、1-=x 和1=y 所围成的闭区域.解:由于积分区域}1,11|),({≤≤≤≤-=y x x y x D ,得例3计算σd xy I D⎰⎰=,其中D 是由抛物线x y =2、2-=x y 所围成的闭区域.解:由与积分区域可表为}2,21|),({2+≤≤≤≤-=y x y y y x D , 用先对x 后对y 的积分次序,得如果用先对y 后对x 的积分次序,积分区域分成两个区域,即 因此2、利用极坐标计算二重积分直角坐标),(y x 与极坐标),(θρ的变换关系为θρcos =x ,θρsin =y在极坐标),(θρ下,面积元素为 因此有如果积分区域为 则⎰⎰⎰⎰⎰⎰==βαθϕθϕθϕθϕβαρρθρθρθθρρθρθρθρρθρθρd f d d d f d d f D)sin ,cos ( ])sin ,cos ([)sin ,cos ()()()()(2121如果积分区域为 则⎰⎰⎰⎰⎰⎰==βαθϕθϕβαρρθρθρθθρρθρθρθρρθρθρd f d d d f d d f D)sin ,cos ( ])sin ,cos ([)sin ,cos ()(0)(0如果积分区域为则⎰⎰⎰⎰⎰⎰==πθϕθϕπρρθρθρθθρρθρθρθρρθρθρ20)(0)(020)sin ,cos ( ])sin ,cos ([)sin ,cos (d f d d d f d d f D例4计算⎰⎰--Dy xdxdy e 22,其中D 是中心在原点、半径为a 的圆周围成的区域.解:在极坐标下,D 可表示为πθρ20,0≤≤≤≤a ,因此例5 求球体22224a z y x ≤++被圆柱面ax y x 222=+所截得的〔含在圆柱面内的部分〕立体的体积.解:由对称性 其中D 为半圆周22x ax y -=与x 轴所围成的区域,即 利用极坐标计算,得 作业:P88 P89。

微积分 第八章 第七节 二重积分


求 用若干个小平顶柱体
和 体积之和近似表示曲
o
顶柱体的体积,
n
x
D

V f (i ,i ) i ,
i
i 1


曲顶柱体的体积 V lim 0
n
f (i ,i ) i .
i 1
y
(i ,i )
3
2.二重积分的定义
设二元函数 z f ( x, y) 是有界闭区域 D 上的有界
函数,若将 D任意分割成 n个小闭区域 1,2,,n,
0
2 x2
2
(1, 3 )
3
y2 2
dy
2
0
f ( x, y)dx
2
x2 y2 4
2
4 y2
o
x
dy
3
0
f ( x, y)dx .
26
利用对称性简化二重积分的计算
设积分区域D关于y 轴对称,
(1) 若f(x,y)关于 x 是奇函数,则有
y y f (x)
f ( x, y)d 0 ;
D
P( x, y)
D4 o
x
(xy cos x sin y)dxdy
D
29
(A) 2 cos x sin y dxdy
(B) 2 xy dxdy
D1
D1
y
(C) 4 ( xy cos x sin y)dxdy (D) 0
D1
D2 D1
解 如图将 D 分为四部分 D1, D2 , D3 , D4 ,则: D3
(xy cos x sin y)dxdy
AD
10
二、二重积分的计算 1.在直角坐标系下计算二重积分 如果积分区域为D :1( x) y 2( x), a x b,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题8-11. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)Dm x y d μσ=⎰⎰.2. 试比较下列二重积分的大小:(1) 2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰,其中D 由x 轴、y 轴及直线x +y =1围成;(2)ln()Dx y d σ+⎰⎰与2ln()Dx y d σ+⎡⎤⎣⎦⎰⎰,其中D 是以A (1,0),B (1,1),C (2,0)为顶点的三角形闭区域.解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2ln()[ln()]DDx y d x y d σσ+≥+⎰⎰⎰⎰习题8-21. 画出积分区域,并计算下列二重积分:(1) ()Dx y d σ+⎰⎰,其中D 为矩形闭区域:1,1x y ≤≤;(2) (32)Dx y d σ+⎰⎰,其中D 是由两坐标轴及直线x +y =2所围成的闭区域;(3) 22()D xy x d σ+-⎰⎰,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区域;(4) 2Dx y d σ⎰⎰,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0;(5) ln Dx y d σ⎰⎰,其中D 为:0≤x ≤4,1≤y ≤e ;(6)22Dx d σy ⎰⎰其中D 是由曲线11,,2xy x y x ===所围成的闭区域. 