高等数学习题详解-第8章二重积分

合集下载

高等数学习题详解-第8章 二重积分

高等数学习题详解-第8章 二重积分

习题8-11. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)Dm x y d μσ=⎰⎰.2. 试比较下列二重积分的大小:(1) 2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰,其中D 由x 轴、y 轴及直线x +y =1围成;(2)ln()Dx y d σ+⎰⎰与2ln()Dx y d σ+⎡⎤⎣⎦⎰⎰,其中D 是以A (1,0),B (1,1),C (2,0)为顶点的三角形闭区域.解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而, 2ln()[ln()]DDx y d x y d σσ+≥+⎰⎰⎰⎰习题8-21. 画出积分区域,并计算下列二重积分:(1) ()Dx y d σ+⎰⎰,其中D 为矩形闭区域:1,1x y ≤≤;(2) (32)Dx y d σ+⎰⎰,其中D 是由两坐标轴及直线x +y =2所围成的闭区域;(3) 22()D xy x d σ+-⎰⎰,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区域;(4) 2Dx y d σ⎰⎰,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0;(5) ln Dx y d σ⎰⎰,其中D 为:0≤x ≤4,1≤y ≤e ;(6)22Dx d σy ⎰⎰其中D 是由曲线11,,2xy x y x ===所围成的闭区域. 解:(1) 111111()()20.Dx y d dx x y dy xdx σ---+=+==⎰⎰⎰⎰⎰ (2) 222200(32)(32)[3(2)(2)]x Dx y d dx x y dy x x x dx σ-+=+=-+-⎰⎰⎰⎰⎰223202220[224]4.330x x dx x x x =-++=-++=⎰(3) 32222222002193()()()248yy Dy x y x d dy x y x dx y dy σ+-=+-=-⎰⎰⎰⎰⎰43219113.96860y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称,所以20.Dx yd σ=⎰⎰(5) 44201041ln ln (ln ln )2(1)2110e De e e x yd dx x ydy x y y y dx x e σ-==-==-⎰⎰⎰⎰⎰.(6) 122224111311122222119()()124642x x Dx x x x x x d dx dy dx x x dx y y y x σ==-=-=-=⎰⎰⎰⎰⎰⎰.2. 将二重积分(,)Df x y d σ⎰⎰化为二次积分(两种次序)其中积分区域D 分别如下:(1) 以点(0,0),(2,0),(1,1)为顶点的三角形;(2) 由直线y =x 及抛物线y 2=4x 所围成的闭区域;(3) 由直线y =x ,x =2及双曲线1y x=所围成的闭区域;(4) 由曲线y =x 2及y =1所围成的闭区域. 解:(1) 1221201(,)(,)(,).xx y ydx f x y dy dx f x y dy dy f x y dx --+=⎰⎰⎰⎰⎰⎰(2) 2441004(,)(,).y x y dx f x y dy dy f x y dx =⎰⎰⎰⎰(3) 12222111112(,)(,)(,).xyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰(4) 21111(,)(,).xdx f x y dy dy f x y dx -=⎰⎰⎰3. 交换下列二次积分的积分次序:(1) 10(,)ydy f x y dx ⎰⎰; (2)2220(,)yydy f x y dx ⎰⎰;(3) ln 10(,)e xdx f x y dy ⎰⎰; (4) 123301(,)(,)y ydy f x y dx dy f x y dx -+⎰⎰⎰⎰.解:(1) 111(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰.(2) 222402(,)(,).y x ydy f x y dx dx f x y dy =⎰⎰⎰⎰(3) ln 11(,)(,)y e xeedx f x y dy dy f x y dx =⎰⎰⎰⎰(4) 123323012(,)(,)(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+=⎰⎰⎰⎰⎰⎰.4. 求由平面x =0,y =0,x =1,y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体体积.解:11100037(623)(62).22V dx x y dy x dx =--=--=⎰⎰⎰5. 求由平面x =0,y =0,x +y =1所围成的柱体被平面z =0及曲面x 2+y 2=6-z 截得的立体体积.解:3111222000(1)34(6)[6(1)(1)).312x x V dx x y dy x x x dx --=--=----=⎰⎰⎰习题8-31. 画出积分区域,把二重积分(,)Df x y d σ⎰⎰化为极坐标系下的二次积分,其中积分区域D是:(1) x 2+y 2≤a 2 (a >0); (2) x 2+y 2≤2x ;(3) 1≤x 2+y 2≤4; (4) 0≤y ≤1-x ,0≤x ≤1. 解:(1) 20(,)(cos ,sin ).aDf x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(2) 2cos 202(,)(cos ,sin ).Df x y d d f r r rdr πθπσθθθ-=⎰⎰⎰⎰(3) 221(,)(cos ,sin ).D f x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(4)12cos sin 0(,)(cos ,sin ).Df x y d d f r r rdr πθθσθθθ+=⎰⎰⎰⎰2. 把下列积分化为极坐标形式,并计算积分值:(1)22220()aa y dy x y dx -+⎰⎰;(2)21220;xxdx x y dx +⎰⎰解:(1)224422320()248aa y aa a dy x y dx d r dr πππθ-+==⋅=⎰⎰⎰⎰. (2) 22sin 3122244cos 600001sin 3cos x x dx x y dx d r dr d πθπθθθθθ+==⎰⎰⎰⎰⎰244466400011cos 111(cos )[(cos )(cos )]33cos cos cos d d d πππθθθθθθθ-=-=--⎰⎰⎰ 532(21)1cos cos 4().3530πθθ--+=--+= 3. 在极坐标系下计算下列二重积分:(1)22x y De d σ+⎰⎰,其中D 是圆形闭区域: x 2+y 2≤1;(2) 22ln(1)Dxy d σ++⎰⎰,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;(3)arctanDyd σx⎰⎰,其中D 是由圆周x 2+y 2=1,x 2+y 2=4及直线y =0,y =x 所围成的在第一象限内的闭区域;(4)222DR x y d σ--其中D 由圆周x 2+y 2=Rx (R >0)所围成.解:(1) 22222100112(1).20xy r r De d d e rdr e e πσθππ+==⋅=-⎰⎰⎰⎰(2)23112222221ln(1)ln(1)[ln(1)]221Dr r xy d d r rdr r dr rππσθ++=+=+-+⎰⎰⎰⎰⎰ 212(1)[ln 22](2ln 21)441r r r dr rππ+-=-=-+⎰. (3) 222244010133arctan arctan(tan ).32264Dy d d rdr d rdr x ππππσθθθθ=⋅==⋅=⎰⎰⎰⎰⎰⎰(4)222DR x y d σ--3cos 2222222022cos 12()230R R d R r rdr R r d ππθππθθθ--=-=--⎰⎰⎰3333221(sin )33R R R d πππθθ-=--=⎰.4. 求由曲面z =x 2+y 2与22z x y =+所围成的立体体积.解:两条曲线的交线为x 2+y 2=1,因此,所围成的立体体积为:21222220[()]().6DV x y x y d d r r rdr ππσθ=++=-=⎰⎰⎰⎰习题8-41. 计算反常二重积分()x y De dx dy -+⎰⎰,其中D :x ≥0,y ≥x .2. 计算反常二重积分222()Ddx dyx y +⎰⎰,其中D :x 2+y 2≥1. 解:1.22201()2a aaax yx x aaa xe dx edy eedx e e ---------=-=-+-⎰⎰⎰所以2()211lim ().22a x y a a a De edxdy e e --+--→+∞-=-+-=⎰⎰2. 由232011112()22R d dr r R πθπ=-⎰⎰,得222211lim 2().2()2R Ddxdy x y R ππ→+∞=-=+⎰⎰复习题8(A )1. 将二重积分d d (,)Df x y x y ⎰⎰化为二次积分(两种次序都要),其中积分区域D 是:(1) ︱x ︱≤1,︱y ︱≤2;(2) 由直线y =x 及抛物线y 2=4x 所围成. 解:(1) 12211221(,)(,).dx f x y dy dy f x y dx ----=⎰⎰⎰⎰(2) 2424004(,)(,).xyy xdx f x y dy dy f x y dx =⎰⎰⎰⎰2. 交换下列两次积分的次序: (1)d d 10(,)yyy f x y x ⎰⎰;(2)d d 2220(,)a ax x x f x y y -⎰⎰;(3)d d +d d 12201(,)(,)xxx f x y y x f x y y -⎰⎰⎰⎰.解:(1) 211d (,)d d (,)d y x yxy f x y x x f x y y =⎰⎰⎰⎰.(2) 222222200d (,)d d (,)d aax x aa a y a a y x f x y y y f x y x -+---=⎰⎰⎰⎰.(3)1221201d (,)d +d (,)d d (,)d xxy yx f x y y x f x y y y f x y x --=⎰⎰⎰⎰⎰⎰.3. 计算下列二重积分:(1) e d x y Dσ+⎰⎰, D : ︱x ︱≤1,︱y ︱≤1;(2) d d 2D xy x y ⎰⎰,D 由直线y =1,x =2及y =x 围成;(3) d d (1)Dx x y -⎰⎰,D 由y =x 和y =x3围成;(4) d d 22()Dx y x y +⎰⎰,D :︱x ︱+︱y ︱≤1; (5) d 1sin Dy σy ⎰⎰,D 由22y x π=与y =x 围成; (6)d (4)Dx y σ--⎰⎰,D 是圆域x 2+y 2≤R 2;解: (1) 1111111211111e d ()()()1x y x y x x x x Ddx e dy e e dx e e e e σ+++-+----==-=-=--⎰⎰⎰⎰⎰.(2)5322224211121129d d ()()2253151xDx x xy x y dx x ydy x x dx ==-=-=⎰⎰⎰⎰⎰.(3) 3112430011117(1)d d (1)()325460x x Dx x y dx x dy x x x x dx -=-=--+=--+=-⎰⎰⎰⎰⎰.(4)1122220()d d 4()xDx y x y dx x y dy -+=+⎰⎰⎰⎰33241201412124(2)4()33323330x x x x x x dx x =--+=--+=⎰. (5) 222200sin 12sin d (sin sin )y y Dy y dy dx y y y dy y y πππσπ==-⎰⎰⎰⎰⎰222222sin (cos )1(cos sin )10ydy yd y y y y ππππππ=+=+-=-⎰⎰. (6)322200(4)d (4cos sin )[2(cos sin )]3RDR x y d r r rdr R d ππσθθθθθθ--=--=-+⎰⎰⎰⎰⎰3222[2(sin cos )]430R R R πθθθπ=--=.4. 已知反常二重积分e d 2y Dx σ-⎰⎰收敛,求其值.其中D 是由曲线y =4x 2与y =9x 2在第一象限所围成的区域.解:设2249(0)a D y x y x y a a ===>是由曲线、和在第一象限所围成.则22222200015555ed ()236144144144aaa a y y y y a D x dy dx ye dy e d y e σ-----==⋅=--=-⎰⎰⎰⎰⎰. 所以225e d lime d 144ay ya DD x x σσ--→+∞==⎰⎰⎰⎰. 5. 计算e d 2x x +∞--∞⎰.解:由第四节例2以及2y =e x -是偶函数,可知2e d x x +∞--∞=⎰.6. 求由曲面z =0及z =4-x 2-y 2所围空间立体的体积.解:曲面z =0和z =4-x 2-y 2的交线为x 2+y 2 =4.因此,所围空间立体的体积为:222220016(4)d d (4)2(8)84D x y x y d r rdr πθππ--=-=-=⎰⎰⎰⎰.7. 已知曲线y =ln x 及过此曲线上点(e ,1)的切线ey x 1=.(1) 求由曲线y =ln x ,直线ey x 1=和y =0所围成的平面图形D 的面积;(2) 求以平面图形D 为底,以曲面z =e y 为顶的曲顶柱体的体积.解:(1) 1ln (ln )12221e e e ee S xdx x x x =-=--=-⎰.(2) 221120013()()2220y y e yyyy y ye e V dy e dx e ye dy ye e ==-=-+=-⎰⎰⎰.(B )1. 交换积分次序:(1) 311(,)xxdx f x y dy -⎰⎰; (2)0112(,)y dy f x y dx --⎰⎰;(3) 224(,)x x f x y dy -⎰;(4) 110(,)dx f x y dy ⎰.解:(1) 3111(,)(,)x xydx f x y dy dy f x y dx -=⎰⎰⎰.(2) 01101221(,)(,)yxdy f x y dx dx f x y dy ---=⎰⎰⎰⎰.(3) 2242402(,)(,)(,)x x f x y dy dy f x y dx dy f x y dx -=+⎰⎰⎰.(4) 211121(,)(,)(,)y dx f x y dy dy f x y dx dy f x y dx =+⎰⎰⎰⎰.2. 计算积分2122x xxdx dy x y +⎰⎰.解:222sin sin 144cos cos 2220000cos cos xxx r dx dy d rdr d dr x y r πθπθθθθθθθ==+⎰⎰⎰⎰⎰⎰ 40sin ln 24(ln cos )cos 2d ππθθθθ==-=⎰. 3. 计算积分112201yy dy dx x y ++⎰⎰.解:111114cos 4cos cos 2222000sin sin [sin ]111yy r dy dx d rdr d dr dr x y r r ππθθθθθθθθ==-++++⎰⎰⎰⎰⎰⎰⎰ 44001ln 21(tan sin arctan )arctan (cos )cos 2cos d d ππθθθθθθ=-⋅=+⎰⎰令cos t θ=,则原式211ln 21ln 21ln 211(arctan ln(12222dt dt t t t t t =+=+=+++ln 213ln 213ln ln 22242224ππ=+--=-. 4. 设函数f (x )在区间0,1⎡⎤⎣⎦上连续,且1()f x dx A =⎰,求11()()xdx f x f y dy ⎰⎰. 解:设1'()()()(1)(0)F x f x f x dx F F A ==-=⎰,则.11111()()()[(1)()](1)()()(())xdx f x f y dy f x F F x dx F f x dx F x d F x =-=-⎰⎰⎰⎰⎰21()111(1)(1)[(1)(0)][(1)(0)](1)(1)(0)22220F x F A F A F F F F F A AF AF =-=--+=--21[(1)(0)]22A A F F =-=. 5. 计算2Dx y d σ⎰⎰,其中D 是由直线y =0,y =1及双曲线x 2-y 2=1所围成的闭区域.解:11222022(13Dx yd dy ydx y y σ==+⎰⎰⎰⎰35122222011122(1)(1)(1)1)335150y d y y =++=⋅+=⎰. 6. 计算222y xdx e dy ⎰⎰.解:2222222240000211(1)220y y y y y x dx e dy dy e dx ye dy e e ====-⎰⎰⎰⎰⎰.7. 证明211()()d ()()d 1b x bn n a a adx x y f y y b y f y y n ---=--⎰⎰⎰,其中n 为大于1的正整数. 证:22()()d ()()b x b bn n aaaydx x y f y y dy x y f y dx ---=-⎰⎰⎰⎰11()()1bn b yax y f y dy n -=--⎰11()()d 1bn ab y f y y n -=--⎰。