解:(1) 111111()()20.Dx y d dx x y dy xdx σ---+=+==⎰⎰⎰⎰⎰ (2) 222200(32)(32)[3(2)(2)]x Dx y d dx x y dy x x x dx σ-+=+=-+-⎰⎰⎰⎰⎰223202220[224]4.330x x dx x x x =-++=-++=⎰(3) 32222222002193()()()248yy Dy x y x d dy x y x dx y dy σ+-=+-=-⎰⎰⎰⎰⎰43219113.96860y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称,所以20.Dx yd σ=⎰⎰(5) 44201041ln ln (ln ln )2(1)2110e De e e x yd dx x ydy x y y y dx x e σ-==-==-⎰⎰⎰⎰⎰.(6) 122224111311122222119()()124642x x Dx x x x x x d dx dy dx x x dx y y y x σ==-=-=-=⎰⎰⎰⎰⎰⎰.2. 将二重积分(,)Df x y d σ⎰⎰化为二次积分(两种次序)其中积分区域D 分别如下:(1) 以点(0,0),(2,0),(1,1)为顶点的三角形;(2) 由直线y =x 及抛物线y 2=4x 所围成的闭区域;(3) 由直线y =x ,x =2及双曲线1y x=所围成的闭区域;(4) 由曲线y =x 2及y =1所围成的闭区域. 解:(1) 1221201(,)(,)(,).xx y ydx f x y dy dx f x y dy dy f x y dx --+=⎰⎰⎰⎰⎰⎰(2) 2441004(,)(,).y x y dx f x y dy dy f x y dx =⎰⎰⎰⎰(3) 12222111112(,)(,)(,).xyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰(4) 21111(,)(,).xdx f x y dy dy f x y dx -=⎰⎰⎰3. 交换下列二次积分的积分次序:(1) 10(,)ydy f x y dx ⎰⎰; (2)2220(,)yydy f x y dx ⎰⎰;(3) ln 10(,)e xdx f x y dy ⎰⎰; (4) 123301(,)(,)y ydy f x y dx dy f x y dx -+⎰⎰⎰⎰.解:(1) 111(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰.(2) 222402(,)(,).y x ydy f x y dx dx f x y dy =⎰⎰⎰⎰(3) ln 11(,)(,)y e xeedx f x y dy dy f x y dx =⎰⎰⎰⎰(4) 123323012(,)(,)(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+=⎰⎰⎰⎰⎰⎰.4. 求由平面x =0,y =0,x =1,y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体体积.解:11100037(623)(62).22V dx x y dy x dx =--=--=⎰⎰⎰5. 求由平面x =0,y =0,x +y =1所围成的柱体被平面z =0及曲面x 2+y 2=6-z 截得的立体体积.解:3111222000(1)34(6)[6(1)(1)).312x x V dx x y dy x x x dx --=--=----=⎰⎰⎰习题8-31. 画出积分区域,把二重积分(,)Df x y d σ⎰⎰化为极坐标系下的二次积分,其中积分区域D是:(1) x 2+y 2≤a 2 (a >0); (2) x 2+y 2≤2x ;(3) 1≤x 2+y 2≤4; (4) 0≤y ≤1-x ,0≤x ≤1. 解:(1) 20(,)(cos ,sin ).aDf x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(2) 2cos 202(,)(cos ,sin ).Df x y d d f r r rdr πθπσθθθ-=⎰⎰⎰⎰(3) 221(,)(cos ,sin ).D f x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(4)12cos sin 0(,)(cos ,sin ).Df x y d d f r r rdr πθθσθθθ+=⎰⎰⎰⎰2. 把下列积分化为极坐标形式,并计算积分值:(1)22220()aa y dy x y dx -+⎰⎰;(2)21220;xxdx x y dx +⎰⎰解:(1)224422320()248aa y aa a dy x y dx d r dr πππθ-+==⋅=⎰⎰⎰⎰. (2) 22sin 3122244cos 600001sin 3cos x x dx x y dx d r dr d πθπθθθθθ+==⎰⎰⎰⎰⎰244466400011cos 111(cos )[(cos )(cos )]33cos cos cos d d d πππθθθθθθθ-=-=--⎰⎰⎰ 532(21)1cos cos 4().3530πθθ--+=--+= 3. 