第八章 二重积分的计算

第八章 二重积分的计算

微积分
例12 计算
y sin( x 1) 2 x 1 dxdy, D : y x, y x 2 D
解 D {( x, y ) | 1 y 2, y 2 x y 2}
根据积分区域的特点 应先对 x 后对 y 积分
y sin( x 1) I dy dx x 1 1 y2 sin( x 1) 但由于 x 1 -1 对 x 的积分求不出,无法计算,
积分时必须考虑次序
D {( x, y ) | 0 y 1,0 x y}
x e
D
1 0
2 y2
dxdy
dy x e
1 y 0 0
2
2 y2
dx
e y
2
1 y3 y2 2 dy e y dy 0 3 6
1 2 (1 ). 6 e
a 2a
2a
2a
微积分
例 7 求 ( x 2 y )dxdy ,其中 D 是由抛物线
y x 和 x y 所围平面闭区域.
2 2
D
x y2
解 两曲线的交点
y x (0,0) , (1,1), 2 x y
2
y x2
D {( x , y ) | 0 x 1, x y x 2 }
化二重积分为累次积分时选择积分次序的 重要性,有些题目两种积分次序在计算上难易程 度差别不大,有些题目在计算上差别很大,甚至 有些题目对一种次序能积出来,而对另一种次序 却积不出来 另外交换累次积分的次序:先由累次积分 找出二重积分的积分区域,画出积分区域,交 换积分次序,写出另一种次序下的累次积分。
微积分
微积分

高等数学二重积分详解

高等数学二重积分详解
在此区间内任取一点x,
过该点自下而上作一条平行 于y轴的射线,先穿过的边界
y 1(x)
oax
bx
y 1(x) 是y的积分下限,
后穿过的边界 y 2 (x) 是y的积分上限。
第二种情形可同理讨论。
对于其他情形,都可化为这两种情况加以转化。 如下图:
y
D2 D1
D3
o
x
y
D2
D3
D1
射线和以极点为圆心的同心
圆,它们将区域D分成许多 o
A
小区域,除去含有边界点的小区域,其余小区域
i 的面积为:
r ri ri
i i
i

1 2
(ri

ri )2 i

1 2
ri2i
r ri

1 2
(2ri

ri
)ri i
ririi
4
o -2
(2,2)
y x4
y2 2x
x
小结:显然1)较2)麻烦。
例3 计算 I x2ey2 dxdy, 其中D由 x 0,
D
y 1及y x 围成。
解:此三条直线的交点分别为(1,1),(0,1), (0,0),所围区域如右。
先对x后对y积分:
I
1
dy
a 1 ( x)
c
D
D

b
dx
2 (x) f (x, y)dy
a
1 ( x)
o
x 2(y)
x
总结:二重积分的计算就是转化为二次定积
分,显然,确定积分次序和积分上、下限是关
键。这主要由积分区域D所确定。所谓

第八章二重积分

第八章二重积分

D
D
的大小, 其中 D 是三角形闭区域, 三顶点各为(1,0),
(1,1), (2,0).
y
解 三角形斜边方程 x y 2
1
在 D 内有 1 x y 2 e,
故 ln( x y) 1,
D
o
12x
于是ln( x y) ln( x y)2,
因此 ln( x y)d [ln( x y)]2 d .

0.4

I

0.5
嘉兴学院
7 November 2019
第八章 二重积分
第31页
9. 判断 ln(x2 y2)d x d y (0 1) 的正负.
x y 1
y
解:当 x y 1 时,
1
D
0 x2 y2 ( x y)2 1 1 O 1 x
第八章 二重积分
例3. 判断积分
解: 分积分域为D1, D2 , D3, 则
原式 = 3 1 x2 y2 d x d y D1 D2 3 x2 y2 1d x d y
第25页
的正负号. y
D3 D2
O 1 32x
D1
舍去此项
猜想结果为负
D1 d x d y
但不好估计 .
π 3 2 π (4 3) π (1 3 2) 0
嘉兴学院
7 November 2019
第八章 二重积分
第26页
4. 设函数
在闭区域上连续, 域D 关于x 轴对称,
D 位于 x 轴上方的部分为D1 , 在 D 上
(1) f (x, y) f (x, y), 则

高等数学第八章二重积分试题及答案

高等数学第八章二重积分试题及答案

第八章 多元函数积分学一、二重积分的概念与性质1.定义设()y x f ,是定义在有界闭区域D 上的有界函数,如果对任意分割D 为n 个小区域,,,,21n σσσ∆∆∆ 对小区域()n k k ,,2,1 =∆σ上任意取一点()k k ηξ,都有()k nk k kd f σηξ∆∑=→1,lim存在,(其中k σ∆又表示为小区域k σ∆的面积,k d 为小区域k σ∆的直径,而k nk d d ≤≤=1max ) 则称这个极限值为()y x f ,在区域D 上的二重积分 记以()⎰⎰Dd y x f σ,,这时就称()y x f ,在D 上可积。

如果()y x f ,在D 上是有限片上的连续函数,则()y x f ,在D 上是可积的。

2.几何意义当()y x f ,为闭区域D 上的连续函数,且()0,≥y x f ,则二重积分()⎰⎰Dd y x f σ,表示以曲面()y x f z ,=为顶,侧面以D 的边界曲线为准线,母线平行于z 轴的曲顶柱体的体积。

当封闭曲面S 它在xy 平面上的投影区域为D ,上半曲面方程为()y x f z ,2=,下半曲面方程为()y x f z ,1=,则封闭曲面S 围成空间区域的体积为()()[]σd y x f y x f D⎰⎰-,,123.基本性质 (1)()()⎰⎰⎰⎰=DDd y x f k d y x kf σσ,,(k 为常数)(2)()()[]()()σσσd y x g d y x f d y x g y x f DDD⎰⎰⎰⎰⎰⎰±=±,,,,(3)()()()⎰⎰⎰⎰⎰⎰+=12,,,D D Dd y x f d y x f d y x f σσσ 其中21UDD D =,除公共边界外,1D 与2D 不重叠。