在极坐标系下计算下列二重积分:(1)22x y De d σ+⎰⎰,其中D 是圆形闭区域: x 2+y 2≤1;(2) 22ln(1)Dxy d σ++⎰⎰,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;(3)arctanDyd σx⎰⎰,其中D 是由圆周x 2+y 2=1,x 2+y 2=4及直线y =0,y =x 所围成的在第一象限内的闭区域;(4)222DR x y d σ--其中D 由圆周x 2+y 2=Rx (R >0)所围成.解:(1) 22222100112(1).20xy r r De d d e rdr e e πσθππ+==⋅=-⎰⎰⎰⎰(2)23112222221ln(1)ln(1)[ln(1)]221Dr r xy d d r rdr r dr rππσθ++=+=+-+⎰⎰⎰⎰⎰ 212(1)[ln 22](2ln 21)441r r r dr rππ+-=-=-+⎰. (3) 222244010133arctan arctan(tan ).32264Dy d d rdr d rdr x ππππσθθθθ=⋅==⋅=⎰⎰⎰⎰⎰⎰(4)222DR x y d σ--3cos 2222222022cos 12()230R R d R r rdr R r d ππθππθθθ--=-=--⎰⎰⎰3333221(sin )33R R R d πππθθ-=--=⎰.4. 求由曲面z =x 2+y 2与22z x y =+所围成的立体体积.解:两条曲线的交线为x 2+y 2=1,因此,所围成的立体体积为:21222220[()]().6DV x y x y d d r r rdr ππσθ=++=-=⎰⎰⎰⎰习题8-41. 计算反常二重积分()x y De dx dy -+⎰⎰,其中D :x ≥0,y ≥x .2. 计算反常二重积分222()Ddx dyx y +⎰⎰,其中D :x 2+y 2≥1. 解:1.22201()2a aaax yx x aaa xe dx edy eedx e e ---------=-=-+-⎰⎰⎰所以2()211lim ().22a x y a a a De edxdy e e --+--→+∞-=-+-=⎰⎰2. 由232011112()22R d dr r R πθπ=-⎰⎰,得222211lim 2().2()2R Ddxdy x y R ππ→+∞=-=+⎰⎰复习题8(A )1. 将二重积分d d (,)Df x y x y ⎰⎰化为二次积分(两种次序都要),其中积分区域D 是:(1) ︱x ︱≤1,︱y ︱≤2;(2) 由直线y =x 及抛物线y 2=4x 所围成. 解:(1) 12211221(,)(,).dx f x y dy dy f x y dx ----=⎰⎰⎰⎰(2) 2424004(,)(,).xyy xdx f x y dy dy f x y dx =⎰⎰⎰⎰2. 交换下列两次积分的次序: (1)d d 10(,)yyy f x y x ⎰⎰;(2)d d 2220(,)a ax x x f x y y -⎰⎰;(3)d d +d d 12201(,)(,)xxx f x y y x f x y y -⎰⎰⎰⎰.解:(1) 211d (,)d d (,)d y x yxy f x y x x f x y y =⎰⎰⎰⎰.(2) 222222200d (,)d d (,)d aax x aa a y a a y x f x y y y f x y x -+---=⎰⎰⎰⎰.(3)1221201d (,)d +d (,)d d (,)d xxy yx f x y y x f x y y y f x y x --=⎰⎰⎰⎰⎰⎰.3. 计算下列二重积分:(1) e d x y Dσ+⎰⎰, D : ︱x ︱≤1,︱y ︱≤1;(2) d d 2D xy x y ⎰⎰,D 由直线y =1,x =2及y =x 围成;(3) d d (1)Dx x y -⎰⎰,D 由y =x 和y =x3围成;(4) d d 22()Dx y x y +⎰⎰,D :︱x ︱+︱y ︱≤1; (5) d 1sin Dy σy ⎰⎰,D 由22y x π=与y =x 围成; (6)d (4)Dx y σ--⎰⎰,D 是圆域x 2+y 2≤R 2;解: (1) 1111111211111e d ()()()1x y x y x x x x Ddx e dy e e dx e e e e σ+++-+----==-=-=--⎰⎰⎰⎰⎰.(2)5322224211121129d d ()()2253151xDx x xy x y dx x ydy x x dx ==-=-=⎰⎰⎰⎰⎰.(3) 3112430011117(1)d d (1)()325460x x Dx x y dx x dy x x x x dx -=-=--+=--+=-⎰⎰⎰⎰⎰.(4)1122220()d d 4()xDx y x y dx x y dy -+=+⎰⎰⎰⎰33241201412124(2)4()33323330x x x x x x dx x =--+=--+=⎰. (5) 222200sin 12sin d (sin sin )y y Dy y dy dx y y y dy y y πππσπ==-⎰⎰⎰⎰⎰222222sin (cos )1(cos sin )10ydy yd y y y y ππππππ=+=+-=-⎰⎰. (6)322200(4)d (4cos sin )[2(cos sin )]3RDR x y d r r rdr R d ππσθθθθθθ--=--=-+⎰⎰⎰⎰⎰3222[2(sin cos )]430R R R πθθθπ=--=.4. 