(4)若()()y x g y x f ,,≤,()D y x ∈,,则()()⎰⎰⎰⎰≤DDd y x g d y x f σσ,,(5)若()M y x f m ≤≤,,()D y x ∈,,则()⎰⎰≤≤DMS d y x f mS σ, 其中S 为区域D 的面积。

第八章 二重积分

第八章  二重积分

∫c d y∫ψ ( y)
1
d
ψ 2 ( y)
f (x, y) dx
变号时, 变号 当被积函数 f (x, y)在D上变号 由于
f (x, y) + f (x, y) f (x, y) f (x, y) f (x, y) = 2 2
f1(x, y)
f2 (x, y) 均非负
因此上面讨论的累次积分法仍然有效 .
四、曲顶柱体体积的计算
设曲顶柱的底为
y = 2 (x)
z z = f (x, y)
1(x) ≤ y ≤ 2 (x) D = (x, y) a ≤ x ≤b
任取 截面积为 故曲顶柱体体积为 平面 截柱体的
y
D
O
a x0 b x y = 1(x)
V = ∫∫ f (x, y) dσ = ∫ A(x)记 d x
例4. 求两个底圆半径为R 的直交圆柱面所围的体积. 解: 设两个直圆柱方程为
x2 + y2 = R2, x2 + z2 = R2
利用对称性, 考虑第一卦限部分, 其曲顶柱体的顶为 z = R2 x2
z
R
O
0 ≤ y ≤ R2 x2 (x, y) ∈ D : 0≤ x ≤ R 则所求体积为
D D
3. ∫∫ f (x, y)dσ = ∫∫D f (x, y)dσ + ∫∫D f (x, y)dσ
D
1 2
σ 为D 的面积, 则
σ = ∫∫D1 dσ = ∫∫D dσ
5. 若在D上 f (x, y)≤ (x, y) , 则
∫∫D f (x, y) dσ ≤ ∫∫D (x, y) dσ
特别, 由于 f (x, y) ≤ f (x, y) ≤ f (x, y)

二重积分习题练习及解析ppt课件

二重积分习题练习及解析ppt课件

(2)设f (x, y)在有界闭区域D上连续. 若D关于
y轴对称, f (x, y)对x为奇函数, 即
f ( x , y ) f ( x , y ), ( x , y ) D,

f ( x , y )dxdy 0, D
f (x, y)对x为偶函数, 即 D
f ( x , y ) f ( x , y ), ( x , y ) D,
D
n
0
i 1
4
f ( x , y ) d xOy平面上方的曲顶柱体体积 D
减xOy平面下方的曲顶柱体体积. 3. 物理意义 若平面薄片占有平面内有界闭区域D, 它的面 密度为连续函数 ( x , y ), 则它的质量M为:
M ( x , y ) d .
D
5
(二)二重积分的性质 (重积分与定积分有类似的性质) 性质1(线性运算性质) 设、 为常数, 则
序后的积分限;
2. 如被积函数为 f ( x 2 y 2 ), f ( x 2 y 2 ),
y y f ( ), f (arctan ) 或积分域为 圆域、扇形域、 x x
圆环域时, 则用极坐标计算;
18
3. 注意利用对称性质, 以便简化计算; 4. 被积函数中含有绝对值符号时, 应 将积分域分割成几个子域, 使被积函数在 每个子域中保持同一符号, 以消除被积函 数中的绝对值符号.
y
1
1
y x2
O
1
x
20
2.利用对称性
例 计算
x 2 y 2 a 2

( x 2 x 3 y 2)d .
2
解 积分域是圆 x 2 y 2 a 2 , 故关于x、y轴、 直线 y x 对称, 故将被积函数分项积分:

大学高数下--二重积分的计算课件

大学高数下--二重积分的计算课件
D x
解 :原式 2 4 3 3 tad n1 2co d s
A(1, 3) 22
0 法二: 积分区域关于 x 轴对称,
B(1, 3) 22
y关于y为奇函,数 x 原 式 0
33
例4写 出 积 分 f(x,y)dxdy的 极 坐 标 二 次 积 分 形
D
式 , 其 中 积 分 区 域
D{(x,y)| 1xy 1x2,0x1}.
x-型区域的特点: 穿过区域且平行于y轴的
直线与区域边界相交不多于两个交点.
y-型区域的特点:穿过区域且平行于x轴的
直线与区域边界相交不多于两个交点.
3、其他情形
1) 如果积分区域 D 可表示为 x-型 区域又可表
示为 y-型 区域 ,且 f(x,y)在D 上连续,则有:
D f(x ,y )da b d x 1 2 (( x x ))f(x ,y )d y
2、极点O在D的边界上 区域特征如图
()
,
D
0().
o
A
f(co , ssin )dd
D
d 0 ()f(c o ,ss i) n d .
29
二重积分化为二次积分的公式(3)
3、极点O在D的内部 区域特征如图
()
D
02, 0(). o
A
f(co , ssin )dd
D
0 2 d 0 ()f(c o ,ss i) n d .
S { x , y ) ( | 0 x R , 0 y R } R 2R
{x0,y0} 显 然 有 D 1 S D 2
ex2y2 0,
ex2y2dxdy ex2y2dxdy ex2y2dxd.y
25
三、利用极坐标系计算二重积分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题8-11. 设有一平面薄片,在xOy 平面上形成闭区域D ,它在点(x ,y )处的面密度为μ(x ,y ),且μ(x ,y )在D 连续,试用二重积分表示该薄片的质量. 解:(,)Dm x y d μσ=⎰⎰.2. 试比较下列二重积分的大小:(1) 2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰,其中D 由x 轴、y 轴及直线x +y =1围成;(2) ln()Dx y d σ+⎰⎰与2ln()Dx y d σ+⎡⎤⎣⎦⎰⎰,其中D 是以A (1,0),B (1,1),C (2,0)为顶点的三角形闭区域.解:(1)在D 内,()()2301x y x y x y ≤+≤+≥+,故,23()()DDx y d x y d σσ+≥+⎰⎰⎰⎰.(2) 在D 内,212ln()1,ln()ln ()x y x y x y x y ≤+≤≤+≤+≥+,故0从而,2ln()[ln()]DDx y d x y d σσ+≥+⎰⎰⎰⎰习题8-21. 画出积分区域,并计算下列二重积分: (1)()Dx y d σ+⎰⎰,其中D 为矩形闭区域:1,1xy ≤≤;(2) (32)Dx y d σ+⎰⎰,其中D 是由两坐标轴及直线x +y =2所围成的闭区域;(3) 22()Dx y x d σ+-⎰⎰,其中D 是由直线y =2,y =x ,y =2x 所围成的闭区域;(4)2Dx y d σ⎰⎰,其中D 是半圆形闭区域:x 2+y 2≤4,x ≥0;(5)ln Dx y d σ⎰⎰,其中D 为:0≤x ≤4,1≤y ≤e ;(6)22Dx d σy ⎰⎰其中D 是由曲线11,,2xy x y x ===所围成的闭区域. 解:(1) 111111()()20.Dx y d dx x y dy xdx σ---+=+==⎰⎰⎰⎰⎰(2) 222200(32)(32)[3(2)(2)]xDx y d dx x y dy x x x dx σ-+=+=-+-⎰⎰⎰⎰⎰223202220[224]4.330x x dx x x x =-++=-++=⎰(3) 32222222002193()()()248yy Dy x y x d dy x y x dx y dy σ+-=+-=-⎰⎰⎰⎰⎰43219113.96860y y -= (4) 因为被积函数是关于y 的奇函数,且D 关于x 轴对称,所以20.Dx yd σ=⎰⎰(5) 44201041ln ln (ln ln )2(1)2110e De e e x yd dx x ydy x y yy dx x e σ-==-==-⎰⎰⎰⎰⎰.(6) 122224111311122222119()()124642x x Dx x x x x x d dx dy dx x x dx y y y x σ==-=-=-=⎰⎰⎰⎰⎰⎰. 2. 将二重积分(,)Df x y d σ⎰⎰化为二次积分(两种次序)其中积分区域D 分别如下:(1) 以点(0,0),(2,0),(1,1)为顶点的三角形; (2) 由直线y =x 及抛物线y 2=4x 所围成的闭区域;(3) 由直线y =x ,x =2及双曲线1y x =所围成的闭区域;(4) 由曲线y =x 2及y =1所围成的闭区域. 解:(1) 12212001(,)(,)(,).xxy ydx f x y dy dx f x y dy dy f x y dx --+=⎰⎰⎰⎰⎰⎰(2) 2441004(,)(,).y xy dx f x y dy dy f x y dx =⎰⎰⎰⎰(3) 12222111112(,)(,)(,).xyyxdy f x y dx dy f x y dx dx f x y dy +=⎰⎰⎰⎰⎰⎰(4) 211110(,)(,).xdx f x y dy dy f x y dx -=⎰⎰⎰3. 交换下列二次积分的积分次序:(1) 100(,)ydy f x y dx⎰⎰; (2)2220(,)yydy f x y dx⎰⎰;(3)ln 1(,)exdx f x y dy⎰⎰; (4)123301(,)(,)y ydy f x y dx dy f x y dx-+⎰⎰⎰⎰.解:(1) 111000(,)(,)yxdy f x y dx dx f x y dy =⎰⎰⎰⎰.(2) 2224002(,)(,).yx ydy f x y dx dx f x y dy =⎰⎰⎰⎰(3) ln 1100(,)(,)y exeedx f x y dy dy f x y dx =⎰⎰⎰⎰(4) 1233230012(,)(,)(,)yyxxdy f x y dx dy f x y dx dx f x y dy --+=⎰⎰⎰⎰⎰⎰.4. 求由平面x =0,y =0,x =1,y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体体积.