已知反常二重积分e d 2y Dx σ-⎰⎰收敛,求其值.其中D 是由曲线y =4x 2与y =9x 2在第一象限所围成的区域.解:设2249(0)a D y x y x y a a ===>是由曲线、和在第一象限所围成.则22222200015555ed ()236144144144aaa a y y y y a D x dy dx ye dy e d y e σ-----==⋅=--=-⎰⎰⎰⎰⎰. 所以225e d lime d 144ay ya DD x x σσ--→+∞==⎰⎰⎰⎰. 5. 计算e d 2x x +∞--∞⎰.解:由第四节例2以及2y =e x -是偶函数,可知2e d x x +∞--∞=⎰.6. 求由曲面z =0及z =4-x 2-y 2所围空间立体的体积.解:曲面z =0和z =4-x 2-y 2的交线为x 2+y 2 =4.因此,所围空间立体的体积为:222220016(4)d d (4)2(8)84D x y x y d r rdr πθππ--=-=-=⎰⎰⎰⎰.7. 已知曲线y =ln x 及过此曲线上点(e ,1)的切线ey x 1=.(1) 求由曲线y =ln x ,直线ey x 1=和y =0所围成的平面图形D 的面积;(2) 求以平面图形D 为底,以曲面z =e y 为顶的曲顶柱体的体积.解:(1) 1ln (ln )12221e e e ee S xdx x x x =-=--=-⎰.(2) 221120013()()2220y y e yyyy y ye e V dy e dx e ye dy ye e ==-=-+=-⎰⎰⎰.(B )1. 交换积分次序:(1) 311(,)xxdx f x y dy -⎰⎰; (2)0112(,)y dy f x y dx --⎰⎰;(3) 224(,)x x f x y dy -⎰;(4) 110(,)dx f x y dy ⎰.解:(1) 3111(,)(,)x xydx f x y dy dy f x y dx -=⎰⎰⎰.(2) 01101221(,)(,)yxdy f x y dx dx f x y dy ---=⎰⎰⎰⎰.(3) 2242402(,)(,)(,)x x f x y dy dy f x y dx dy f x y dx -=+⎰⎰⎰.(4) 211121(,)(,)(,)y dx f x y dy dy f x y dx dy f x y dx =+⎰⎰⎰⎰.2. 计算积分2122x xxdx dy x y +⎰⎰.解:222sin sin 144cos cos 2220000cos cos xxx r dx dy d rdr d dr x y r πθπθθθθθθθ==+⎰⎰⎰⎰⎰⎰ 40sin ln 24(ln cos )cos 2d ππθθθθ==-=⎰. 3. 计算积分112201yy dy dx x y ++⎰⎰.解:111114cos 4cos cos 2222000sin sin [sin ]111yy r dy dx d rdr d dr dr x y r r ππθθθθθθθθ==-++++⎰⎰⎰⎰⎰⎰⎰ 44001ln 21(tan sin arctan )arctan (cos )cos 2cos d d ππθθθθθθ=-⋅=+⎰⎰令cos t θ=,则原式211ln 21ln 21ln 211(arctan ln(12222dt dt t t t t t =+=+=+++ln 213ln 213ln ln 22242224ππ=+--=-. 4. 设函数f (x )在区间0,1⎡⎤⎣⎦上连续,且1()f x dx A =⎰,求11()()xdx f x f y dy ⎰⎰. 解:设1'()()()(1)(0)F x f x f x dx F F A ==-=⎰,则.11111()()()[(1)()](1)()()(())xdx f x f y dy f x F F x dx F f x dx F x d F x =-=-⎰⎰⎰⎰⎰21()111(1)(1)[(1)(0)][(1)(0)](1)(1)(0)22220F x F A F A F F F F F A AF AF =-=--+=--21[(1)(0)]22A A F F =-=. 5. 计算2Dx y d σ⎰⎰,其中D 是由直线y =0,y =1及双曲线x 2-y 2=1所围成的闭区域.解:11222022(13Dx yd dy ydx y y σ==+⎰⎰⎰⎰35122222011122(1)(1)(1)1)335150y d y y =++=⋅+=⎰. 6. 计算222y xdx e dy ⎰⎰.解:2222222240000211(1)220y y y y y x dx e dy dy e dx ye dy e e ====-⎰⎰⎰⎰⎰.7. 证明211()()d ()()d 1b x bn n a a adx x y f y y b y f y y n ---=--⎰⎰⎰,其中n 为大于1的正整数. 证:22()()d ()()b x b bn n aaaydx x y f y y dy x y f y dx ---=-⎰⎰⎰⎰11()()1bn b yax y f y dy n -=--⎰11()()d 1bn ab y f y y n -=--⎰。

相关文档
最新文档