解:11100037(623)(62).22V dx x y dy x dx =--=--=⎰⎰⎰ 5. 求由平面x =0,y =0,x +y =1所围成的柱体被平面z =0及曲面x 2+y 2=6-z 截得的立体体积.解:3111222000(1)34(6)[6(1)(1)).312xx V dx x y dy x x x dx --=--=----=⎰⎰⎰习题8-31. 画出积分区域,把二重积分(,)Df x y d σ⎰⎰化为极坐标系下的二次积分,其中积分区域D 是:(1) x 2+y 2≤a 2 (a >0); (2) x 2+y 2≤2x ;(3) 1≤x 2+y 2≤4; (4) 0≤y ≤1-x ,0≤x ≤1.解:(1) 20(,)(cos ,sin ).aDf x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(2) 2cos 202(,)(cos ,sin ).Df x y d d f r r rdr πθπσθθθ-=⎰⎰⎰⎰(3) 221(,)(cos ,sin ).Df x y d d f r r rdr πσθθθ=⎰⎰⎰⎰(4) 12cos sin 0(,)(cos ,sin ).Df x y d d f r r rdr πθθσθθθ+=⎰⎰⎰⎰2. 把下列积分化为极坐标形式,并计算积分值:(1) 222200()aa y dy x y dx -+⎰⎰; (2) 21220;xxdx x y dx +⎰⎰解:(1) 2244223200()248aa y aa a dy x y dx d r dr πππθ-+==⋅=⎰⎰⎰⎰. (2) 22sin 3122244cos 60001sin 3cos xxdx x y dx d r dr d πθπθθθθθ+==⎰⎰⎰⎰⎰ 244466400011cos 111(cos )[(cos )(cos )]33cos cos cos d d d πππθθθθθθθ-=-=--⎰⎰⎰ 532(21)1cos cos 4().3530πθθ--+=--+= 3. 在极坐标系下计算下列二重积分: (1)22x y De d σ+⎰⎰,其中D 是圆形闭区域: x 2+y 2≤1;(2) 22ln(1)Dx y d σ++⎰⎰,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;(3) arctan Dy d σx⎰⎰,其中D 是由圆周x 2+y 2=1,x 2+y 2=4及直线y =0,y =x所围成的在第一象限内的闭区域;(4) Dσ其中D 由圆周x 2+y 2=Rx (R >0)所围成.解:(1) 22222100112(1).20x y r r De d d e rdr e e πσθππ+==⋅=-⎰⎰⎰⎰(2) 23112222221ln(1)ln(1)[ln(1)]221Dr r xy d d r rdr r dr rππσθ++=+=+-+⎰⎰⎰⎰⎰ 212(1)[ln 22](2ln 21)441r r r dr r ππ+-=-=-+⎰.(3) 222244010133arctan arctan(tan ).32264Dy d d rdr d rdr x ππππσθθθθ=⋅==⋅=⎰⎰⎰⎰⎰⎰(4) Dσ3cos 22222022cos 12()230R R d R r d ππππθθθ--==--⎰⎰⎰ 3333221(sin )33R R R d πππθθ-=--=⎰.4. 求由曲面z =x 2+y 2与z =所围成的立体体积.解:两条曲线的交线为x 2+y 2=1,因此,所围成的立体体积为:212220()]().6DV x y d d r r rdr ππσθ=+=-=⎰⎰⎰⎰习题8-41. 计算反常二重积分()x y De dx dy -+⎰⎰,其中D :x ≥0,y ≥x .2. 计算反常二重积分222()Ddx dy x y +⎰⎰,其中D :x 2+y 2≥1.解:1. 22201()2a aa ax y x x a aa xe dx e dy e e dx e e ---------=-=-+-⎰⎰⎰ 所以2()211lim ().22a x y a a a De edxdy e e --+--→+∞-=-+-=⎰⎰2. 由232011112()22Rd dr r R πθπ=-⎰⎰,得222211lim 2().2()2R Ddxdy x y R ππ→+∞=-=+⎰⎰复习题8 (A )1. 将二重积分d d (,)Df x y x y ⎰⎰化为二次积分(两种次序都要),其中积分区域D 是:(1) ︱x ︱≤1,︱y ︱≤2;(2) 由直线y =x 及抛物线y 2=4x 所围成. 解:(1) 12211221(,)(,).dx f x y dy dy f x y dx ----=⎰⎰⎰⎰(2) 2424004(,)(,).xyy xdx f x y dy dy f x y dx =⎰⎰⎰⎰2. 交换下列两次积分的次序: (1)d d 10(,)yyy f x y x⎰⎰;(2)d d 2220(,)a ax x x f x y y-⎰⎰;(3)d d +d d 122001(,)(,)xxx f x y y x f x y y -⎰⎰⎰⎰.解:(1) 21100d (,)d d (,)d yxyxy f x y x x f x y y =⎰⎰⎰⎰.(2) 22222220d (,)d d (,)d aax x aa a y a a y x f x y y y f x y x -+---=⎰⎰⎰⎰.(3) 12212001d (,)d +d (,)d d (,)d xxy yx f x y y x f x y y y f x y x --=⎰⎰⎰⎰⎰⎰.3. 计算下列二重积分: (1)ed x yDσ+⎰⎰, D : ︱x ︱≤1,︱y ︱≤1;(2)d d 2Dxy x y ⎰⎰,D 由直线y 1,x 2及y x 围成;(3)d d (1)Dx x y-⎰⎰,D 由y x 和y x 3围成;(4)d d 22()Dxy x y +⎰⎰,D :︱x ︱︱y ︱≤1;(5)d 1sin Dy σy ⎰⎰,D 由22y x π=与y x 围成; (6)d (4)Dx y σ--⎰⎰,D是圆域x 2+y 2≤R 2;解: (1) 1111111211111e d ()()()1x y x y x x x x Ddx e dy e e dx e e e e σ+++-+----==-=-=--⎰⎰⎰⎰⎰.(2) 5322224211121129d d ()()2253151xDx x xy x y dx x ydy x x dx ==-=-=⎰⎰⎰⎰⎰.(3) 3112430011117(1)d d (1)()325460xx Dx x y dx x dy x x x x dx -=-=--+=--+=-⎰⎰⎰⎰⎰.(4) 11222200()d d 4()xDx y x y dx x y dy -+=+⎰⎰⎰⎰33241201412124(2)4()33323330x x x x x x dx x =--+=--+=⎰.(5) 222200sin 12sin d (sin sin )y y Dy y dy dx y y y dy y y πππσπ==-⎰⎰⎰⎰⎰222222sin (cos )1(cos sin )10ydy yd y y y y ππππππ=+=+-=-⎰⎰.(6)3222(4)d (4cos sin )[2(cos sin )]3R DR x y d r r rdr R d ππσθθθθθθ--=--=-+⎰⎰⎰⎰⎰3222[2(sin cos )]430R R R πθθθπ=--=.4. 已知反常二重积分e d 2y Dx σ-⎰⎰收敛,求其值.其中D 是由曲线y =4x 2与y =9x 2在第一象限所围成的区域.解:设2249(0)a D y x y x y a a ===>是由曲线、和在第一象限所围成.则22222200015555ed ()236144144144aaa a y y y y a D x dy dx ye dy e d y e σ-----==⋅=--=-⎰⎰⎰⎰⎰.所以225e d lim e d 144ay y a DD x x σσ--→+∞==⎰⎰⎰⎰. 5. 计算e d 2xx+∞--∞⎰.解:由第四节例2以及2y =e x -是偶函数,可知2e d x x +∞--∞=⎰.6. 求由曲面z =0及z =4-x 2-y 2所围空间立体的体积.解:曲面z =0和z =4-x 2-y 2的交线为x 2+y 2 =4.因此,所围空间立体的体积为:22222016(4)d d (4)2(8)84Dx y x y d r rdr πθππ--=-=-=⎰⎰⎰⎰.7. 已知曲线y =ln x 及过此曲线上点(e ,1)的切线ey x 1=. (1) 求由曲线y =ln x ,直线ey x 1=和y =0所围成的平面图形D 的面积;(2) 求以平面图形D 为底,以曲面z =e y 为顶的曲顶柱体的体积.解:(1) 1ln (ln )12221ee e eeS xdx x x x =-=--=-⎰. (2) 221120013()()2220yye y y y y y ye e V dy e dx e ye dy ye e ==-=-+=-⎰⎰⎰.(B )1. 交换积分次序: (1) 311(,)xx dx f x y dy -⎰⎰; (2)0112(,)ydy f x y dx--⎰⎰;(3) 224(,)x x f x y dy-⎰; (4) 110(,)dx x y dy ⎰.解:(1) 31110(,)(,)xx ydx f x y dy dy f x y dx -=⎰⎰⎰.(2) 01101221(,)(,)yxdy f x y dx dx f x y dy ---=⎰⎰⎰⎰.(3) 224242(,)(,)(,)x xf x y dy dy f x y dx dy f x y dx -=+⎰⎰⎰.(4) 21112001(,)(,)(,)y dx f x y dy dy f x y dx dy f x y dx =+⎰⎰⎰⎰.2. 计算积分21220xxxdx dy x y +⎰⎰.解:222sin sin 144cos cos 22200000cos cos xxx r dx dy d rdr d dr x y r πθπθθθθθθθ==+⎰⎰⎰⎰⎰⎰40sin ln 24(ln cos )cos 2d ππθθθθ==-=⎰. 3. 计算积分112201yy dy dx x y ++⎰⎰.解:111114cos 4cos cos 222200000sin sin [sin ]111yy r dy dx d rdr d dr dr x y r r ππθθθθθθθθ==-++++⎰⎰⎰⎰⎰⎰⎰ 44001ln 21(tan sin arctan )arctan (cos )cos 2cos d d ππθθθθθθ=-⋅=+⎰⎰令cos t θ=,则原式211ln 21ln 21ln 211(arctan ln(12222dt dt t t t t t =+=+=+++ln 213ln 213ln ln 22242224ππ=+--=-. 4. 设函数f (x )在区间0,1⎡⎤⎣⎦上连续,且10()f x dx A =⎰,求11()()xdx f x f y dy ⎰⎰.解:设10'()()()(1)(0)F x f x f x dx F F A ==-=⎰,则.11111()()()[(1)()](1)()()(())xdx f x f y dy f x F F x dx F f x dx F x d F x =-=-⎰⎰⎰⎰⎰21()111(1)(1)[(1)(0)][(1)(0)](1)(1)(0)22220F x F A F A F F F F F A AF AF =-=--+=--21[(1)(0)]22A A F F =-=.5. 计算2Dx y d σ⎰⎰,其中D 是由直线y =0,y =1及双曲线x 2-y 2=1所围成的闭区域.解:112220022(13Dxyd dy ydx y y σ==+⎰⎰⎰⎰ 35122222011122(1)(1)(1)1)335150y d y y =++=⋅+=⎰. 6. 计算2220y x dx e dy ⎰⎰.解:2222222240000211(1)220yy y y yx dx e dy dy e dx ye dy e e ====-⎰⎰⎰⎰⎰. 7. 证明211()()d ()()d 1bxbn n a a a dx x y f y y b y f y y n ---=--⎰⎰⎰,其中n 为大于1的正整数.证:22()()d ()()b x b bn n a a a y dx x y f y y dy x y f y dx ---=-⎰⎰⎰⎰11()()1b n b yax y f y dy n -=--⎰11()()d 1bn ab y f y y n -=--⎰。

相关文档
最新文档